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ABSTRACT 

The Soret effect on the onset of double-diffusive convection in a viscoelastic fluid saturated anisotropic sparsely 
packed porous layer is studied using linear stability analyses. Linear theory is based on the normal mode technic.The 
modified Darcy law for viscoelastic fluid of the Oldroyd type model is employed for momentum equation. The onset 
criterion for stationary and oscillatory convection is derived analytically. The effect of Soret parameter, anisotropy 
parameters, Darcy-Prandlt number, and retardation retardation parameters on the stability of the system is 
investigated. 
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NOMENCLATURE 
 
a  Wave number 
c  Specific heat 
d  Height of the porous layer 

1D  Soret coefficient 

Da  Darcy number, 2
zK

d  

g  Gravitational acceleration, (0,0, )g−  
i  Unit normal vector in x-direction 
j  Unit normal vector in y-direction 
Κ           Permeability tensor, 1 1( ) ( )x zK ii jj K kk− −+ +  
K           Permeability of the isotropic porous layer    
 
              ( . , )x zi e K K K= +  
k  Unit normal vector in z-direction 

Le  Lewis number, T

s

κ
κ  

,l m  Horizontal wave number 
P  Pressure 
PrD  Darcy-Prandtl number, 2 / TZ zvd Kγε κ  
q  Velocity vector, ( , , )u v w  

TRa        Thermal Rayleigh number,   
              /T TZg TdK vβ κ∆  

sRa  Solute Rayleigh number, /s Tzg SdK vβ κ∆  
S  Solute concentration 

rS  Soret parameter, 1 /S TZ TD Kβ β  
S∆  Salinity difference between the walls 

T   Temperature 
T∆  Temperature difference between the walls 

t  Time 
, ,x y z  Space coordinates 

GREEK SYMBOLS 
 

Tβ  Thermal expansion coefficient  

Sβ  Solute expansion coefficient 

η  Thermal anisotropic parameter, /Tx Tzκ κ  
ε  Porosity 
γ  Ratio of specific heats, ( ) /( )m fc cρ ρ

 
Θ  Dimensionless amplitude of temperature       
               perturbation 
θ  Dimensionless temperature 
κ  Diffusivity 

Sκ  Solute diffusivity 

Tκ   Thermal diffusivity  
              ( ) ( )Tx Tzii jj kkκ κ+ +  

1λ  Stress-relaxation time 

2λ  Strain-retardation time 

1λ  Relaxation parameter, 2
1( / )T dκ γ λ   

2λ  Retardation parameter, 2
2( / )T dκ γ λ  

µ  Dynamic viscosity 

eµ  Effective viscosity 
v  Kinematic viscosity, 0/µ ρ  
ξ  Mechanical anisotropy parameter, /x ZK K  
 Fluid density 
σ  Growth rate 
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φ  Normalized porosity, /ε γ  
Φ  Dimensionless amplitude of concentration    
               perturbation 
ψ  Stream function 
 
OTHER SYMBOLS 

D  d
dz

 

2
h∇  

2 2

2 2x y
∂ ∂

+
∂ ∂

 

2∇  
2

2
2h z

∂
∇ +

∂
 

2δ  2 2aπ +  
2

1δ  2 1 2aπ ξ − +  
2
2δ  2 2aπ η+  

 

 
SUBSCRIPTS AND SUPERSCRIPTS 
 
b  Basic state 
c  Critical 
f  Fluid phase 
i  Imaginary wall value 
,l u  Lower/upper wall value 

o  Reference 
r  Real part 
s  Solid 
m  Porous medium 
*  Dimensionless quantity 
'  Perturbed quantity 
F  Finite amplitude 
Osc  Oscillatory 
St  Stationary 

1. INTRODUCTION 
 
In this paper, a study of the Soret effect on double diffusive convection in an anisotropic sparsely packed porous 
layer,saturated with viscoelastic fluid, heated from below and cooled from above is undertaken. The flow of 
viscoelastic fluid is of considerable importance due to its copious applications in different fields such as geothermal 
energy utilization, oil reservoir modeling, materials processing, petroleum, chemical and nuclear industries, 
bioengineering, building thermal insulation and nuclear waste disposals to mention a few. The nature of convective 
motion in a thin horizontal layer of viscoelastic fluid which is heated from below, in the classical Rayleigh-Benard 
convection geometry, has been the subject of discussion in the literature for nearly four decades, this was reviewed by 
Vest and Arpaci (1969), Sokolov and Tanner (1972), Rosenblat (1986),.Convection in a viscoelastic fluid saturated 
sparsely packed porous layer by Rudraiah et al. (1990).Martinez-Mardones and Perez-Garcia (1990,1992). Larson 
(1992), Khayat (1995). Viscoelastic fluids exhibit unique patterns of instabilities such as over stability that is not 
predicated or observed in Newtonian fluid. With the growing importance of non-Newtonian fluids in modern 
technology and also due to their natural occurrence, the investigations on such fluids are quite desirable. Although the 
problem of Rayleigh-Benard Convection (RBC) has been extensively investigated for Newtonian fluids, relatively little 
attention has been denoted to the thermal convection of viscoelastic fluids by Li and Khayat (2005) and references 
therein. The study of RBC in viscoelastic fluid may be important from a rheological point of view because the 
observation of the onset of convection provides potentially useful techniques to investigate the suitability of a 
constitutive model adopted for certain viscoelastic fluids.  
 
Flow instability and turbulence are far less widespread in viscoelastic fluids than in Newtonian fluids because of the 
high viscosity of the polymeric fluids. It has long been a common belief that oscillatory convection is not possible in 
viscoelastic fluids in realistic experimental condition shown by Larson (1992). However, a series of experiments 
performed by Perkins et al. (1994) showed that dilute suspensions of long DNA molecules, in a buffer solution, behave 
as viscoelastic fluids, and also presented an oscillatory instability as first convective instability in that case. This 
possibility has been confirmed by Kolodner (1998) in his experiments on the elastic behavior of individual long strands 
of DNA in buffer solutions. This has pointed out the way towards obtaining a fluid in which oscillatory viscoelastic 
convection might be observed. He observed oscillatory convection in DNA suspensions in annular geometry. The onset 
of double diffusive convection in a viscoelastic fluid layer.  Shown by Malashetty and Swamy (2010) .Therefore, in the 
present study, we intend to perform linear stability analyses of the onset of Soret effect on double diffusive convection 
in a viscoelastic fluid saturated anisotropic sparsely packed porous layer. Our objective is to study how the onset 
criterion for oscillatory convection is affected by the viscoelastic Darcy-Prandtl number, Lewis number, normalized 
porosity and other parameters. In the limiting cases, some previously published results can be recovered as the 
particular cases of our results. 
 
2. MATHEMATICAL FORMULATION  
 
Consider an infinite horizontal sparsely packed, viscoelastic fluid saturated anisotropic porous layer with fluid and 
confined between the plates 0z =  and z d= , with vertically downward gravity force g  acting on it. A uniform 
adverse temperature gradient 1 uT T T∆ = −  and a stabilizing concentration gradient i uS S S∆ = −  1( uT T>  and 1 )uS S>  
are maintained between the lower and upper surfaces. A Cartesian frame of reference is chosen with origin at the lower 
boundary and z-axis vertically upwards. The modified Darcy-Brinkman-Oldroyd model is employed for the momentum 
equation studied by Zhang et al. [19].  We however assume that Soret effect is weak and hence assume moderate values  
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for the Soret coefficient. The transport of heat and solute is employed for the momentum equation by Philips [20].The 
governing equations under Boussinesq approximation are 

. 0q∇ =                                                                                                                                           (1)                                                                                                                  

( )20
1 21 1 .ep g q q

t t t
ρ

λ ρ λ µ µ∂ ∂    + +∇ − = + ∇ − Κ    ∂ ∂ ∂    
                                                         (2)                                                      

( . ) .( . )T
T q T T
t

γ κ∂
+ ∇ = ∇ ∇

∂                                   
(3)                                                                                                    

2 2
1( . ) ( . )s

S q S S D T
t

ε κ∂
+ ∇ = ∇ + ∇

∂
                                                                                               (4)                                                                                            

0 0 0[1 ( ) ( )].T ST T S Sρ ρ β β= − − + −                                                                                                                    (5)                                                                                            

where ( , , )q u v w= the velocity, p is pressure, 1 2,λ λ  are the relaxation and retardation times respectively, g is the 
acceleration due to gravity, µ is the viscosity, ρ is the density, T  and S are the temperature and concentration 
respectively and ε  is the porosity of the porous medium. T Tx Ty Tzii jj kkκ κ κ κ= + +  is the inverse of the permeability 
tensor and T Tx Ty Tzii kkκ κ κ κ= + +  is the thermal diffusivity tensor, and 1D  is the Soret coefficient. ( ) ( ) ,m p fc cγ ρ ρ=  

( ) (1 )( ) ,m p fc cρ ε ρ= − pC is the specific heat of the fluid at constant pressure, C is the specific heat of the solid, the 

subscripts ,f s and m denote fluid, solid and porous medium values respectively, and , , ,T S f eβ β µ µ  and Sκ are the 
thermal and solute expansion coefficients, fluid viscosity, effective viscosity, and solute diffusivity respectively. It is 
hereby stated that permeability is most strongly anisotropic than solute diffusivity. Therefore, we ignore the solute 
anisotropy. 
 
It is assumed that the viscoelastic liquid has relaxed enough time; typically 1 s is enough for dilute polymeric 
suspensions. Thus the basic state is assumed to be quiescent and is given by 

(0,0,0), ( ), ( ), ( ), ( )b b b b bp p z T T z S S z zρ ρ= = = = =q ,                                  (6)                                                   
 
which satisfy the following equations 

  ,b
b

dp g
dz

ρ= −
 

2

2 0,bd T
dz

=
 

2

2 0,bd S
dz

= ( ) ( )( )0 0 01 ,b b bT T S Sρ ρ α β= − − + −                (7)                                                                                 

with boundary conditions 
0T T T= + ∆      and    0S S S= + ∆     at    0,z =                                                (8) 

0T T=            and    0S S=        at    z d= .                                    (9) 
The steady state solutions are given as 

0 1 ,b
zT T T
d

 = + ∆ − 
 

     0 1b
zS S S
d

 = + ∆ − 
 

                                                          (10) 

with  ( )T T Tl u∆ = −  and ( )S S Sl u∆ = − , where T Tl u>  and  S Sl u> . 
From the reference motionless solution we will study the stability of the system. Let the basic state be perturbed by an 
infinitesimal perturbation, so that 

'q q= , ' ', ,b bT T T S S S= + = + ' ', ,b bP p p ρ ρ ρ= + = +                         (11)                                                                                                        
where the prime indicates that the quantities are infinitesimal perturbations. Substituting Eq. (11) into Eqs. (1)- (5) and 
using the basic state solutions, we obtaine the equations in the perturbations form  

'. 0q∇ =                                                                                                                                      (12)                                                                                                                                   

( )
'

' ' ' 2 ' '0
1 21 1 .e

q p g q q
t t t

ρ
λ ρ λ µ µ

ε
 ∂ ∂ ∂   + +∇ − = + ∇ − Κ     ∂ ∂ ∂    

                      (13)                                            

( ) ( )
'

' '. . .T
T Tq T w T
t d

γ κ∂ Λ
+ ∇ − = ∇ ∇

∂
                                                                                                 (14)                                                                                 

( ) ( )
'

' ' 2 ' 2 '
1. .S

S Sq S w S D T
t d

ε κ∂ ∆
+ ∇ − = ∇ + ∇

∂
                                                                                       (15)                                                                       

' ' '
0 ( ).T ST Sρ ρ β β= − +                                                                                                                                      (16)                                                                                      

By operating curl twice on equation (13) we eliminate 'p from it and then render the resulting equation and Eqs. (14) 
and (15) dimensionless using the following transformations: 

( ) ( ) ( ) ( ) ( ) ( )
2

' ' ' ' ', , , , , , , , , , , ,Tz

Tz

dx y z d x y z t t u v w u v w T T T S S S
d
κγ

κ
∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

= = = = ∆ = ∆ 
 

                (17) 
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To obtain non-dimensional equations as (after dropping the asterisks for simplicity) 

2
2 2 2 2 4

1 2 2

1 11 1 ,
Pr T h S h h

D

w Ra T Ra S Da w
t t t z

λ λ
γ ξ

   ∂ ∂ ∂ ∂   + ∇ − ∇ + ∇ = + −∇ − + ∇      ∂ ∂ ∂ ∂     
                               (18)          

( )
2

2
2 . 0,h T q T w

t z
η

  ∂ ∂
− ∇ + + ∇ − =   ∂ ∂  



                                                                                                        (19)                                                                 

( )2 21 . 0,rS q S S T w
t Le

φ ∂ − ∇ + ∇ − ∇ − = ∂ 



                                                                                                    (20)                                                                          

where /T T TzRa g Tdβ υκ= ∆ Κ  the thermal Rayleigh number, /S S Z TzRa g Sdβ υκ= ∆ Κ  the solute Rayleigh number, 

( )2
1 2/Tz dλ κ λ=  retardation parameter, 1 /r s TZ TS D β κ β=  the Soret parameter, 2/e z fDa k dµ µ=  the Darcy number, 

2Pr /D z Tzdγεν κ= Κ  the Darcy-Prandtl number, /Tx TzLe κ κ=  the Lewis number, /x zk kξ =  the mechanical 
anisotropic parameter, /Tx Tzη κ κ=  is the thermal anisotropic parameter, /φ ε γ=  normalized porosity. Eqs. (18)- 
(20) are solved for stress free, isothermal and isosolutal and boundary conditions. Hence the boundary conditions for 
the perturbation variables are given by  

0,w T S= = =  at 0,1z =                                                                                                                                  (21)                                                                                         
 
3. LINEAR STABILITY ANALYSIS 
 
In this section we predict the thresholds of both stationary and oscillatory convection using linear theory. The Eigen 
value problem defined by Eqs. (18)-(20) subject to the boundary conditions   
(21) is solved using the time–dependent periodic disturbances in a horizontal plane, upon assuming that amplitudes are 
small enough and can be expressed as 

( )
( )
( )

( )
0

0

0

exp ,

W z W
z i lx my t

z

σ

   
   Θ = Θ + +     
   ΦΦ   

                                                                                                           (22)                                                                            

where l and m are the wave numbers in the horizontal plane and σ  is the growth rate, Infinitesimal perturbations of the 
rest state may either damp or grow depending on the value of the parameterσ . Substituting Eq. (22) into Eqs.  (18) - 
(20) we obtain 

( ) ( ) ( ) ( )22 2 2 2 2 2 2 2
1 2

11 1 ,
Pr T S

D

D a W a Ra a Ra Da D a a D Wσλσ λ σ
ξ

    
+ − + Θ− Φ = + − + −    

                  
(23)                                                                                                                                                                                                                                                                                       

( )2 2 0,D a Wσ η − − Θ− =                                                                                                                 (24)                                                                                                     

( ) ( )2 2 2 21 0,rD a S D a W
Le

φσ − − Φ − − − =  
                                                                                              (25)                                 

where /D d dz=  and 2 2 2 .a l m= +  In case of stress-free boundary conditions, it possible to solve analytically the 
system of Eqs.(23) – (25) . This is a standard Eigen value-Eigen function problem. Here the Rayleigh number is taken as 
the Eigen value and it is expressed as a function of the other parameters which govern the stability of the system. The 
solution of Eqs. (23) – (25) satisfying the boundary conditions (21) are assumed in the form 

( )
( )
( )

( )
0

0

0

sin , 1, 2,3...... .

W z W
z n z n

z

π

   
   Θ = Θ =   
   ΦΦ   

                                                                                                         (26)                                                                             

The most unstable mode corresponding to 1n = (fundamental mode). Therefore, by substituting Eqs. (26) with 1n =  
into Eqs. (23) – (25).we obtain a matrix equation of the form 

2 2
11 0

2
2 0

2 2 0

       0
1              0 0

01-1                

T S

r

M a Ra a Ra W

S
Le

σ δ

δ φσ δ

 
 −    
    − + Θ =    
    Φ    +
 

                                                                                                     (27)                                                                                  

where  2 2 2 ,aδ π= +  2 2 1 2
1 aδ π ξ −= +  and 2 2 2

2 .aδ π η= +  
The condition of non-trivial solutions of above system of homogeneous linear equations (27) yields the expression for 
the thermal Rayleigh number in the form 

( )
2 2 22

2 42 2 2
1 2 1 2

1

1
Pr 1

r
T S

D

SRa Da Ra
a Le

λ σ σ δ σ δ δσδ δ δ
λσ φσ δ−

      + − + −
= + + +      + +       

                                                       (28)                        
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4. STATIONARY CONVECTION 
 
For validity of the principal of exchange of stabilities (i.e., steady case), we have  0σ =  ( ). ., 0r ii e σ σ= =  at the 
margin of stability, then Eq. (28) gives the Rayleigh number at which marginally stable steady mode exists as  

( ) ( ) ( )2 22 2 22 2 2 2 2
2 2

1 .S r
T

LeRa S
Ra a a Da a

a

δ δππ η π
ξ δ

−   
= + + + + +       

                                                   (29)                      

 

The minimum value of the Rayleigh number st
TRa  occurs at the critical wave number st

ca a=  where st
ca x=   

satisfies a polynomial equation of degree four in x  as  
4 3 2

0 1 2 3 4 0c x c x c x c x c+ + + + =                                                                                                                      (30) 
where 

2 2
0

4 2 2
1

4
2 4 6 2

2

6
8

3

8
10 5

4

6 ,

2 2 6 ,

2 ,

22 ,

2 .

s s s r

c Da Da

c Da Da

c Le Ra Da Le Ra LeRa S

c Da

c Da Dax

π η π η

π π η π η

ππ π η π η π η
ξ

ππ
ξ

ππ η
ξ

= + +

= + +

= − + + + − −

= − −

= − + −

 

 
In the absence of the Darcy number, i.e., 0Da =  equation (29) implies 

( ) ( ) ( )( )
( )

2 2 2 22
2 2 2

2 2 2
1 ,

S rst
T

Le Ra a S a
Ra a a

a a

π η πππ η
ξ π

+ − +  
  = + + +

   +  
                                              (31)                                        

Equation (31) exactly coincides with the result of Malashetty et.al [21]. 
 
For an isotropic porous media, that is when 1ξ η= = , equation (29) gives 

( ) ( ) ( )

22 2
2 2

2 2 2
(1 )

1 ,st s r
T

a Le Ra S
Ra Da a

a a

π
π

π

+ − = + + +   +
                                                                            (32)                                                           

 
This is exactly the one given by Poulikakos [15] for double diffusive convection in a horizontal sparsely packed porous 
layer. For a single component fluid 0SRa = , the expression for stationary Rayleigh number given by equation (31) 
becomes 

( )
2

2 2 2
2

1st
TRa a a

a

π π η
ξ

 
 = + +
 
 

,                                                                                                                (33) 

 
which is the one obtained by Storesletten [19] for the case of a single component fluid. Further for an isotropic porous 
medium  1ξ η= =  the above equations (33) reduces to the classical results 

( )22 2
2

1st
TRa a

a
π= + ,                                                                                                                                  (34) 

which has the critical value 24st
cRa π=  for 2st

ca π=  obtained by Horton and Rogers [11] and Lapwood [10]. 
 
5. OSCILLATORY CONVECTION  
 
We now set iσ σ=  in equation (28) and clear the complex quantities from the denominator to obtain  

1 2iTRa i∆ σ ∆= +                                                                                                                                              (35)             
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where   

( ) ( )
( )

2 2 22 4 2 1 2 2 12 21 2 2 121 2
2 22 2 2 2 21 2 2 21 1

2
1 ,

Pr

1
1 1 s

r
D

SDa Le LeRaa a Le
δ

∆
δ λλ σ σ λ λδ δ σ φ δ δσ δ

λ σ λ σ δ φ σ

    − −        −       

−
=

+ −+ +− − +
+ + +              

(36) 

( )
( )

22 4 2 2 1 2 22 2 121 21 2 2
2 2 22 2 2 2 21 2 2 21 1

21 .Pr1 1 s
r

D

SDa LeRaa a Le
φ δδ λ λδ δ δ δ δ φδλλ σ∆

λ σ λ σ δ φ σ

 
   −
   
   
  −    

 

+−+ −+= + + +
+ + +

                                (37)                                                                                                                                

 
Since TRa  is a physical quantity, it must be real. Hence, from equation (35) it follows that either 0iσ =  (steady onset) 

or ( )2 0 0i∆ σ= ≠  (oscillatory onset). For oscillatory onset ( )2 0 0i∆ σ= ≠  and this gives an expression for frequency 

of oscillations in the form (on dropping the subscript i  ) 

( ) ( )22 2
0 1 2 0a a aσ σ+ + =                                                                                                                             (38)                                                                           

 
Now equation (35) with 02∆ = gives, 

( ) ( )
( )

2 2 22 2 1 2 221 2 2 1 221 2
2 22 2 2 2 21 2 21 2

4 ( )1
,Pr1 11 s

D

rSDa LeoscRa RaT a a Le

δ λλ σ σ λ λδ δ σ φ δ δσ δ
λ σ λ σ δ φ σ

    −        −       

−+ −+ += − − +
+ + +

               

(39)                                                                                                                                                                                                           

we find the oscillatory neutral solutions from equation (39). It proceeds as follows: First determine the number of 
positive solutions of equation (38). If there are none, then no oscillatory instability is possible. If there are two, then the 
minimum (over 2a ) of equation (39) with 2σ  given by equation (38) gives the oscillatory neutral Rayleigh number. 
Since equation (38) is quadratic in 2σ , it can give rise to more than one positive value of 2σ  for fixed values of the 
parameters 1 2, , , , , , Pr ,S DRa Da Leλ λ φ ξ  and η . However, our numerical solution of equation (38) for the range of 

parameters considered here gives only one positive value of 2σ  indicating that there exists only one oscillatory neutral 
solution. The analytical expression for oscillatory Rayleigh number given by equation (39) is minimized with respect to 
the wavenumber numerically, after substituting for ( )2 0σ >  from equation (38), for various values of physical 
parameters in order to know their effects on the onset of oscillatory convection.

 
 
6. RESULTS AND DISCUSSION  
 
The  Soret effect on double diffusive convection in a viscoelastic fluid sparsely packed saturated anisotropic porous 
layer, which is heated and salted  from below, is investigated analytically using the linear stability theory. In the linear 
stability theory the expressions for the stationary and oscillatory Rayleigh number are obtained analytically along with 
expression for frequency of oscillation. The variation of the critical oscillatory Rayleigh number with strain retardation 
parameter 2λ  for different parameters is shown in figures 1 - 8.  Figure 1 displays the effect of relaxation parameter 

1λ  on the critical Rayleigh number. We observe that an increase of relaxation parameter 1λ , decreases the critical 
Rayleigh number indicating that relaxation parameter 1λ destabilizes the system. Figure 2 shows the effect of the 
mechanical anisotropy parameter ξ  on the critical Rayleigh number. We find that an increase of anisotropy parameter 
decreases the critical Rayleigh number indicating that the mechanical anisotropic parameter destabilizes the system. 
Figure 3 indicates the variation of the critical Rayleigh number with strain retardation parameter 2λ  for different values 
of thermal anisotropy parameterη . It is observed that an increase in the thermal anisotropy parameter η  decreases the 
critical Rayleigh number. Thus the effect of thermal anisotropy parameter η is to advance the onset of convection. In 

Figure 4 it is observed that the critical Rayleigh number decreases with an increase in the Lewis number Le . Thus the 
effect of Lewis number Le  is to advance the onset of convection.  Figure 5 shows the effect of the solute Rayleigh 
number on the critical Rayleigh number; we find that an increase in the solute Rayleigh number SRa  increases the 
critical Rayleigh number. Thus the effect of increasing solute Rayleigh number SRa  is to stabilize the system.  Figure 6 
shows the effect of Darcy-Prandtl number PrD  on the critical Rayleigh number for fixed values of the other parameters. 
We find that an increase in the value of Darcy-Prandtl number PrD  decreases the region of stability indicating that the 
effect of Darcy-Prandtl number PrD  is to destabilize the system.  Figure 7 indicates the variation of the critical Rayleigh 
number with strain retardation parameter 2λ for different values of the Darcy number Da . It is observed that the 
critical Rayleigh number TcRa  increases with an increase of Da indicating that the effect of Darcy number is to inhibit  
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the onset of convection.  From figure 8 we observe that the critical oscillatory Rayleigh number TcRa  decreases with an 
increase of normalized porosityφ . Thus the effect of φ  is to destabilize the system. Figure 9 depicts the effect of Soret 
parameter Sr  on oscillatory Rayleigh number with TcRa . From this figure we observe that an increase in the values 
(positive) of the Soret parameter decreases the oscillatory Rayleigh number indicating that Soret parameter destabilizes 
the system for oscillatory mode. On the other hand, for increasing in the negative Soret parameter decreases the 
oscillatory Rayleigh number indicating that the effect of negative Soret parameter destabilizes the system for oscillatory 
convection.   
 
7. CONCLUSIONS  
 
The Soret effect on the onset of double diffusive convection in a viscoelastic fluid saturated anisotropic sparsely packed 
porous layer is investigated analytically using the linear stability theory. The usual normal mode technique is used to 
solve the linear problem. The following conclusions are drawn: 

1. The Soret parameter stabilizing effect on oscillatory convection and destabilizing effect on stationary 
convection. 

2. In the neutral stability curves, the effect of strain retardation parameter, thermal anisotropy parameter Lewis 
number, solute Rayleigh number and Darcy number stabilize the system whereas, stress relaxation parameter, 
mechanical anisotropy parameter, Darcy-Prandtl number and normalized porosity destabilize the system. 

3. And for critical curves, the effect solute Rayleigh number and Darcy number stabilize the system whereas, 
stress relaxation parameter, mechanical anisotropy parameter, Lewis number, Darcy-Prandtl number and 
normalized porosity destabilize the system. 
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Fig.1.    Variation of critical Rayleigh number with strain retardation 
               parameter λ2  for different values of stress relaxation parameter λ1 .
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Fig.2.    Variation of critical Rayleigh number with strain retardation 
               parameter λ2  for different values ofmechanical anisotropy parameter ξ .
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Fig.3.    Variation of critical Rayleigh number with strain retardation 
               parameter λ2  for different values of thermal anisotopy η.
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Fig.5 Variation of critical Rayleigh number with strain retardation parameter
 λ2 for different values of Solute Rayleigh number Ras.
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Fig.6.    Variation of critical Rayleigh number with strain retardation 
               parameter λ2  for different values of Darcy- Prandtl number PrD .
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Fig.7. Variation of critical Rayleigh number with strain retardation parameter
 λ2 for different values of Darcy number.
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Fig.8 Variation of critical oscillatory Rayleigh number with strain retardation parameter
 λ2 for different values of normalised porosity φ.
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