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ABSTRACT. 

Using the hypotheses of Einstein (1905) and Lemaitre (1927) by a certain compression and explosion of real numbers 
we construct a theoretical mathematical model which can show the permanent inflation of the universe from a „small” 
to „big” state. Our model is limited to the time-dimension and the three space- dimensions. and a new apparatus of 
exploded and compressed numbers was used [1]. We offer a justification of compression and explosion of real 
numbers, model the inflation of the cube universe and perform computations in it. 
 
 
INTRODUCTION 
 
We imagine the universe in the abstract state, as the familiar three dimensional Euclidean space 

ℝ3 = �𝑃 = �(𝑥,𝑦, 𝑧)| �
−∞ < 𝑥 < ∞
−∞ < 𝑦 < ∞
−∞ < 𝑧 < ∞

��, 

with its well known apparatus, among others 
- the ordered field (ℝ , < , + , ∙ ) of real numbers, 
- the vector algebra of the multiplication 𝑐 ∙ 𝑃 = (𝑐𝑥. 𝑐𝑦, 𝑐𝑧), 𝑐 ∈ ℝ and addition 

 𝑃1 + 𝑃2 = (𝑥1 + 𝑥2,𝑦1 + 𝑦2, 𝑧1 + 𝑧2)  with their consequences, for example the norm   
                                            ‖𝑃‖ = �𝑥2 + 𝑦2 + 𝑧2  
and distance  

𝑑(𝑃1,𝑃2) = �(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2, 
- the concept of Cauchy – convergence and limit of functions, for example the sequence of real numbers 

{𝑥𝑛}𝑛=1∞  converges to the real number 𝑥0 if for any positive 𝜀 there exist a threshold – number 𝜈, such that if 
𝑛 > 𝜈 then |𝑥𝑛 − 𝑥0| < 𝜀, or lim𝑛→∞ 𝑥𝑛 = ∞ means that for any real number 𝐾 there exist a threshold – 
number 𝜈, such that if 𝑛 > 𝜈 then 𝑥𝑛 > 𝐾. 

 
Moreover, a new apparatus of exploded and compressed numbers is used. (See [1]). 
 
Here, we offer a justification of the compression and explosion of real numbers, represented by the number line. First 
we need to determine the place of 0 (origo) then that of 1, which will determine the unit of distance - measurement. By 
doing that, we have determined the place of each real number x. Let us call the direction towards 1 the positive 
direction, the other the negative direction. But how does this method work in practise? Let us take the position of 0 
from which we look at the three-dimensional space. In this step we focus on the positive direction, only. To find the 
point x we send a point-like satellite from the origo in the positive direction. We are in the origo. How can we obtain 
the information on x from the satellite? If we get it then, at time when the satellite reaches the point x, it is late. It is 
because, by the time the information reaches the origo the satellite will be over x. So, the satellite has to give the sign „I 
am in x” earlier, from the point 𝜉. This is the compressed of x, denoted by 𝑥. So, 
(0.1)                                                       𝜉 = 𝑥. 
 
Conversely,  x is called the exploded 𝜉, denoted by 
(0.2)                                                       𝑥 = 𝜉. 
 
Using these notations mutually, we have the inversion formulas:  
(0.3)                                                      𝜉 = �𝜉�,   where 𝜉 is an arbitrary compressed number, 
and 
(0.4)                                                   𝑥 = �𝑥�� ,   where 𝑥 is an arbitrary real number.       
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Clearly, 
(0.5)                                            0 = 0     𝑎𝑛𝑑      0� = 0        
 
but if 𝑥 ≠ 0 then 
(0.6)                                                       �𝑥� < |𝑥|, (x may be negative real number, too) 
and if 𝜉 ≠ 0 then 
(0.7)                                                        |𝜉| < �𝜉�. 
 
If we accept that the universe was  created by the„Big Bang” (Lemaitre, 1927) then from the beginning to our days a 
certain time, denoted by 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 ≈ 13, 7 ∙ 109 𝑦𝑒𝑎𝑟, passed. Assuming that there exists a supreme speed (Einstein, 
1905), denoted by 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒 , for any real number x we have that its compressed 𝜉 remains under the bound 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒 ∙
𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒. Nowadays our universe seems to be enlarging. Nobody knows that the time of enlargement is finite or 
infinite. If 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 tends to get closer to infinity, then the universe enlarges, eternally. (If the inflation of the universe 
has a final time 𝑡𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛, then in the case of 𝑡 > 𝑡𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 the collapse of the universe is coming, perhaps.) Of course, 
we can compute shorter time (0 <)𝑡 < 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒, from the beginning, too. In this case we have the compression - 
parameter  
(0.8)                                                       𝜎(𝑡) = 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒 ∙ 𝑡 
and  
(0.9)                                                        |𝜉| < 𝜎(𝑡) 
is obtained. Hence, ℝ𝜎 denotes the set of compresseds of real numbers, represented by the open interval (−𝜎,𝜎) of the 
abstract number line. We may interpret this open interval as compressed number line. The 𝜎 - compressed of the real 
number x will be denoted by 𝑥𝜎  . Considering a point 𝑃 = (𝑥,𝑦, 𝑧) ∈ ℝ3 we define its 𝜎 − compressed, as 
(0.10)                                                             𝑃𝜎 = �𝑥𝜎 ,𝑦𝜎 , 𝑧𝜎�. 
 
If 𝕊 is a subset of ℝ3 then its  𝜎 − compressed is 
(0.11)                                                             𝕊𝜎 = ��𝑃𝜎�𝑃 ∈ 𝕊�. 
 
If 𝕊 is a line, plane, circle, ball, we are speaking about a sub – line, sub – plane, sub – circle, sub – ball and so on. 
Moreover, 
(0.12)                                                          ℝ3

𝜎 = ��𝑃𝜎�𝑃 ∈ ℝ3� 
is the compressed three – dimensional space, represented by the open cube 

(0.13)                                        ℝ3
𝜎 = �𝑃 = �(𝑥,𝑦, 𝑧)| �

−𝜎 < 𝑥 < 𝜎
−𝜎 < 𝑦 < 𝜎
−𝜎 < 𝑧 < 𝜎

�� . 

 
The open cube ℝ3

𝜎 may be extremely small. For example if 𝑡 = 10−43 𝑠𝑒𝑐 then (0.8) gives that 𝜎(𝑡) ≈ 3 ∙
10−27𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑟𝑒, which is a measure for quantum mechanics. On the other hand computing with 𝑡 ≈ 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒  the  
𝜎(𝑡) ≈ 13, 7 ∙ 109 𝑙𝑖𝑔ℎ𝑡 − 𝑦𝑒𝑎𝑟 is obtained.  This is an extremely big open cube in the abstract three dimensional 
space ℝ3.  Athough the sizes of this open cube are finite, under  today’s circumstances its border is not perceptible,  
practically infinite. We are moving in the finite universe ℝ3

𝜎 but thinking in the infinite universe ℝ3.   
 
1.THE CUBE – UNIVERSE WITH SOME SUB – LINES 

 
Figure- 1.1 
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As the real compression is unknown for us, we choose a comfortable compression. So, we give the 𝜎 − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 
of real number x: 

(1.2)                                      𝑥𝜎 = 𝜎 ∙ tanh 𝑥
𝜎
�= 𝜎 ∙ 𝑒

𝑥
𝜎−𝑒−

𝑥
𝜎

𝑒
𝑥
𝜎+𝑒−

𝑥
𝜎
� .−∞ < 𝑥 < ∞,     (See (0.1).) 

 
 
It is easy to check the validity of (0.6) and the first part of (0.5).  For the 𝜎 − 𝑒𝑥𝑝𝑙𝑜𝑑𝑒𝑑 of compressed number 𝜉 ∈ ℝ𝜎 
we give 

(1.3)                                     𝜉𝜎 = 𝜎 ∙ tanh−1 𝜉
𝜎
�= 𝜎

2
∙ ln

1+𝜉𝜎
1−𝜉𝜎

�  ,−𝜎 < 𝜉 < 𝜎.     (See (0.2).) 

 
We may check the validity of (0.7) and the second part of (0.5) By the inverse connection given by (1.2) and (1.3) we 
can check the inversion formulas (0.3) and (0.4). 
 
Introducing the sub-addition 

(1.4)                          𝑥⨁𝜎𝑦 = 𝑥�𝜎 + 𝑦�𝜎
𝜎
�= 𝑥+𝑦

1+𝑥∙𝑦
𝜎2
�     ,      𝑥,𝑦 ∈ ℝ𝜎 , 

and sub-multiplication 

(1.5)             𝑥 ⊙𝜎 𝑦 = 𝑥�𝜎 ⋅ 𝑦�𝜎
𝜎
�= 𝜎 ∙ tanh �𝜎 ∙ �tanh−1 𝑥

𝜎
� ∙ �tanh−1 𝑦

𝜎
��� , 𝑥,𝑦 ∈ ℝ𝜎 , 

 
we give an algebraic structure for ℝ𝜎 . By (1.4) and (1.5) we have an isomorphy between (ℝ , < , + , ∙ ) and       
�ℝ𝜎  , < ,⨁𝜎  ,⨀𝜎�. So, the latter is an ordered field, too.  
 
It is remarkable that the sub-addition is similar to the Lorentz – addition of speed. On the other hand there exist an 
essential difference: in the latter the speed of light c appears instead of the compression – parameter 𝜎 which has a 
distance dimension. The isomorphy between the universe ℝ3 and the universe ℝ3

𝜎given by the mappings 

(𝑥,𝑦, 𝑧) ⟼ �𝑥𝜎 ,𝑦𝜎 , 𝑧𝜎�         , 𝑥,𝑦, 𝑧 ∈ ℝ 
and  

(𝜉,𝜂, 𝜁) ⟼ �𝜉𝜎 ,  𝜂�𝜎 , 𝜁𝜎�        , 𝜉, 𝜂, 𝜁 ∈ ℝ𝜎 , 
 
is rather general. For example, the sub-distance of points 𝑃1 = (𝑥1,𝑦1, 𝑧1)  and  
𝑃2 = (𝑥2,𝑦2, 𝑧2) ∈ ℝ3

𝜎 is defined by 
(1.6)                                             𝑑𝜎(𝑃1,𝑃2) = 𝑑�𝑃1�

𝜎 ,𝑃2�
𝜎�

𝜎
, 

where for 𝑃 = (𝑥,𝑦, 𝑧) ∈ ℝ3
𝜎 we say that 

(1.7)                                                𝑃�𝜎 = (𝑥�𝜎 ,  𝑦� 𝜎 , �̌�𝜎) ∈ ℝ3: 
 
With respect to universe ℝ3

𝜎  the compression – parameter 𝜎 plays the role of ∞. For example the point              
𝑃𝑏𝑜𝑟𝑑𝑒𝑟 = (0, 0,𝜎) ∈ ℝ3 being on the border of  ℝ3

𝜎 is outside universe ℝ3
𝜎 . So, 𝑑𝜎(𝑂,𝑃𝑏𝑜𝑟𝑑𝑒𝑟) does not exist. But, 

considering the point 𝑃 = (𝑥, 0,0) , 0 < 𝑥 < 𝜎 we have that 𝑃 ∈ ℝ3
𝜎. So, by (1.6), (1.7), (0.5), (1.3) and (0.3) we can 

write 
𝑑𝜎(𝑂,𝑃) = 𝑑�𝑂,𝑃�𝜎�

𝜎
= |𝑥�𝜎|𝜎 = �𝜎 ∙ tanh−1

𝑥
𝜎
�
𝜎

= (𝑥�𝜎)𝜎 = 𝑥. 

 
Hence, lim𝑥→𝜎

𝑥<𝜎
𝑑𝜎(𝑂,𝑃) = 𝜎 ∉ℝ𝜎. (The point 𝑃𝑏𝑜𝑟𝑑𝑒𝑟 = (0, 0,𝜎) is invisible in ℝ3

𝜎 .) 
 
Choosing the 𝜎 = 1 ,we give some examples for the geometry of universe ℝ3

1, demonstrated by Fig. 1.1. (A complete 
discussion is in [2].) Compressing the linea 

𝕃 =

⎩
⎪⎪
⎨

⎪⎪
⎧

�𝑃 = (𝑥∗,𝑦∗, 𝑧∗) ∈ ℝ3|

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥∗ =

1
√6

𝑡

𝑦∗ =
1
√6

𝑡

𝑧∗ = �
1
2
�

� 1

+
2
√6

𝑡

 ,−∞ < 𝑡 < ∞�

⎭
⎪⎪
⎬

⎪⎪
⎫

 

 
 
 



I. Szalay*  / The enlargement of the Universe described by compressed numbers / IJMA- 8(6), June-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      96  

 
and writing that (𝑥∗)1 = 𝑥 , (𝑦∗)1 = 𝑦 and (𝑧∗)1 = 𝑧 by (0.10) and (1.2) we have the sub line   

𝕃1 =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

�𝑃 = (𝑥,𝑦, 𝑧) ∈ ℝ3|

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝑥 = tanh

𝑡
√6

𝑦 = tanh
𝑡
√6

𝑧 =
1 + 2 tanh 2𝑡

√6

2 + tanh 2𝑡
√6

 ,−∞ < 𝑡 < ∞�

⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

 
which for 𝑡 = 0 has the point (0,0,1

2
), moreover its border-points are (−1,−1,−1) 𝑎𝑛𝑑 (1,1,1). (See Fig. 1.1) 

 
Similarly, the sub – line   

𝐿+1 =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

�𝑃 = (𝑥,𝑦, 𝑧) ∈ ℝ3|

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝑥 = tanh

𝑡
√6

𝑦 = −tanh
𝑡
√6

𝑧 =
1 + 2 tanh 2𝑡

√6

2 + tanh 2𝑡
√6

 ,−∞ < 𝑡 < ∞�

⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

is obtained. It has the point (0,0,1
2
), moreover its border-points are (−1, 1,−1) 𝑎𝑛𝑑 (1,−1, 1). (See Fig. 1.1.) The 

identity 

�tanh 1
√6
�
2

+ 4 tanh 1
√6

+ 1

2 �tanh 1
√6
�
2

+ 2 tanh 1
√6

+ 2
=

1 + 2 tanh 2𝑡
√6

2 + tanh 2𝑡
√6

  ,−∞ < 𝑡 < ∞,  

 
proves, that 𝕃1 ∪ 𝐿+1 is a subset of the sub – plane 

𝕊1 = ��𝑃 = (𝑥,𝑦, 𝑧) ∈ ℝ3|�
−1 < 𝑥 < 1
−1 < 𝑦 < 1

𝑧 = 𝑥2+4𝑥+1
2𝑥2+2𝑥+2

��      

 
Figure-1.8 

 

where     𝕊 = ��𝑃 = (𝑥,𝑦, 𝑧) ∈ ℝ3|�

−∞ < 𝑥 < ∞
−∞ < 𝑦 < ∞

𝑧 = 2𝑥 + �1
2
��
1
��. 
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2.THE INFLATION OF THE CUBE UNIVERSE 

 
We start from a primitive cube universe with extremely small parameter 𝜎0. For the sake of comvenience we assume 
that 𝑡𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛  is not a final time. So, by (0.8) we can write 
(2.1)                                     lim𝑡→0

𝑡>0
𝜎(𝑡) = 0    𝑎𝑛𝑑    lim𝑡→∞ 𝜎(𝑡) = ∞. 

 
Using (1.2) and consdering the function 
(2.2)                       𝑥𝜎(𝑡) = 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒 ∙ 𝑡 ∙ tanh 𝑥

𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡
   , 0 < 𝑡 < ∞, 𝑥 ∈ ℝ 

 
we can see that for any arbitray but fixed real number x 
(2.3)                                                     lim𝑡→0

𝑡>0
𝑥𝜎(𝑡) = 0. 

 
Moreover, the fuction 𝑥𝜎(𝑡) for positive x has the upper bound x, and for negative x has the lower bound x ,such that 
(2.4)                                                     lim𝑡→∞ 𝑥𝜎(𝑡) = 𝑥            
holds. 
Discussing the function 𝑥𝜎(𝑡) we compute the firt and second derivatives 

(2.5)         
𝑑𝑥𝜎(𝑡)

𝑑𝑡
= 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒 �tanh 𝑥

𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡
−

𝑥
𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡

�cosh 𝑥
𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡

�
2� ,      0 < 𝑡 < ∞,  

and 

(2.6)           
𝑑2𝑥𝜎(𝑡)

𝑑𝑡2
= −2 ∙ 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒

𝑡
∙ �

𝑥
𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡

cosh 𝑥
𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡

�
2

∙ tanh 𝑥
𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡

, 0 < 𝑡 < ∞. 

 
As for any negative x we have that 
(2.7)                                          𝑥𝜎(𝑡) = −|𝑥|𝜎(𝑡),    0 < 𝑡 < ∞, 
in the following we may assume that 𝑥 > 0. 
 
By (2.5) we can see that 
(2.8)                  lim𝑡→0

𝑡>0

𝑑𝑥𝜎(𝑡)

𝑑𝑡
= 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒        𝑎𝑛𝑑            lim𝑡→∞

𝑑𝑥𝜎(𝑡)

𝑑𝑡
= 0. 

 
Moreover by (2.6) we can easily prove 

(2.9)                 lim𝑡→0
𝑡>0

𝑑2𝑥𝜎(𝑡)

𝑑𝑡2
= 0          𝑎𝑛𝑑        lim𝑡→∞

𝑑2𝑥𝜎(𝑡)

𝑑𝑡2
= 0.           

 
By the left hand side of (2.1) we mention 
 
Consequence 1: There is no smallest cube universe. The origin of cube universes is only a point of the abstract 
universe ℝ3. 
 
Intoducing the proposition 
(2.10)                                                𝑢 = 𝑥

𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒∙𝑡
 𝑤𝑖𝑡ℎ  𝑥 > 0 𝑎𝑛𝑑 0 < 𝑡 < ∞, 

and having that  
tanh 𝑢 −

𝑢
(cosh𝑢)2 > 0 ⟺ sinh 2𝑢 > 2𝑢, 

by (2.5) the inequality 
𝑑𝑥𝜎(𝑡)

𝑑𝑡
> 0 is obtained. So, we have that the fuction 𝑥𝜎(𝑡) with positive x (see (2.2)) is strictly 

monotonic increasing on the open interval (0,∞). As the fuction 𝑥𝜎(𝑡) is continuous, we get 
 
Conseqence 2: If the time passes, the enlargement of cube universe continuously increases. 
By the right hand side of (2.1) we mention  
 
Consequence 3: There is no biggest cube universe. If the time 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 becomes increasingly long the cube universes 
tend to get closer to the abstract universe ℝ3.  
 

Clearly, 
𝑑2𝑥𝜎(𝑡)

𝑑𝑡2
< 0 (see (2.6) with 𝑥 > 0 𝑎𝑛𝑑 0 < 𝑡 < ∞). So, we have that the fuction 𝑥𝜎(𝑡) with positive x (see (2.2)) 

is concave on the open interval (0,∞). Moreover, with respect to (2.3), (2.4) and (2.7) we have the following graph 
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Figure-2.11 

(In Figure 2.11 the  𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒 = 1 𝑙𝑖𝑔ℎ𝑦𝑒𝑎𝑟
𝑦𝑒𝑎𝑟

 𝑎𝑛𝑑  |𝑥| = 2 𝑙𝑖𝑔ℎ𝑡𝑦𝑒𝑎𝑟 ) 
 
Considering (2.8) and (2.9) we mention 
 
Consequence 4: If 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 is near to 0 then the universe enlarges approximatey linearly and the speed of the 
enlargement is approximately constant, namely it is almost 𝑣𝑠𝑢𝑝𝑟𝑒𝑚𝑒(which is a little bit greater than the speed of light). 
 
If 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 is close to 𝑡𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 .(which  in our case is going forward for ever) the enlargement has the bound x and the 
speed of enlargement almost 0, but it is always greater than 0. 
 
This means that for constant x the inflation of cube universe is slowly increasing.  
 
Remark 1: If the 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 is close to 0, Fig. 2.11 shows some similarity to the enlargement of Einstein – de Sitter 
universe. (See [3], p.95. Fig. 3.16.) 
 
3. COMPUTATION IN THE CUBE UNIVERSE 

 
We consider the cube universe with compression parameter 𝜎 = 𝜎(𝑡) given by (0.8) and use the operations given by 
(1.4) and (1.5). Moreover, we use the sub-subtraction 
(3.1)                                                     𝑥 ⊝𝜎 𝑦 = 𝑥−𝑦

1−𝑥∙𝑦
𝜎2

, 𝑥,𝑦 ∈ ℝ𝜎 

and sub-division  

(3.2)                                                    𝑥 ⊘𝜎 𝑦 = 𝜎 ∙ tanh
tanh−1𝑥𝜎
σ∙tanh−1𝑦𝜎

   , 𝑥,𝑦(≠ 0) ∈ ℝ𝜎. 

 
Let  f  be a given familiar double variable function with its domain 𝔻𝑓 ⊆ ℝ2 and  
ℝ𝑓 = ��𝑧 ∈ ℝ|𝑧 = 𝑓(𝑥,𝑦) , (𝑥,𝑦) ∈ 𝔻𝑓�. Having a compression – parameter 𝜎 we say that a point (𝑥,𝑦) ∈ ℝ2

𝜎belongs 

to the domain 𝔻𝑓𝜎 �⊆ ℝ2
𝜎� of the double variable sub – function 𝑓𝜎 if (𝑥�𝜎 ,𝑦�𝜎) ∈ 𝔻𝑓. Moreover,  

ℝ𝑓𝜎 = ��𝑧 ∈ ℝ|𝑧 =  𝑓(𝑥�𝜎 ,𝑦�𝜎)𝜎 , (𝑥,𝑦) ∈ 𝔻𝑓𝜎�. Shortly, 
(3.3)                                      𝑓𝜎(𝑥,𝑦) = 𝑓(𝑥�𝜎 ,𝑦�𝜎)𝜎 , (𝑥,𝑦) ∈ 𝔻𝑓𝜎 . 
 
Theorem 1: If the point (𝑥,𝑦) ∈ �𝔻𝑓 ∩ 𝔻𝑓𝜎� and the double variable function f  is continuous at the point (𝑥,𝑦) then 
(3.5)                                                 lim𝜎→∞ 𝑓𝜎(𝑥,𝑦) = 𝑓(𝑥,𝑦). 
 
Proof: It is already known that 
(3.6)                                                lim𝜎→∞ 𝑥�𝜎 = 𝑥,   𝑥 ∈ ℝ 
is valid. (See, e.g. [4], Theorem 20.). Using (1.2), and (1.3) by (3.3) we have 

𝑓𝜎(𝑥,𝑦) = 𝜎 tanh
𝑓(𝑥�𝜎 ,𝑦�𝜎)

𝜎
(= 𝜎 tanh

𝑓 �𝜎2 ∙ ln
1 + 𝑥

𝜎
1 − 𝑥

𝜎
,𝜎2 ∙ ln

1 + 𝑦
𝜎

1 − 𝑦
𝜎
�

𝜎
),−𝜎 < 𝑥,𝑦 < 𝜎 . 
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By (3.6) we see, that lim𝜎→∞(𝑥�𝜎 ,𝑦�𝜎) = (𝑥,𝑦). Moreover by the continuity of  f , lim𝜎→∞ 𝑓(𝑥�𝜎 ,𝑦�𝜎) = 𝑓(𝑥,𝑦) ∈ ℝ is 
obtained. Hence lim𝜎↦∞

𝑓(𝑥�𝜎,𝑦�𝜎)
𝜎

= 0. Finally applying that lim𝑢→0
tanh𝑢
𝑢

= 1, by  

𝜎 tanh
𝑓(𝑥�𝜎 ,𝑦�𝜎)

𝜎
= 𝑓(𝑥�𝜎 ,𝑦�𝜎) ∙

tanh 𝑓(𝑥�𝜎 ,𝑦�𝜎)
𝜎

𝑓(𝑥�𝜎 ,𝑦�𝜎)
𝜎

 

gives the statement (3.5). (If 𝑓(𝑥�𝜎 ,𝑦�𝜎) = 0 then the statement is obtained by the first step.) 
 
Corollary 1: Considering the double variable functions 
 𝑓𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛(𝑥,𝑦) = 𝑥 + 𝑦 , 𝑓𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥,𝑦) = 𝑥𝑦 , 𝑓𝑠𝑢𝑏𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑥,𝑦) = 𝑥 − 𝑦 𝑎𝑛𝑑 𝑓𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛(𝑥,𝑦) = 𝑥

𝑦
, (𝑦 ≠ 0) and 

assuming that (𝑥.𝑦) ∈ ℝ2
𝜎 the statement (3.5) yields 

(3.7)                                            lim𝜎→∞(𝑥⨁𝜎𝑦) = 𝑥 + 𝑦, see (1.4), 
 
(3.8)                                            lim𝜎→∞(𝑥⨀𝜎𝑦) = 𝑥 ∙ 𝑦, see (1.5), 
 
(3.9)                                            lim𝜎→∞(𝑥 ⊝𝜎 𝑦) = lim𝜎→∞

𝑥−𝑦
1−𝑥∙𝑦

𝜎2
= 𝑥 − 𝑦  

and 

(3.10)                                           lim𝜎→∞(𝑥 ⊘𝜎 𝑦) = lim𝜎→∞𝜎 ∙ tanh
tanh−1𝑥𝜎
σ∙tanh−1𝑦𝜎

= 𝑥
𝑦

,𝑦 ≠ 0 

hold, respectively. 
In the following we investigate the safety of computation in the cube universe ℝ3

𝜎 .  
 
Theorem 2: If 𝜎 is a given compression parameter and x a given real number such that  
                                                              −𝜋

2
𝜎 < 𝑥 < 𝜎  

then the approximation 
(3.11)                                                       �𝑥 − 𝑥𝜎� < |𝑥|3

3𝜎2
  

holds.  
 
Proof: Using (1.2) it is easy to see that 
(3.12)                                       �𝑥 − 𝑥𝜎� = 𝜎 �|𝑥|

𝜎
− tanh |𝑥|

𝜎
�  ,    𝑥 ∈ ℝ. 

We use the series 

tanh𝑢 = �
22𝑛(22𝑛 − 1)𝐵2𝑛

(2𝑛)!
𝑢2𝑛−1 , |𝑢| <

𝜋
2

∞

𝑛=1

 , 

where 𝐵𝑚 is the m-th Bernoulli – number (𝐵0 = 1,𝐵1 = −1
2

,𝐵2 = 1
6

,𝐵4 = − 1
30

…). Denoting 

(3.13)                                                       𝑢 = |𝑥|
𝜎

 
 
by (3.12) we can write 
(3.14)                    �𝑥 − 𝑥𝜎� = 𝜎 �|𝑥|

𝜎
− ∑ 22𝑛�22𝑛−1�𝐵2𝑛

𝜎2𝑛−1(2𝑛)!
∞
𝑛=1 |𝑥|2𝑛−1� = 

= −𝜎�
22𝑛(22𝑛 − 1)𝐵2𝑛
𝜎2𝑛−1(2𝑛)!

∞

𝑛=2

|𝑥|2𝑛−1 = 

       =
|𝑥|3

3𝜎2
− 𝜎�

22𝑛(22𝑛 − 1)𝐵2𝑛
𝜎2𝑛−1(2𝑛)!

∞

𝑛=3

|𝑥|2𝑛−1 = 

           =
|𝑥|3

3𝜎2
−

|𝑥|5

𝜎4
�

22𝑘+6(22𝑘+6 − 1)𝐵2𝑘+6
𝜎2𝑘(2𝑘 + 6)!

∞

𝑘=0

𝑥2𝑘 . 

 
We may express the Bernoulli- numbers by the Riemann „𝜁” function: 
(3.15)                                           𝜁(𝑠) = ∑ 1

𝑘𝑠
∞
𝑘=1 ,     1 < 𝑠 < ∞,    (see [5]). It is known that 

(3.16)                               𝐵2𝑛 = 2(−1)𝑛+1 𝜁(2𝑛)∙(2𝑛)!
(2𝜋)2𝑛

,𝑛 = 1,2,3,    (see [6])    
is valid. Moreover, 𝐵2𝑛+1 = 0   , 𝑛 = 1,2,3 …. 
 
We investigate the sign of  

𝑆 = �
22𝑘+6(22𝑘+6 − 1)𝐵2𝑘+6

𝜎2𝑘(2𝑘 + 6)!

∞

𝑘=0

𝑥2𝑘. 
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Applying (3.15) and (3.16) we can write 

𝑆 = �

⎝

⎜
⎛
�

(24𝑝+6 − 1) ∙ 2 �∑ 1
𝑞4𝑝+6

∞
𝑞=1 �

𝜋4𝑝+6
� �

𝑥
𝜎
�
4𝑝
− �

(24𝑝+8 − 1) ∙ 2 �∑ 1
𝑞4𝑝+8

∞
𝑞=1 �

𝜋4𝑝+8
� �

𝑥
𝜎
�
4𝑝+2

⎠

⎟
⎞

∞

𝑝=0

= 

= ��
2

𝜋4𝑝+6
� �
𝑥
𝜎
�
4𝑝
�(24𝑝+6 − 1)��

1
𝑞4𝑝+6

∞

𝑞=1

� −
1
𝜋2

�
𝑥
𝜎
�
2

(24𝑝+8 − 1)��
1

𝑞4𝑝+8

∞

𝑞=1

��
∞

𝑝=0

> 

> ��
2

𝜋4𝑝+6
� �
𝑥
𝜎
�
4𝑝
�(24𝑝+6 − 1)��

1
𝑞4𝑝+6

∞

𝑞=1

� − (24𝑝+6 − 1)��
1

𝑞4𝑝+8

∞

𝑞=1

��
∞

𝑝=0

> 0 

Hence, 
|𝑥|5

𝜎4
�

22𝑘+6(22𝑘+6 − 1)𝐵2𝑘+6
𝜎2𝑘(2𝑘 + 6)!

∞

𝑘=0

𝑥2𝑘 > 0, 

so, by (3.14) the estimation (3.11) holds. 
 
Corollary 2: Let 𝜀 be a (small) positive number. If  

−�3𝜀𝜎23 < 𝑥 < �3𝜀𝜎23  
then the estimation �𝑥 − 𝑥𝜎� < 𝜀 holds. 
 
Theorem 3: If 𝜎 is a given compression parameter, x and y  are given real numbers such that  

−𝜎 < 𝑥 + 𝑦 < 𝜎 
then the approximation 
(3.15)                                                       �(𝑥 + 𝑦) − �𝑥𝜎⨁𝜎𝑦𝜎�� < |𝑥+𝑦|3

3𝜎2
  

holds.  
 
Proof: Using (1.4) and (1.2) we can write 

(𝑥 + 𝑦) − �𝑥𝜎⨁𝜎𝑦𝜎� =  (𝑥 + 𝑦) −  
𝑥𝜎 + 𝑦𝜎

1 +
𝑥𝜎 ∙ 𝑦𝜎
𝜎2

= 

= (𝑥 + 𝑦) − 𝜎 
tanh 𝑥𝜎 + tanh 𝑦𝜎

1 + tanh 𝑥𝜎 ∙ tanh 𝑦𝜎
= (𝑥 + 𝑦) − σ ∙ tanh

𝑥 + 𝑦
𝜎

. 

Hence, 

�(𝑥 + 𝑦) − �𝑥𝜎⨁𝜎𝑦𝜎�� = 𝜎 �
|𝑥 + 𝑦|
𝜎

− tanh
|𝑥 + 𝑦|
𝜎

�. 

 
The continuation of the proof is carried out in the same way as in the proof of Theorem 2. More exactly, considering 
(3.12) , (3.13) , (3.14) and so on, in place of x we write (𝑥 + 𝑦).  
 
Finally, the approximation (3.15) is obtained. 
 
Theorem 3: If 𝜎 is a given compression parameter, x and y  are given real numbers such that  
                                                            −𝜎 < 𝑥 ∙ 𝑦 < 𝜎 
 
then the approximation 
(3.16)                                                       �(𝑥 ∙ 𝑦) − �𝑥𝜎⨀𝜎𝑦𝜎�� < |𝑥∙𝑦|3

3𝜎2
  

holds.  
 
Proof: Using (1.5) with (0.4) and (1.2) we can write 

(𝑥 ∙ 𝑦) − �𝑥𝜎⨀𝜎𝑦𝜎� =  (𝑥 ∙ 𝑦) −  𝑥 ∙ 𝑦𝜎 = 

= (𝑥 ∙ 𝑦) − 𝜎 tanh
𝑥 ∙ 𝑦
𝜎

 = 𝜎 �
𝑥 ∙ 𝑦
𝜎

− tanh
𝑥 ∙ 𝑦
𝜎

�. 
Hence, 

�(𝑥 ∙ 𝑦) − �𝑥𝜎⨀𝜎𝑦𝜎�� = 𝜎 �
|𝑥 ∙ 𝑦|
𝜎

− tanh
|𝑥 ∙ 𝑦|
𝜎

�. 
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The continuation of the proof is carried out in the same way as in the proof of Theorem 2.  
 
More exactly, considering (3.12) , (3.13) , (3.14) and so on, in place of x we write (𝑥 ∙ 𝑦).  
 
Finally, the approximation (3.16) is obtained. (Istennek Hála! 2016.12.11.(15.33) Szalay István). 
 
We remark that similar results are valid for the 𝑥𝜎 ⊝𝜎 𝑦𝜎 (see 3.1) and 𝑥𝜎 ⊘𝜎 𝑦𝜎 (see (3.2), too. 
 
Consequence 5: The equation (0.8) with Theorems 2, 3 and 4 yields that if the 𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 is big enough then being in the 
cube universe we can compute the familiar addition, multiplication, subtraction and division, too. For example, if the 
compression parameter 𝜎 = 13,7 ∙ 109 ,then the calculator 𝑓𝑥 − 570𝐸𝑆  says that   113,7∙109 = 13,7 ∙ 109 ∙
tanh 1

13,7∙109
= 1. (Of course, we know that 113,7∙109 < 1. )  
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