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ABSTRACT 
In this paper, a group theoretic method is used to obtain an entire class of similarity solutions to the problem of shocks 
propagating through in an ideal gas with thermal radiation, and to characterize analytically the state dependent form 
of the medium ahead for which the problem is invariant and admits similarity solutions. The arbitrary constants 
occurring in the expressions for the infinitesimals of the local Lie group of transformations give rise to two different 
cases of possible solutions i.e. with a power law and exponential shock paths. A particular case of collapse of 
imploding spherically symmetric shock in a medium in which the initial density obeys power law is worked out in 
detail. Numerical calculations have been performed to obtain the similarity exponents and the profiles of the flow 
variables behind the shock, and comparison is made with the Guderley’s [1] results. 
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1. INTRODUCTION 
 
Nonlinear partial differential equations (NPDEs) are widely used to describe complex phenomena in various fields of 
physical and engineering interests. Many flow fields involving wave phenomena are governed by quasi linear 
hyperbolic system of nonlinear partial differential equations (PDEs). For nonlinear systems involving discontinuities 
such as shocks, we do not generally have the complete exact solutions, and we have to rely on some approximate 
analytical or numerical methods which may be useful to provide information to understand the physics involved 
therein. One of the most powerful methods to obtain the similarity solutions to such type of nonlinear PDEs is the 
similarity method which is based upon the study of their invariance with respect to one parameter Lie group of 
transformations. Indeed, with the help of symmetry generators, one can construct similarity variable which can reduce 
the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs). A theoretical 
study of the imploding shock wave near the centre of convergence in an ideal gas was first performed by Guderley [1]. 
Among the extensive work that followed, we mention the contributions of Sakurai [2], Zeldovich and Raizer [3], Hayes 
[4], Axford and Holm [5, 6], Lazarus [7], Hafner [8], Sharma and Radha [9], Jena and Sharma [10], Conforto [11], 
Madhumita and Sharma [12], Sharma and Radha [13], Sharma and Arora [14], Arora et al. [15, 16] and Husain et al. 
[17] who presented high accuracy results and alternative approaches for the investigation of implosion problem.  
 
Steeb [18] determined the similarity solutions of the Euler equations and the Navier–Stokes equations for 
incompressible flows using the group theoretic approach outlined in the work of Bluman and Cole [19], Ovasiannikov 
[20], Olver [21], Logan [22] and Bluman and Kumei [23]. In the present paper, following Bluman and Kumei [23], and 
in a spirit closer to Logan [22], we characterize the medium ahead of shock for which the problem is invariant and 
admits similarity solutions. The occurrence of arbitrary constants in the expressions for the infinitesimals of the Lie 
group of transformations yields different cases of solutions with a power law and exponential shock paths. We have 
worked out in detail one particular case of collapse of imploding spherically symmetric shock in a medium in which 
initial density obeys power law. 
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The type of motion in which the distribution of flow variables remain similar to themselves with time and vary only as 
a result of changes in scale is called self-similar. For self-similar motions, the system of non-linear partial differential 
equations reduces to a system of ordinary differential equations in new unknown functions of the similarity variable .ξ  
Here, we consider the spherically symmetric motion of a polytropic gas with adiabatic index γ  and use the Lie group 
of transformations to establish the self-similar solutions. The arbitrary constants occurring in the expressions for the 
infinitesimals of the local Lie group of transformations give rise to two different cases of possible solutions i.e. with a 
power law and exponential shock paths. The computed values of the similarity exponent )(δ  are also compared with 
the Guderley [1] result and the computation of the flow field in the region behind the shock has been carried out to 
determine the effects of the ambient density exponent ).(θ  
 
2. BASIC EQUATIONS AND SHOCK CONDITIONS  
 
The basic equations [24] describing the one-dimensional unsteady spherically symmetric motion in an ideal gas can be 
written as 
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                                                                                         (1) 

where p is the gas pressure, ρ  is the density, u is the velocity, γ is the constant specific heats ratio, the independent 
variable x  is the radial distance from the center in spherically symmetric flows; t  is the time; q  is the cooling rate. 
Here, we assume that q is given as:  

,),( 0
βαρρ TqTq =                                                                                                                                    (2) 

where 0q , α and β  are constants and q is defined as the total amount of heat energy liberated per unit mass per unit 
time over the whole frequency interval. The non-numeric subscripts denote the partial differentiation with respect to the 
indicated variables unless stated otherwise. The equation of state for thermally perfect gas is given in the following 
form: 

,TRp ρ=                                  (3) 
where T is the translational temperature and R is the specific gas constant. Now, we consider the shock speed 

dtdXv /=  propagating into an inhomogeneous medium specified by  
,,0 0ppu ==       )(0 xρρ = .                                            (4) 

The Rankine-Hugoniot jump conditions for the strong shocks are (Singh and Vishwakarma [24]) 
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                             (5) 

where the suffix 0 refers to the condition of flow just ahead of the shock. 
 
3. SIMILARITY ANALYSIS BY INVARIANCE GROUPS 
 
Here, we suppose that there exists a solution of system (1) along a family of curves, called similarity curves for which 
the system (1) of partial differential equations reduces to a system of ordinary differential equations; this type of 
solution is called a similarity solution. In order to obtain the similarity solutions of the system (1), we derive its 
symmetry group such that the system is invariant under this group of transformations. The idea of the calculation is to 
find a one-parameter infinitesimal group of transformations (Sharma and Arora [14]):   

),,,,,(
),,,,,(),,,,,(

),,,,,(),,,,,(

*

**

**

putxPpp
putxSputxUuu

putxttputxxx

ρε

ρερρρε

ρψερχε

+=

+=+=

+=+=

                                 (6) 

where the generators χ, ψ, U, S and P  are to be determined in such a way that the system (1) of partial differential 
equations together with the condition (2), (3) and (5) are invariant with respect to the transformation (6); the entity ε  is 
so small that its square and higher powers may be neglected. The existence of such a group allows the number of 
independent variables in the problem to be reduced by one, and thereby allowing the system (1) to be replaced by a 
system of ordinary differential equations.  
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In continuation, we shall use summation convention, and introduce the notation  

puuuuxxtx ===== 32121 ,,,, ρ  and ,
j

ii
j x

u
p

∂
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=  where i=1, 2, 3 and j=1, 2. 

The system of basic equations (1) which is represented as 
,3,2,1,0),( , == kpuxF i

jijk  
is said to be constantly conformally invariant under the infinitesimal group of transformations (6), if there exist 
constants ( )3,2,1, =rkrkα  such that for all smooth surfaces, )( jii xuu = , we have 

     ,L rrkk FF α=                       
 (7) 

,11 rr FFL α=⇒  

              313212111 FFF ααα ++=  etc., 

where L  is the Lie derivative in the direction of the extended vector field: 
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where 3,2,1,3,2,1,2,1,2,1 ==== nijl  and .3,2,1=k  Here, repeated indices imply summation 

convention and i
jβ   is the generalization of the derivative transformation. 

 
Therefore, equation (7) can be written as:  
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Substitution of i

jβ  from (8) into (9) yields a polynomial equation in .i
jp  Setting the coefficients of i

jp  and n
j

i
j pp  to 

zero, we obtain a system of first order linear partial differential equations in the generators ψ, χ, S, U and P. This 
system, which is called the system of the determining equations, is given by 
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Solving the above systems of determining equations, we obtain the infinitesimals of the group of transformations as 
follows: 
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where 11,, αba  and 22α  are the arbitrary constants. The arbitrary constants, occurring in the expressions of the 
infinitesimals of local Lie-group of transformations, give rise to four different cases of possible solutions.  
 
4. SELF-SIMILAR SOLUTIONS AND CONSTRAINTS 
 
The arbitrary constants, which become observable in the expressions for the infinitesimals of the invariant group of 
transformations, yield four different cases of possible solutions as discussed below: 
 
Case-I: When 0≠a  and ,0222 ≠+ aα  the change of variables from (x, t) to ( )tx ,  defined as 

,
a
bttxx +==                                                                     (14) 

does not change the equation (1)-(12). Thus, rewriting the set of equations (13) in the expressions of the new variables 

x  and ,t  and then suppressing the bar sign, we obtain 
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The similarity variable and the forms of similarity solutions for pu,,ρ  and q follow from the invariant surface 
conditions which yield 
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The equations (16)  with the help of (15) yield on integration the forms of the flow variables as 
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along with the similarity curve  

,δξ tx =                                                                                                                                                        (18)   
where Q is an arbitrary function ofη which is found as   
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and US


, and P


 are the arbitrary functions of .ξ  Since the shock is a similarity curve, and at shock ξ remains 
constant; without loss of generality it may be normalized to be at .1=ξ The shock  path ),(tXX = shock velocity v  
and the values of the density, velocity and pressure of gas at 1=ξ  are then given by  

,δtX =                                                               (20) 
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At the shock, we have the following conditions on the functions US
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The invariance of jump condition (5) for ρ suggests the following form of :)(0 xρ  
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Also, we obtain the following conditions on the functions US
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where cρ  is some reference constant associated with the medium. Using (20), (21) and (23) we rewrite the equation 
(17) as 
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Substituting (26) in the equations of system (1) and using (18), (19), (20), (21) and (23), we obtain the following 
system of ordinary differential equations in ,*S  *U and *P which on suppressing the asterisk sign becomes 

 ' '
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' 1 '
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Case-II: When 0=a  and 0222 ≠+ aα  or ,022 ≠α the similarity variable and the forms of similarity solutions 
for the flow variables readily follow from (13) and (16), and can be expressed in the following forms on suppressing 
the bar signs 
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 It may be noticed that this case leads to a class of similarity solutions 

with an exponential shock path given in the second equation in (30). Substituting (29) into the equations of system (1) 
and using (30), we obtain the following system of ordinary differential equations in ,*S  ,*U  and *P which on 
suppressing the asterisk signs become: 
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The system (31) is to be solved subject to the jump conditions (32) for a shock of infinite strength. 
Case-III: When 0≠a  and ,01122 =+− aαα there does not exist any similarity solution for the spherically 
symmetric flows.  
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Case-IV: When 0=a  and 01122 =−αα , the situation is similar to the case III in the sense that it does not permit 
for the existence of similarity solutions in spherically symmetric flow.  
 
5.  IMPLODING SHOCKS 
 
Now, we consider in detail the Case I of an imploding shock for which ,0av >>  where 0a  is the speed of sound. For 
the problem of a converging shock collapsing at the center, the origin of time t  is taken to be the instant at which the 
shock reaches the center so that 0≤t  in equation (27). In this regard, the definition of the similarity variable is a little 
modified by setting 

,)(,)( δδ ξ txtX −=−=                                  (33) 
 
so that the intervals of the variables are ∞<≤≤<∞− xXt ,0  and .1 ∞<≤ ξ   At the instant of collapse 

),0( =t  the gas velocity, pressure, density and the sound speed at any finite radius x are bounded, but with 0=t  and 
finite x, .∞=ξ  In order for the quantities ρ,, pu  and a to be bounded when 0=t  and x is finite, we have the 
following boundary conditions at .∞=ξ   
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In the matrix notation system (27) can be written as 
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where ,),,( trPSUW = and the matrix A  and the column vector B can be examined by inspection of system (27). 
In system (27) there is an unknown parameter ,δ  which cannot be obtained from an energy balance or the dimensional 
considerations; it is computed only by solving a non-linear eigenvalue problem for a system of ordinary differential 
equations. The range of similarity variable is ∞<≤ ξ1 for the implosion problem, and system (35) can be solved for 
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δ
δγ

ξ
γ

δ
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It can be verified that ∆  is negative at 1=ξ  and positive at ∞=ξ  representing thereby that there exists a 

[ )∞∈ ,1ξ  at which ∆  vanishes, and accordingly the solutions become singular. In order to get a non-singular 

solution in the interval [ )∞,1 , we desire the exponent δ  such that  vanishes only at the points where the determinant  
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1∆ is zero too. It can be checked that at points where ∆  and 1∆  vanish, the determinants 2∆ and 3∆  also vanish at 

the same time. To find the value of exponent δ  in such a manner, we introduce the variable Z as 

,
)(
)())(()( 2

ξ
ξγξξξ

S
PUZ −−=

                       (38)
 

whose derivative, in view of (36), is 

./))((2 22
3

1
' ∆







 ∆+

∆
−∆−∆−=

S
P

S
UZ γγ

ξ
                           

   (39) 

 
Equations (36), in view of (39), become 
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4
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∆
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∆
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∆
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where     ,))((2 22
3

14 ∆+
∆

−∆−∆−=∆
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)(
)()()(

21









++=
ξ
ξγξξξ

S
PZU

 
 
6. GUDERLEY SOLUTION 
 
For a converging shock wave, we use the variable ξ  defined earlier as  

,ξδtx =                                                                             (41) 

where 0≤<∞− t and ∞<≤ ξ1 ; here we use ξ  as an independent variable in place of x . In terms of this 

independent variableξ , let the density, velocity and pressure be given by: 
2

0 0( ), ( ), ( ).x xG u V p P
t t
δ δρ ρ ξ ξ ρ ξ = = =  

 
                                                                       (42) 

 
Under the transformation (42), the given system (1) is transformed into following system: 

'
'

'
'

' '
*

( 1) ( 1) 3 ,

(2 ) 1( 1) , .

1( 1) 3 ( 1) 2 ( 1)

G V V V V
G

P PV V V V
G G

P V P V PV P V P V G q

ξ ξ θ

ξ θξ
δ

ξ γ ξ γ θ γ
δ


− + = − − − 


+  − + = − − −  

  
 − + = − − − − − − −  

  

                               (43)               

 
And the shock conditions at the strong shock front are given by  

( 1) 2 2(1) , (1) , (1) .
( 1) ( 1) ( 1)

G V Pγ
γ γ γ
+

= = =
− + +

                                                                       (44)       

 
In the matrix notation the system (43) can be written as 

,' BWA =                                                                                                                                                 (45) 

where trPGVW ),,(= and the matrix A and the column vector B can be identified by inspection of system (43). The 
unknown parameter δ appearing in system (43) is computed only by solving a non-linear eigenvalue problem for a 

system of ordinary differential equations. System (43) can be solved for the derivatives '' ,GV and 'P  in the following 
form: 

' ' 31 2' , , ,V G P ∆∆ ∆
= = =
∆ ∆ ∆

                                                 (46) 
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where∆ , which is the determinant of the matrix A, is given by 

( ) ,1)1( 2
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                                                                                                           (47) 

and )3,2,1( =∆ kk  are the determinants obtained from ∆  by replacing the kth column by the column vector B, 
and are given by 
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We introduce the variable Z as 
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whose derivative, in view of (46), is 

./)1(2 2231
' ∆



 ∆+∆−∆−=

G
P

G
VZ γγ

               
                              (49) 

 
Equations (46), in view of (49), become 
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7. NUMERICAL RESULTS AND DISCUSSION 
 
We integrate equations (40) from the shock )1(ZZ =  to the singular point ,0=Z  by choosing a trial value of ,δ  

and compute the values of U, S, P and 1∆  at ,0=Z  the value of δ  is corrected by successive approximations in 

such a way that for these values, the determinant 1∆  vanishes at .0=Z  The values of ,δ  obtained from the 
numerical calculations in spherically symmetric flow and for different θ  are given in Table 1. The same procedure we 
apply for equations in (50) to find the value of Guderley’s [1] .δ    
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Table-1: Similarity exponent δ  for spherically symmetric flow and the ambient density exponent θ  with 

,66.1=γ 1,5.0,314.8,10 ==== cRq ρα and .5.1=β  
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Figure-1: The profiles of velocity, density and pressure in (a), (b) and (c), respectively, behind spherical shock 
for 5.0,1.0=θ  and .3.1  
 
RESULTS AND CONCLUSION 
 
In the present work, we have used the method of Lie group of transformations to analyze the existence of self-similar 
solutions for a hyperbolic system of non-linear partial differential equations governing the problem of spherical shock 
waves in an ideal gas with thermal radiation. The importance of using the Lie group of transformations for obtaining 
similarity solutions is due to the fact that the arbitrary constants occurring in the expressions for the generators of the 
local Lie-group of transformations give rise to different cases of possible solutions. The form of the similarity variables 
and similarity solutions are suggested by the method itself after suitably considering the arbitrary constants. It was 
observed that, depending upon arbitrary constants appearing in the infinitesimals of the transformations, we obtain 
different solutions with power law and exponential shock paths. In both the cases, the corresponding reduced systems 
of ordinary differential equations were found out. The similarity exponent δ and the flow variables can only be 
obtained after solving the system of ordinary differential equations numerically. We integrated the equations (40)  

  θ  Computed )(δ   Guderley’s [1] )(δ  % Error 

0.1 
0.5 
1.0 
1.3 
1.6 
2.0 

0.674677 
0.635475 
0.590995 
0.570308 
0.548998 
0.551405 

0.685196 
0.622135 
0.590085 
0.570305 
0.548998 
0.525370 

1.00% 
2.14% 
0.15% 
0.00% 
0.00% 
4.72% 

3.1=θ  1.0=θ  

3.1=θ  5.0=θ  1.0=θ  

1.0=θ  5.0=θ  3.1=θ  5.0=θ  
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numerically using the fourth order Runge-Kutta method for ∞<≤ ξ1  and the values of velocity, density and 
pressure behind the shock are plotted in Figures 1 (a), (b) and (c), respectively. Figures 1 (a), (b) and (c) show that 
behind the shock the velocity decreases and the density increases monotonically as we move towards the center of 
collapse where ,∞→ξ this increase in density behind the shock may be attributed to the geometrical convergence or 

the area contraction of the shock wave. The increase in density is further reinforced by an increase in the value ofθ , 
and the decrease in velocity is further reinforced by an increase in the value ofθ . The behavior of the pressure is more 
complicated: the pressure profiles behind the shock exhibit non-monotonic variations. The pressure first increases, 
attains a maximum value and then decreases as we move towards the center of collapse. The pressure increases with an 
increase in the value ofθ . For imploding shocks, where the changes in flow variables may be attributed to the 
geometrical convergence or area contraction of the shock waves, the variations that result from the gas dynamics are 
evident. The computed values of the similarity exponentδ are also compared with the Guderley’s [1] result for 
spherically symmetric case in the Table 1. 
 
REFERENCES  
 

1. G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw 
der Zylinderachse, Luftfahrtforschung, 19, 302–312 (1942). 

2. A. Sakurai, On the problem of a shock wave arriving at the edge of a gas, Comm. Pure Appl. Math., 13,    
353–370 (1960).  

3. Y.B. Zeldovich and Y.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 
vol. II, Academic Press (1967). 

4. W.D. Hayes, Self-similar strong shocks in an exponential medium, J. Fluid Mech., 32, 305–315 (1968). 
5. R.A. Axford and D.D. Holm, Spherical shock collapse in a non-ideal medium, In Proc. Int. Symp. On Group 

Theoretical Methods in Mechanics, 47, Novosibirsk, USSR (1978). 
6. R.A. Axford and D.D. Holm. Converging finite-strength shocks, Phys. D, 2, 194–202 (1981).  
7. R.B. Lazarus, Self-similar solutions for converging shocks and collapsing cavities, SIAM J. Numer. Anal., 18, 

316–371 (1981). 
8. P. Hafner, Strong convergent shock waves near the centre of convergence: A power series solution, SIAM J. 

Appl. Math., 48, 1244–1261 (1988). 
9. V.D. Sharma and Ch. Radha, Similarity solutions for converging shocks in a relaxing gas, Internat. J. Engrg. 

Sci., 33, 535–553 (1995).  
10. J. Jena and V.D. Sharma, Self-similar shocks in a dusty gas, Internat. J. Non- Linear Mech., 34, 313–327 

(1999).  
11. F. Conforto, Wave features and group analysis for an axi-symmetric model of a dusty gas, Internat. J. Non-

Linear Mech., 35, 925–930 (2000). 
12. G. Madhumita and V.D. Sharma, Imploding cylindrical and spherical shock waves in a non-ideal medium, J. 

Hyperbolic Differ. Equ., 1, 521–530 (2004).  
13. V.D. Sharma and R. Radha, Exact solutions of Euler equations of ideal gasdynamics via Lie group analysis, Z. 

Angew. Math. Phys., 59, 1029–1038 (2008).  
14. V.D. Sharma and R. Arora, Similarity solutions for strong shocks in an ideal gas, Stud. Appl. Math., 114,  

375–394 (2005). 
15. R. Arora, A. Tomar and V.P. Singh, Similarity Solutions for Strong Shocks in a Non-Ideal Gas, Mathematical 

Modeling and Analysis, 17, 351-365 (2012). 
16. R. Arora, M.J. Siddiqui and V.P. Singh, Similarity method for imploding strong shocks in a non-ideal relaxing 

gas, International Journal of Non-Linear Mechanics, 57, 1–9 (2013). 
17. A. Husain, L.P. Singh and M. Singh, An approximate analytical solution of imploding strong shocks in a non-

ideal gas through Lie group analysis, Chinese Physics Letter, 27, 014702 (2010). 
18. S. Steeb, Similarity solutions of the Euler equation and the Navier–Stokes equation in two space dimensions, 

Internat. J. Theoret. Phys., 24, 255–265 (1985).  
19. G.W. Bluman and J.D. Cole, Similarity Methods for Differential Equations, Springer, Berlin (1974). 
20. L.V. Ovasiannikov, Group Analysis of Differential Equations, Academic, New York (1982). 
21. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1986). 
22. J.D. Logan, Applied Mathematics: A Contemporary Approach, Wiley-Interscience, New York (1987). 
23. G.W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, New York (1989). 
24. J. B. Singh and P. R. Vishwakarma, A self-similar flow behind a spherical shock wave with thermal radiation, 

I, Astrophysics and Space Science, 93, 261-265 (1983). 
    

Source of support: Nil, Conflict of interest: None Declared. 
[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal 
of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.] 


	2. BASIC EQUATIONS AND SHOCK CONDITIONS
	3. SIMILARITY ANALYSIS BY INVARIANCE GROUPS
	4. SELF-SIMILAR SOLUTIONS AND CONSTRAINTS
	7. NUMERICAL RESULTS AND DISCUSSION

