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Abstract 

In   this   paper   we  discuss   new  type   of  continuous   functions   called   slightly �g-continuous  functions; its  

properties and  interrelation with  other  continuous  functions  are studied. 
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1. Introduction 

 

In 1995 T. M. Nour introduced slightly semi-continuous functions.  After him T. Noiri and G. I. Chae further studied   

slightly semi-continuous functions in 2000. T. Noiri individually studied about slightly �−continuous functions in 

2001. C. W. Baker introduced slightly precontinuous functions in 2002.   Erdal Ekici and M. Caldas studied slightly 

�-continuous functions in 2004. Arse Nagli Uresin and others studied slightly �−continuous functions in 2007. 

Recently S. Balasubramanian and P. A. S. Vyjayanthi studied slightly � -continuous functions in 2011.  Inspired with 

these developments I introduce in this paper slightly �g-continuous function and study its basic properties and 

interrelation with other type of such functions available in the literature. Throughout the paper a space X 

means a topological space (X, �). 

 

2. Preliminaries 

 
Definition 2.1:  A⊂ X is called 

                          

(i) closed if its complement is open.                        

 

(ii) rα-open [v-open] if ∃ U∈ αO(X)[RO(X)] such that U⊂ A⊂ αcl(U)[ U⊂ A⊂cl(U)].                    

 

(iii) semi-θ-open if it is the union of semi-regular sets and its complement is semi-θ-closed.                                          

 

(iv) Regular closed[α-closed; pre-closed; �−closed] if A = cl{Ao}[resp:(cl(Ao))o⊆A; cl(Ao)⊆A; cl((cl{A}))o⊆A].      

 

(v) Semi closed [v-closed] if its complement if semi open [v-open].                    

 

(vi) g-closed [rg-closed] if cl A⊆ U whenever A⊆ U and U is open in X.                  

 

(vii) sg-closed [gs-closed] if s(cl A) ⊆ U whenever A⊆ U and U is semi-open{open} in X.              

 

(viii) pg-closed [gp-closed; gpr-closed] if pcl(A) ⊆U whenever A⊆U and U is pre-open[open; regular-open] in X.         

 

(ix) αg-closed [gα-closed; rgα-closed; rαg-closed] if αcl(A) ⊆ U whenever A⊆ U and U is open[α-open; rα-open;     

r-open] in X.                           

 

(x) vg-closed if vcl(A) ⊆ U whenever A⊆ U and U is v-open in X. 
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Definition 2.2:  A function f:X→ Y is said to be 

(i) continuous [resp: nearly-continuous; rα-continuous; v-continuous; α-continuous; semi-continuous; �−continuous; 

pre-continuous] if inverse image of each open set is open[resp: regular-open; rα-open; v-open; α-open; semi-open;  

� -open; preopen].  

 

(ii) nearly-irresolute [resp: rα-irresolute; v-irresolute; α-irresolute; irresolute; �−irresolute; pre-irresolute] if inverse 

image of each regular-open[resp: rα-open; v-open; α-open; semi-open; �-open; preopen] set is regular-open[resp:  

rα-open; v-open; α-open; semi-open; �-open; preopen].  

 

(iii) almost continuous[resp: almost  nearly-continuous; almost rα-continuous; almost v-continuous; almost  

α-continuous; almost semi-continuous; almost �−continuous; almost pre-continuous] if for each x in X and each open 

set (V, f(x)), ∃ an open [resp: regular-open; rα-open; v-open; α-open; semi-open; �-open; preopen] set (U, x) such that 

f(U) ⊂ (cl(V))o.  

 

(iv)  weakly continuous[resp: weakly nearly-continuous; weakly rα-continuous; weakly v-continuous; weakly  

α-continuous; weakly semi-continuous; weakly �−continuous; weakly pre-continuous] if for each x in X and each open 

set (V, f(x)), ∃ an open [resp: regular-open; rα-open; v-open; α-open; semi-open; �-open; preopen] set (U, x) such that 

f (U) ⊂ cl(V).  

 

(v) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly �−continuous; slightly 

�−continuous; slightly α-continuous; slightly r-continuous; slightly v-continuous] at x in X if for each clopen subset V 

in Y containing f(x), ∃ U∈ τ (X)[ ∃ U∈ SO(X); ∃ U∈ PO(X); ∃ U∈ �O(X); ∃ U∈ � O(X); ∃ U∈ α O(X); ∃ U∈ RO(X); 

∃ U∈ v O(X)] containing x such that f(U) ⊆ V.  

 

(vi) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly �−continuous; slightly         

�-continuous; slightly α-continuous; slightly r-continuous; slightly v-continuous] if it is slightly-continuous 

[resp:slightly semi-continuous; slightly pre-continuous; slightly �−continuous; slightly �-continuous; slightly  

α-continuous; slightly r-continuous; slightly v-continuous] at each x in X. 

 

(vii) almost strongly θ-semi-continuous[resp: strongly θ-semi-continuous] if for each x in X and for each 

V∈ σ(Y, f(x)), ∃ U∈ SO(X, x) such that f(scl(U)) ⊂ scl(V)[resp: f(scl(U)) ⊂ V]. 

 

Note 1: From the above Definitions we have the following interrelations among the closed sets.   

    g-closed  gs-closed  ←  ←  ←   

          ↓    ↓    ↑  

rαg-closed    →    rgα-closed   →   rg-closed   →    vg-closed    ←    sg-closed ←   �g-closed 
      ↑     ↑              ↑       ↑  ↑ 

 ↑   →���→��� rα-closed →���→���→���→���������v-closed    →�����→   ↓     ↑  ↑  

Regular closed     →       π-closed     →     closed     →     α-closed → semi closed  →  �-closed 
↓           ↓           ↓ 

                      πg-closed     pre-closed → ω-closed   ≠ gα-closed  
         ↓  ↓  

gp-closed   ← pg-closed    rω-closed 

 

Definition 2.3: X is said to be a 

(i)  compact [resp: nearly-compact; rα-compact; v-compact; α-compact; semi-compact; �−compact; pre-compact; 

mildly-compact] space if every open[resp: regular-open; rα-open; v-open; α-open; semi-open; �-open; preopen; 

clopen] cover has a finite subcover.  

 

(ii) countably-compact[resp: countably-nearly-compact; countably-rα-compact; countably-v-compact; countably-α-

compact; countably-semi-compact; countably-�−compact; countably-pre-compact; mildly-countably compact] space if 

every countable open[resp: regular-open; rα-open; v-open; α-open; semi-open; �-open; preopen; clopen] cover has a 

finite subcover.  

 

(iii) closed-compact [resp: closed-nearly-compact; closed-rα-compact; closed-v-compact; closed-α-compact; closed-

semi-compact; closed-�−compact; closed-pre-compact] space if every closed [resp: regular-closed; rα-closed; v-closed; 

α-closed; semi-closed; �-closed; preclosed] cover has a finite subcover.  

 

(iv) Lindeloff[resp: nearly-Lindeloff; rα-Lindeloff; v-Lindeloff; α-Lindeloff; semi-Lindeloff; �−Lindeloff; pre-

Lindeloff; mildly-Lindeloff] space if every open[resp: regular-open; rα-open; v-open; α-open; semi-open; �-open; 

preopen; clopen] cover has a countable subcover. 
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(v) Extremally disconnected [briefly e.d] if the closure of each open set is open. 

 

Definition 2.4: X is said to be a  
(i)  T0[resp: r-T0; rα-T0; v-T0; α-T0; semi-T0; �-T0; pre-T0; Ultra T0] space if for each x � y∈ X ∃ U∈τ (X)[resp: rO(X); 

rαO(X); vO(X); αO(X); SO(X); �O(X); PO(X); CO(X)] containing either x or y.  

 

(ii) T1[resp: r-T1; rα-T1; v-T1; α-T1; semi-T1; �-T1; pre-T1; Ultra T1] space if for each x � y∈ X ∃ U, V∈τ (X) 

[resp: rO(X); rαO(X); vO(X); αO(X); SO(X); �O(X); PO(X): CO(X)] such that x∈ U - V and y∈ V - U.  

 

(iii) T2[resp: r-T2; rα-T2; v-T2; α-T2; semi-T2; �-T2; pre-T2; Ultra T2] space if for each x � y∈ X ∃ U, V∈τ (X) 

[resp: rO(X); rαO(X); vO(X); αO(X); SO(X); �O(X); PO(X); CO(X)] such that x∈ U; y∈ V and U∩ V = φ.  

 

(iv)  C0[resp: r-C0; rα-C0; v-C0; α-C0; semi-C0; �-C0; pre-C0; Ultra C0] space if for each x � y∈ X ∃ U∈τ (X) 

[resp: rO(X); rαO(X); vO(X); αO(X); SO(X); �O(X); PO(X); CO(X)]whose closure contains either x or y  

 

(v) C1[resp: r-C1; rα-C1; v-C1; α-C1; semi-C1; �-C1; pre-C1; Ultra C1] space if for each x � y∈ X ∃ U, V∈τ (X) 

[resp: rO(X); rαO(X); vO(X); αO(X); SO(X); �O(X); PO(X); CO(X)]whose closure contains x and y.  

 

(vi) C2[resp: r-C2; rα-C2; v-C2; α-C2; semi-C2; �-C2; pre-C2; Ultra C2] space if for each x � y∈ X ∃ disjoint U,  

V∈τ (X)[resp: rO(X); rαO(X); vO(X); αO(X); SO(X); �O(X); PO(X); CO(X)]whose closure contains x and y.  

 

(vii) D0[resp: r-D0; rα-D0; v-D0; α-D0; semi-D0; �-D0; pre-D0; Ultra D0] space if for each x � y∈X ∃ U∈D(X) 

[resp: rD(X); rαD(X); vD(X); αD(X); SD(X); �D(X); PD(X); COD(X)] containing either x or y.  

 

(viii) D1[resp: r-D1; rα-D1; v-D1; α-D1; semi-D1; �-D1; pre-D1; Ultra D1] space if for each x � y∈X ∃ U, V∈D(X) 

[resp: rD(X); rαD(X); vD(X); αD(X); SD(X); �D(X); PD(X); COD(X)]such that x∈ U-V and y∈ V-U.  

 

(ix)D2[resp: r-D2; rα-D2; v-D2; α-D2; semi-D2; �-D2; pre-D2; Ultra D2] space if for each x � y∈X ∃ U, V∈ D(X) 

[resp: rD(X); rαD(X); vD(X); αD(X); SD(X); �D(X); PD(X); CD(X)] such that x∈ U; y∈ V and U∩V = φ.  

 

(x) R0[resp: r-R0; rα-R0; v-R0; α-R0; semi-R0; �-R0; pre-R0; Ultra R0] space if for each x in X ∃ U∈ τ (X)[resp: RO(X); 

rαO(X); vO(X); αO(X); SO(X); �O(X); PO(X); CO(X)]cl{x}⊆ U[resp: rcl{x}⊆ U; vcl{x}⊆ U; αcl{x}⊆ U;  

scl{x}⊆ U] whenever x∈ U∈τ (X)[resp: x∈ U∈ RO(X); x∈ U∈ v O(X); x∈ U∈ α O(X); x∈ U∈ SO(X)] 

 

(xi) R1[resp: r-R1; rα-R1; v-R1; α-R1; semi-R1; �-R1; pre-R1; Ultra R1] space if for x,y∈ X such that cl{x} � cl{y}[resp: 

such that rcl{x} � rcl{y}; such that rαcl{x} � rαcl{y}; such that vcl{x} � vcl{y}; such that αcl{x} � αcl{y}; such that 

scl{x} � scl{y}; such that �cl{x} � �cl{y}; such that pcl{x} � pcl{y}; such that COcl{x} � COcl{y};] ∃ disjoint U;  

V∈ τ (X) such that cl{x}⊆ U[resp: RO(X) such that rcl{x}⊆ U;Rα O(X) such that rαcl{x}⊆ U; v O(X) such that 

vcl{x}⊆ U; RO(X) such that αcl{x}⊆ U; SO(X) such that scl{x}⊆ U; � O(X) such that �cl{x}⊆ U; PO(X) such that 

pcl{x}⊆ U; CO(X) such that COcl{x}⊆ U] and cl{y}⊆ V [resp: RO(X) such that rcl{y}⊆V;RαO(X) such that 

rαcl{y}⊆V; vO(X) such that vcl{y}⊆V; RO(X) such that αcl{y}⊆V; SO(X) such that scl{y}⊆V; � O(X) such that 

�cl{y}⊆V; PO(X) such that pcl{y}⊆V; CO(X) such that COcl{y}⊆V] 

 

Lemma 2.1:                           

(i) Let A and B be subsets of a space X, if A∈vGO(X) and B∈RO(X), then A∩B∈vGO(B).         

 

(ii)Let A⊂ B⊂ X, if A∈ vGO(B) and B∈ RO(X), then A∈vGO(X). 

 

3. Slightly vg-continuous functions: 
 

Definition 3.0: A function f:X→ Y is said to be 

 

(i) slightly g-continuous[resp: slightly sg-continuous; slightly pg-continuous; slightly �g-continuous; slightly  

�g-continuous; slightly α g-continuous; slightly rg-continuous] at x in X if for each clopen subset V in Y containing 

f(x), ∃ U∈GO(X)[ ∃ U∈SGO(X); ∃ U∈PGO(X); ∃ U∈�GO(X); ∃ U∈�GO(X); ∃ U∈αGO(X); ∃ U∈RGO(X)] 

containing x such that f(U) ⊆ V. 

 

(ii) slightly g-continuous[resp: slightly sg-continuous; slightly pg-continuous; slightly � g-continuous; slightly  � g-

continuous; slightly α g-continuous; slightly rg-continuous] if it is slightly g-continuous[resp:slightly sg-continuous; 

slightly pg-continuous; slightly �g-continuous; slightly �g-continuous; slightly αg-continuous;  

Slightly rg-continuous] at each x in X. 
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Definition 3.1: A function f: X→ Y is said to be 

(i) slightly vg-continuous function at x in X if for each clopen subset V in Y containing f(x), ∃ U∈vGO(X) containing x 

such that f(U) ⊆ V. 

 

(ii) slightly vg-continuous function if it is slightly vg-continuous at each x in X. 

 

Note 2: Here after we call slightly vg-continuous function as sl.v g.c function shortly. 

 

Example 3.1: X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ = {φ, {a}, {b, c}, Y}. Let f:X→ Y be identity 

function, then f is sl.vg.c.   

 

Example 3.2: X = Y = {a, b, c}; τ = {φ, {a}, {a, b}, X} and σ = {φ, {a}, {b, c}, Y}. Let f:X→ Y be identity function, 

then f is not sl.vg.c. 

 

Theorem 3.1: The following are equivalent: 

(i) f: X→ Y is sl.vg.c. 

(ii)  f -1(V) is vg-open for every clopen set V in Y. 

(iii) f -1(V) is vg-closed for every clopen set V in Y.  

(iv) f(vgcl(A)) ⊆ vgcl(f(A)). 

  

Corollary 3.1: The following are equivalent. 

(i) f:X→ Y is sl.vg.c. 

(ii) For each x in X and each clopen subset V∈ (Y, f(x)) ∃ U∈ vGO(X, x) such that f(U) ⊆ V. 

 

Theorem 3.2:  Let  � = {Ui:i∈ I} be any cover of X by regular open sets in X. A function f is sl.vg.c. iff f/Ui: is sl.vg.c., 

for each i∈ I. 

 

Proof: Let i∈ I be an arbitrarily fixed index and Ui∈ RO(X). Let x∈Ui and V∈CO(Y, fUi(x)) Since f is sl.vg.c,  

∃  U∈vGO(X, x) such that f(U)⊂V. Since Ui∈RO(X), by Lemma 2.1 x∈U∩Ui∈vGO(Ui)  

and (f/Ui)U∩ Ui = f(U∩Ui)    ⊂ f(U) ⊂ V. Hence f/Ui is sl.vg.c. 

 

Conversely Let x in X and V∈ CO(Y, f(x)), ∃ i∈ I such that x∈ Ui. Since f/Ui is sl.v g.c, ∃ U∈vGO(Ui, x) such that 

f/Ui(U) ⊂ V. By Lemma 2.1, U∈ v GO(X) and f(U) ⊂ V. Hence f is sl.vg.c. 

 

Theorem 3.3: 

(i) If f: X→ Y is vg-irresolute and g: Y→ Z is sl.vg.c.[slightly-continuous], then g • f is sl.vg.c. 

(ii) If f: X→ Y is vg-irresolute and g: Y→ Z is vg.-continuous, then g• f is sl.vg.c. 

(iii) If f: X→ Y is vg-continuous and g: Y→ Z is slightly-continuous, then g• f is sl.vg.c. 

(iv) If f: X→ Y is rg-continuous and g: Y→ Z is sl.vg.c. [slightly-continuous], then g• f is sl.vg.c. 

 

Theorem 3.4:  If f:X→ Y is vg-irresolute, vg-open and vGO(X) = τ and g:Y→ Z be any function, then g• f: X→ Z is 

sl.vg.c iff g:Y→ Z is sl.vg.c. 

 

Proof:If part: Theorem 3.3(i) 

Only if part: Let A be clopen subset of Z. Then (g• f)-1(A) is a vg-open subset of X and hence open in X 

[by assumption]. Since f is vg-open f (g• f)-1(A) is vg-open Y � g-1(A) is vg-open in Y. Thus g:Y→ Z is sl.vg.c. 

 

Corollary 3.2: If f: X→ Y is vg-irresolute, vg-open and bijective, g: Y→ Z is a function. Then g: Y→ Z is sl.vg.c. iff  

g• f is sl.vg.c.  

 

Theorem 3.5: If g: X → X× Y, defined by g(x) = (x, f(x)) for all x in X be the graph function of f: X → Y. Then  

g:X→ X×Y is sl.v g.c  iff  f  is sl.v g.c. 

 

Proof: Let V∈ CO(Y), then X× V is clopen in X× Y. Since g:X→ Y is sl.vg.c., f -1(V) = f -1(X× V) ∈v GO(X). Thus f is 

sl.vg.c. 

 

Conversely, let x in X and F be a clopen subset of X× Y containing g(x). Then F∩ ({x}× Y) is clopen in {x}× Y 

containing g(x). Also {x}× Y is homeomorphic to Y. Hence {y∈ Y:(x, y) ∈ F} is clopen subset of Y. Since f is sl.vg.c., 

∪{f 
-1(y):(x, y) ∈ F} is vg-open in X. Further x∈ ∪{f -1(y):(x, y) ∈ F}⊆ g 

-1(F). Hence g -1(F) is vg-open. Thus g:X→ Y 

is sl.vg.c. 
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Theorem 3.6: 

(i) If f: X→ Π Yλ is sl.v g.c, then Pλ• f : X→ Yλ is sl.v g.c for each λ∈Γ, where Pλ is the projection of Π Yλ onto Yλ.  

(ii) f: Π Xλ→ Π Yλ is sl.v g.c, iff fλ: Xλ→ Yλ is sl.v g.c for each λ∈Γ. 

 

Remark: 
(i) Composition of two sl.v g.c functions is not in general sl.vg.c. 

(ii) Algebraic sum and product of sl.v g.c functions is not in general sl.vg.c. 

(iii) The pointwise limit of a sequence of sl.v g.c functions is not in general sl.vg.c. 

 

Example 3.3: Let X = Y = [0, 1]. Let fn: X→ Y is defined as follows fn(x) = xn for n = 1, 2, 3, . ., then f:X→ Y defined 

by f(x) = 0 if 0 ≤ x < 1 and f(x) = 1 if x = 1. Therefore each fn is sl.vg.c but f is not sl.vg.c. For (1/2, 1] is clopen in Y, 

but f -1((1/2, 1]) = {1} is not vg-open in X. 

 

However we can prove the following: 

 

Theorem 3.7: The uniform limit of a sequence of sl.vg.c functions is sl.vg.c. 

 

Note: Pasting Lemma is not true for sl.vg.c functions. However we have the following weaker versions. 

 

Theorem 3.8: Let X and Y be topological spaces such that X = A∪ B and let f/A: A→ Y and g/B: B → Y are sl.r.c maps 

such that f(x) = g(x) for all x∈ A∩B. Suppose A and B are r-open sets in X and RO(X) is closed under finite unions, 

then the combination α: X→ Y is sl.vg.c continuous. 

 

Theorem 3.9:  Pasting Lemma Let X and Y be spaces such that X = A∪ B and let f/A: A→ Y and g/B: B → Y are 

sl.vg.c maps such that f(x) = g(x) for all x∈ A∩ B. Suppose A, B are r-open sets in X and vGO(X) is closed under finite 

unions, then the combination α: X→ Y is sl.vg.c. 

 

Proof: Let F∈CO(Y), then α-1(F) = f -1(F)∪g 
-1(F), where f -1(F)∈vGO(A) and g-1(F)∈vGO(B) � f -1(F);                  

g 
-1(F)∈vGO(X) � f -1(F)∪g 

-1(F)∈vGO(X)[by assumption]. Therefore α -1(F)∈vGO(X). Hence  α: X→Y is sl.vg.c. 

 

4. Comparisons: 
 

Theorem 4.1: 

(i) If f is sl.rg.c, then f is sl.vg.c. 

(ii) If f is sl.sg.c, then f is sl.vg.c. 

(iii) If f is sl.g.c, then f is sl.vg.c. 

(iv) If f is sl.s.c, then f is sl.vg.c. 

(v) If f is sl.v.c, then f is sl.vg.c. 

(vi) If f is sl.r.c, then f is sl.vg.c. 

(vii) If f is sl.c, then f is sl.vg.c. 

(viii) If f is sl. ω.c, then f is sl.vg.c. 

(ix) If f is sl.rgα.c, then f is sl.rg.c. 

(x) If f is sl. ω-irresolute, then f is sl.vg.c. 

(xi) If f is sl.rω.c, then f is sl.vg.c. 

(xii) If f is sl. π.c, then f is sl.vg.c. 

(xiii) If f is sl. α.c, then f is sl.vg.c. 

(xiv) If f is sl.gα.c, then f is sl.vg.c. 

 

Note 3: By note 1 and from the above Theorem we have the following implication diagram.    

 

   sl.g.c     sl.gs.c      ← 

  ↓     ↓            ↑  

sl.rαg.c →  sl.rgα.c →  sl.rg.c   → sl.vg.c ←   sl.sg.c ←   sl.�g.c 

      ↑           ↑     ↑    ↑            ↑             ↑  

      ↑ → → sl.rα�c → sl.v.c →       ↓   ↑             ↑  

sl.r.c →  sl.π.c         →  sl.c     →          sl.α.c →  sl.s.c. →   sl.�.c 
  ↓           ↓                             ↓ 

 sl.πg.c       ≠    sl.p.c →    sl.ω.c ≠ sl.gα.c  
               ↓ ↓  

         sl.gp.c  ← sl.pg.c ≠    sl.rω.c 
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Theorem 4.2: 

(i) If RαO(X) = RO(X) then f is sl.rα.c. iff f is sl.r.c. 

(ii) If RαO(X) = vGO(X) then f is sl.rα.c. iff f is sl.vg.c. 

(iii) If vGO(X) = RO(X) then f is sl.rα.c. iff f is sl.vg.c. 

(iv) If vGO(X) = αO(X) then f is sl. α.c. iff f is sl.vg.c. 

(v) If vGO(X) = SO(X) then f is sl.s.c. iff f is sl.vg.c. 

(vi) If vGO(X) = �O(X) then f is sl.�.c. iff f is sl.vg.c. 

 

Theorem 4.3: If f is sl.vg.c., from a discrete space X into a e.d space Y, then f is w.s.c. 

 

Corollary 4.1: If f is sl.vg.c., from a discrete space X into a e.d space Y, then: 

(i)  f is w.s.c.  (ii) f is w.�.c. (iii) f is w.p.c. 

 

Theorem 4.4: If f is sl.vg.c., and X is e.d, then f is sl.c. 

 

Proof: Let x in X and V∈ CO(Y, f(x)). Since f is sl.vg.c, ∃ U∈ v GO(X, x) such that f(U) ⊂ V � U∈ SR(X, x) such 

that f(U) ⊂ V. Since X is e.d. U∈ CO(X). Hence f is sl.c. 

 

Corollary 4.2: If f is sl.vg.c.,vGO(X) = vO(X) and X is v-T1/2 and e.d, then: 

(i)  f is sl.c. (ii) f is sl. α.c. (iii)f is sl.s.c. (iv) f is sl.�.c. (v)  f is sl.p.c. 

 

Theorem 4.5: If f is sl.vg.c., from a discrete space X into a e.d space Y, then f st. θ.s.c. 

 

Proof: Let x in X and V∈ σ (Y, f(x)), then scl(V) ⊂ (cl V)^{o}∈ RO(Y). Since Y is e.d, scl(V) ∈ CO(Y). Since f is 

sl.vg.c, f is sl.s.c, [by Thm 4.1[iv]] ∃ U∈ SO(X, x) such that f(scl(U)) ⊂ scl(V), so f is a.st. θ.s.c.  

 

Theorem 4.6: If f is sl.vg.c from a discrete space X into a T3 space Y, then f st. θ.s.c. 

 

Proof: Let x in X and V∈ σ (Y, f(x)). Since Y is Ultra regular, ∃ W∈ CO(Y) such that f(x) ∈ W⊂ V. Since f is sl.vg.c, 

by Thm 4.1(iv) ∃ U∈ SO(X, x) such that f(scl(U)) ⊂ W and f(scl(U)) ⊂ V. Thus f is st. θ.s.c. 

 

Example 4.1: In Example 3.1 above f is sl.v g.c; sl.sg.c; sl.gs.c; sl.rα.c; sl.v.c; sl.s.c. and sl.�.c; but not sl.g.c; sl.rg.c; 

sl.gr.c; sl.pg.c; sl.gp.c; sl.gpr.c; sl.gα.c; sl. αg.c; sl.rgα.c; sl.r.c; sl.p.c; sl. α.c; and sl.c; 

 

Example 4.2: In Example 3.2 above f is sl.rα.c; and sl.gpr.c; but not sl.v g.c; sl.sg.c; sl.gs.c;  sl.v.c; sl.s.c;  sl.�.c; sl.g.c; 

sl.rg.c; sl.gr.c; sl.pg.c; sl.gp.c; sl.gα.c; sl. αg.c; sl.rgα.c; sl.r.c; sl.p.c; sl. α.c; and sl.c; 

 

Remark 4.1: sl.rα.c; sl.gpr.c; and s.c. are independent of sl.vg.c.. 

 

5. Covering and Separation properties of slightly vg continuous functions: 
 

Theorem 5.1: If f:X→ Y is sl.vg.c.[resp: sl.rg.c] surjection and X is vg-compact, then Y is compact. 

 

Proof: Let {Gi:i∈ I} be any clopen cover for Y. Then each Gi is clopen in Y and hence each Gi is open in Y. Since 

f: X→ Y is sl.vg.c., f 
-1(Gi) is vg-open in X. Thus {f 

-1(Gi)} forms a vg-open cover for X and hence have a finite 

subcover, since X is vg-compact. Since f is surjection, Y = f(X) = ∪n
i = 1Gi. Therefore Y is compact. 

 

Corollary 5.1: If f: X→ Y is sl.v.c.[resp: sl.r.c] surjection and X is vg-compact, then Y is compact. 

 

Theorem 5.2: If f: X→ Y is sl.vg.c., surjection and X is vg-compact[vg-lindeloff] then Y is mildly compact[mildly 

lindeloff]. 

 

Proof: Let {Ui:i∈ I} be clopen cover for Y. For each x in X, ∃ αx∈ I such that f(x) ∈ Uαx  and ∃ Vx∈ vGO(X, x) such 

that f(Vx)⊂ Uαx . Since the family {Vi:i∈ I} is a cover of X by vg-open sets of X, ∃ a finite subset I0 of I such that  

X⊂ ∪{Vx:x∈ I0}. Therefore Y⊂ ∪ {f(Vx):x∈ I0}⊂ ∪ {Uαx:x∈ I0}. Hence Y is mildly compact. 

 

Corollary 5.2: 

(i) If f: X→ Y is sl.rg.c[resp: sl.v.c.; sl.r.c] surjection and X is vg-compact[vg-lindeloff] then Y is mildly 

compact[mildly lindeloff].                          

(ii) If f:X→ Y is sl.vg.c.[resp: sl.rg.c; sl.v.c.; sl.r.c] surjection and X is locally vg-compact{resp:vg-Lindeloff; locally 

vg-lindeloff}, then Y is locally compact{resp: Lindeloff; locally lindeloff}.    
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(iii)If f: X→ Y is sl.vg.c., surjection and X is semi-compact[semi-lindeloff] then Y is mildly compact[mildly lindeloff]. 

 

(iv) If f: X→ Y is sl.vg.c., surjection and X is �−compact[�−lindeloff] then Y is mildly compact[mildly lindeloff].   

 

(v)  If f: X→ Y is sl.vg.c.[sl.r.c.], surjection and X is locally vg-compact{resp: vg-lindeloff; locally vg-lindeloff} then Y 

is locally mildly compact{resp: locally mildly lindeloff}. 

 

Theorem 5.3: If f:X→ Y is sl.vg.c., surjection and X is s-closed then Y is mildly compact[mildly lindeloff]. 

 

Proof: Let {Vi : Vi∈ CO(Y); i∈ I} be a cover of Y, then {f 
-1(Vi) : i∈ I} is vg-open cover of X[by Thm 3.1] and so 

there is finite subset I0 of I, such that {f 
-1(Vi):i∈ I0} covers X. Therefore {Vi : i∈ I0} covers Y since f is surjection.  

 

Hence Y is mildly compact. 

 

Corollary 5.3: If f:X→ Y is sl.rg.c[resp: sl.v.c.; sl.r.c.] surjection and X is s-closed then Y is mildly compact[mildly 

lindeloff]. 

 

Theorem 5.3: If f: X→ Y is sl.vg.c.,[resp: sl.rg.c.; sl.v.c.; sl.r.c.] surjection and X is vg-connected, then Y is connected. 

Proof: If Y is disconnected, then Y = A∪ B where A and B are disjoint clopen sets in Y. Since f is sl.vg.c. surjection,  

X = f -1(Y) = f -1(A) ∪ f -1(B) where f -1(A) f -1(B) are disjoint vg-open sets in X, which is a contradiction for X is vg-

connected. Hence Y is connected. 

 

Corollary 5.4: The inverse image of a disconnected space under a sl.vg.c.,[resp: sl.rg.c.; sl.v.c.; sl.r.c.] surjection is vg-

disconnected. 

 

Theorem 5.4: If f: X→ Y is sl.vg.c.sl.vg.c.[resp: sl.rg.c.; sl.v.c.], injection and Y is UTi, then X is vgi i = 0, 1, 2. 

 

Proof: Let x1 � x2∈ X. Then f(x1) � f(x2) ∈Y since f is injective. For Y is UT2 ∃ Vj∈CO(Y) such that  

f(xj)∈Vj and ∩Vj = φ for j = 1,2. By Theorem 3.1, xj∈f 
-1(Vj)∈vGO(X) for j = 1,2 and ∩f 

-1(Vj) = φ for j = 1,2. Thus X 

is vg2. 

 

Theorem 5.5: If f:X→ Y is sl.vg.c.[resp: sl.rg.c.; sl.v.c.], injection; closed and Y is UTi, then X is vggi i = 3, 4. 

 

Proof:(i) Let x in X and F be disjoint closed subset of X not containing x, then f(x) and f(F) be disjoint closed subset of 

Y not containing f(x), since f is closed and injection. Since Y is ultraregular, f(x) and f (F) are separated by disjoint 

clopen sets U and V respectively. Hence x∈ f -1(U); F⊆ f -1(V), f -1(U); f -1(V)∈vGO(X) and f -1(U)∩f -1(V) = φ. Thus X 

is vgg3. 

 

(ii) Let Fj and f(Fj) are disjoint closed subsets of X and Y respectively for j = 1,2, since f is closed and injection. For Y 

is ultranormal, f(Fj) are separated by disjoint clopen sets Vj respectively for j = 1,2. Hence Fj⊆ f -1(Vj) and                

f 
-1(Vj)∈vGO(X) and ∩f -1(Vj) = φ for j = 1,2. Thus X is vgg4. 

 

Theorem 5.6: If f: X→ Y is sl.vg.c.[resp: sl.rg.c.; sl.v.c.], injection and  

(i) Y is UCi[resp: UDi] then X is v gCi[resp: vgDi] i = 0, 1, 2. 

(ii)Y is URi, then X is vg-Ri i = 0, 1. 

 

Theorem 5.7: If f:X→ Y is sl.vg.c.[resp: sl.v.c.; sl.rg.c; sl.r.c] and Y is UT2, then the graph G(f) of f is vg-closed in the 

product space X× Y. 

 

Proof: Let (x1, x2)∉G(f) implies y � f(x) implies ∃ disjoint V; W∈CO(Y) such that f(x)∈V and y∈W. Since f is  

sl.vg.c., ∃ U∈vGO(X) such that x∈U and f(U)⊂W and (x, y)∈U×V⊂X×Y-G(f). Hence G(f) is vg-closed in X×Y.  

 

Theorem 5.8: If f:X→ Y is sl.vg.c.[resp: sl.v.c.; sl.rg.c; sl.r.c] and Y is UT2, then A = {(x1, x2)| f(x1) = f(x2)} is  

vg-closed in the product space X× X. 

 

Proof: If (x1, x2)∈X×X-A, then f(x1) � f(x2) implies ∃ disjoint Vj∈CO(Y) such that f(xj)∈Vj, and since f  is sl.vg.c.,    

 f -1(Vj)∈vGO(X, xj) for j = 1,2. Thus (x1, x2) ∈ f -1(V1) × f -1(V2)∈vGO(X× X) and f -1(V1)×f 
-1(V2)⊂X×X-A. Hence A is 

vg-closed.  

 

Theorem 5.9: If f: X→ Y is sl.r.c.[resp: sl.c.]; g: X→ Y is sl.vg.c[resp: sl.rg.c; sl.v.c]; and Y is UT2, then                

 E = {x in X: f(x) = g(x)} is vg-closed in X. 
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CONCLUSION  

 

In this paper we defined slightly-vg-continuous functions, studied its properties and their interrelations with other types 

of slightly-continuous functions. 
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