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ABSTRACT 
In the present paper, we have suggested a generalized ratio type estimator of population mean of study variable using 
known population median of study variable. Up to the first order of approximation, the expressions for the bias and 
mean squared error of the proposed estimator have been derived. The optimum value of the characterizing scalar has 
been obtained. The minimum value of the mean squared error of the proposed estimator has also been obtained for this 
optimum value of the characterizing scalar. The proposed estimator has been theoretically compared with the 
competing estimators, the mean per unit estimator, usual regression estimator of Watson [1937] and usual ratio of 
Cochran [1940] also with the Bahl and Tuteja [1991], Srivastava [1967], Reddy [1974], Kadilar [2016] and 
Subramani [2016] estimators. The theoretical findings are validated with the numerical illustrations and it has been 
shown that proposed estimator is better than the competing estimators as it has least mean square error.   
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INTRODUCTION 
 
Auxiliary information is useful for improved estimation of population parameters but it is collected on additional cost 
of the survey. Many times in practice we see that even population mean of the study variable is not known but the 
population median of the main variable under study is known. For example if we ask for the exact number in grade 
system or exact blood pressure of a person, it is very hard to get the exact value but we get the information in terms of 
intervals. Here the median of the study variable is easily available which can be used for improved estimation of 
population mean of study variable. The use of auxiliary variable which is highly correlated with study variable also 
improves the efficiency of the estimator but it is collected on additional cost of the survey.  In this manuscript we have 
proposed a generalized ratio type estimator of population mean of the study variable using median of the study variable. 
 
Let us consider the finite population consisting of N distinct and identifiable units and let niyx ii ...,,2,1),,( = be a 
bivariate sample of size n taken from (X, Y) using a simple random sampling without replacement (SRSWOR) scheme. 
Let X and Y respectively be the population means of the auxiliary and the study variables, and let x  and y  be the 
corresponding sample means. In simple random sampling without replacement, it is well known that sample means x  
and y are unbiased estimators of population means of X and Y  respectively.  
 
The problem under consideration has been demonstrated more effectively through the following two real world 
examples. Let us consider these examples of estimation of population mean of study variable using median of study 
variable given by Subramani [2016].  The tables representing examples have been used with the permission of the 
author.  
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Example1. In an Indian university 5000 students entered for the university examination. The results are given below. 
The problem is to estimate the average marks scored by the students (population mean). Here, it is reasonable to 
assume that the median of the marks is known since we have the following information. 

 
Table - 1: Results of the University Examination 

Passed with Percentage of marks Number of Students Cumulative total 
Distinction 75-100 850 850 
First Class 60-75 3100 3950 
Second Class 50-60 600 4550 
Failed 0-50 450 5000 
Total 5000 5000 

The median value will be between 60 and 75. Approximately one can assume the population median value as 67.5. 
 
Example 2: In the problem of estimating the blood pressure of the 202 patients of a hospital, it is reasonable to assume 
that the median of the blood pressure is known based on the information available in Table 2. 

 
Table – 2: Blood pressure of 202 patients of a hospital 

Category  Systolic, mmHg Number of 
patients 

Cumulative No. 
of patients 

Hypotension  < 90 10 10 
Desired  90–119 112 122 
Pre-hypertension  120–139 40 162 
Stage 1 Hypertension  140–159 20 182 
Stage 2 Hypertension  160–179 13 195 
Hypertensive Emergency  ≥ 180 7 202 
                                                                              Total 202 202 

 
The median value will be between 90 and 119. Approximately one can assume the population median value as 104.5. 
 
REVIEW OF EXISTING ESTIMATORS 
 
The natural and the most suitable estimator of population mean of the study variable, given by,  
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Sample mean is an unbiased estimator of population mean and up to the first order of approximation; its variance is 
given by,  
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Watson [1937] used the highly correlated auxiliary variable with the study variable and proposed the usual linear 
regression estimator of population mean as,  

)(1 xXyt yx −+= β                        (3) 

where yxβ is the regression coefficient of the line Y on X. 
 
The regression estimator is also unbiased for population mean and its variance up to the first order of approximation, is 
given by, 
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Cochran [1940] utilized the highly positively correlated auxiliary variable with the study variable and proposed the 
following usual ratio estimator as,  

x
Xyt =2                                      (5) 
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The usual ratio estimator is a biased estimator of population mean and its bias and mean squared error, up to the first 
order of approximation are respectively given by,   
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Bahl and Tuteja [1991] suggested the exponential ratio type estimator of population mean using positively correlated 
auxiliary variable as, 
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This estimator is biased and the bias and the mean squared error of this estimator, up to the first order of 
approximation, are respectively given by,  
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Srivastava [1967] suggested the generalized ratio type estimator of population mean using positively correlated 
auxiliary variable as,  

α
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where α  is a suitably chosen constant such that MSE of above estimator is minimum.  
 
The above estimator is a biased estimator and its bias and the mean squared error up to the first order of approximation 
are respectively given by, 
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The optimum value of the constant α  is, 2
xyx CC−=α . 

The minimum value of )( 4tMSE for optimum value of α is given by, 
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Reddy [1974] proposed a class of ratio type estimators for population mean of study variable using positively 
correlated auxiliary variable as,  
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This estimator is biased estimator and the bias and the mean squared error of this estimator, up to the first order of 
approximation are respectively given by, 
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The MSE of the above estimator is minimum for optimum value of 2

xyx CC=α and the minimum MSE is given by, 
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Kadilar [2016] proposed an exponential type estimator of population mean using positively correlated auxiliary 
variable as, 
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whereδ is a constant to be determined such the MSE of above estimator is minimum.  
 
The bias and the mean squared error of the above estimator up to the first order of approximation respectively are,  
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The optimum value of the characterizing scalar δ  which minimizes the mean squared error of 6t  is,  
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The minimum mean squared error of above estimator is,  
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This minimum mean squared error is equal to the variance of the usual regression estimator of Watson [1937]. 
 
Subramani [2016] used the population median of the study variable and proposed the ratio estimator of population 
mean of the study variable as,  
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where M and m are the population and sample medians of study variable respectively. 
 
This estimator is biased estimator and its bias and the mean squared error, up to the first order of approximation, are 
respectively given by, 
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Various modified estimators of population mean have been given by various authors in the literature. The latest 
references can be found in Subramani (2013), Subramani and Kumarapandiyan [2012, 2013], Tailor and Sharma 
[2009], Yan and Tian [2010], Yadav et al. [2014, 2015], Yadav et al. [2016], and Abid et al. [2016]. 

 
PROPOSED ESTIMATORS 
 
Motivated by Jerajuddin and Kishun [2016], we propose a generalized ratio type estimator of population mean using 
known population median of study variable as,  
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where α  is a characterizing scalar to be determined such that the MSE of the proposed estimator pt is minimum.  
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To know the properties of the proposed estimator, we have made the following assumptions as,   
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The proposed estimator pt can be rewritten in terms of sei ' ( 2,1=i ) as, 
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Expanding the right hand side of the above equation and up to the first order of approximations, we get, 
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Taking expectation on both sides of equation and putting the values of various expectations, we get the bias of the 
proposed estimator pt , up to the first order of approximation as,  
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From equation (19), up to the first order of approximation, we have, 
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Squaring both sides of above equation and taking expectations on both sides, we get mean squared error of the 
proposed estimator pt as 
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Putting values of different expectations in above equation, we have, 
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which is minimum for, 
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The minimum mean squared error of the proposed estimator pt  for the optimum value of optα  is, 
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EFFICIENCY COMPARISON  
 
In this section proposed estimator is theoretically compared with the competing estimator of population mean. 
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From equation (21) and equation (2), we have, 
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Thus the proposed estimator is better than the usual mean per unit estimator of population mean. 
 
From equation (21) and equation (4), we have, 
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The proposed estimator is better than the usual regression estimator of Watson [1937] under above condition.  
 
From equation (21) and equation (6), we have, 
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The proposed estimators are better than the usual ratio estimator given by Cochran [1940] with the above condition. 
 
From equation (21) and equation (8), we have, 
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The proposed estimator performs better than Bahl and Tuteja [1991] ratio type estimator of population mean under 
above condition.  
 
From equation (21) and equation (10), we have, 
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With the above condition, the proposed estimator performs better than the Srivastava (1967) estimator.  
 
It is also better than Reddy [1974] and Kadilar [2016] estimators of population mean using auxiliary information under 
the above condition as for Srivastava [1967] estimator in above equation.   
 
From equation (21) and equation (17), we have, 
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The proposed estimator performs better than the Subramani [2016] competing estimator of population mean using 
information on median of the study variable with the above condition. 
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NUMERICAL STUDY 
 
For the numerical illustration, we have considered the natural populations given in Subramani [2016]. He has used 
three natural populations. The population 1 and 2 have been taken from Singh and Chaudhary (1986, page no. 177) and 
the population 3 has been taken from Mukhopadhyay [2005]. In populations 1 and 2, the study variable is the estimate 
the area of cultivation under wheat in the year 1974, whereas the auxiliary variables are the cultivated areas under 
wheat in 1971 and 1973 respectively. In population 3, the study variable is the quantity of raw materials in lakhs of 
bales and the number of labourers as the auxiliary variable, in thousand for 20 jute mills. Tables 3-5 represent the 
parameter values along with constants, biases of various estimators along with proposed estimator and variances and 
mean squared errors of existing and proposed estimator  

 
Table-3: Parameter values and constants for three natural populations 

Parameter Population-1 Population-2 Population-3 
N  34 34 20 
n  5 5 5 

n
N C  278256 278256 15504 

Y  856.4118 856.4118 41.5 

M  736.9811 736.9811 40.0552 
M  767.5 767.5 40.5 

X  208.8824 199.4412 441.95 

7R  1.1158 1.1158 1.0247 
2
yC  0.125014 0.125014 0.008338 
2
xC  0.088563 0.096771 0.007845 
2
mC  0.100833 0.100833 0.006606 

ymC  0.07314 0.07314 0.005394 

yxC  0.047257 0.048981 0.005275 

yxρ  0.4491 0.4453 0.6522 
 

Table-4: Bias of various estimators 
Estimator Popln-1 Popln-2 Popln-3 

2t  35.3748 40.9285 0.1067 

3t  1.39995 1.72380 0.0019 

4t  -1.60997 1.76775 0.0054 

5t  2.07309 1.85541 0.0167 

6t  27.4137 27.4137 0.3743 

7t  57.7705 57.7705 0.5061 
 

Table-5: Mean squared error of various estimators 
Estimator Popln-1 Popln-2 Popln-3 

0t  15640.97 15640.97 2.15 

1t  12486.75 12539.30 1.24 

2t  14895.27 15492.08 1.48 

3t  12498.01 12539.30 1.30 

4t  12486.75 12539.30 1.24 

5t  12486.75 12539.30 1.24 

6t  12486.75 12539.30 1.24 

7t  10926.53 10926.53 1.09 

pt  9002.22 9002.22 0.98 
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RESULTS AND CONCLUSION  
 
In this manuscript, we have proposed a generalized ratio type estimator of population mean of study variable using 
population median of study variable. The expressions for the bias and mean squared error for the proposed estimator 
have been obtained up to the first order of approximation. The optimum value of the constant for which the MSE is 
minimum, is obtained. The minimum value of the mean squared error of the proposed estimator has also been obtained 
for the optimum value of the constant. The proposed estimator is theoretically compared with the competing estimators 
of population mean under simple random sampling scheme. The conditions with which the proposed estimator 
performs better than the competing estimators have also been discussed. These theoretical conditions are verified 
through the numerical examples from some natural populations. From Table-5, it can be easily seen that the proposed 
estimator has least mean squared error among other competing estimators of population mean of study character. Thus 
proposed estimator is better than the competing estimators of Watson [1937] usual regression estimator, Cochran 
[1940] usual ratio estimator, Bahl and Tuteja [1991] exponential ratio type estimator, Srivastava [1967] estimator, 
Reddy [1974] estimator, Kadilar [2016] estimator and Subramani [2016] estimator. Therefore it is advisable to use the 
proposed estimator for improved estimation of population mean under simple random sampling scheme. 
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