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ABSTRACT 
In this paper we are proving a common fixed point theorems for mappings satisfying Common E.A like property in 
fuzzy metric space .Our results generalize the main results of R.K. Sharma and Sonal Bharti [6].  
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1. INTRODUCTION 
 
The fundamental work for the fuzzy theory was first given by Zadeh [9] in 1965, who introduced the concept of fuzzy 
set. Kramosil and Michalek [6] developed the fuzzy metric space and later George and Veeramani [2] modified the 
notion of fuzzy metric spaces by introducing the concept of continuous t–norm. Many researchers have extremely 
developed the theory by defining different concepts and amalgamation of many properties. Fuzzy set theory has its 
significance in various fields such as communication, gaming, signal processing, modelling theory, image processing, 
etc. 
 
E. A like property in fuzzy metric space was defined by Kamal Wadhwa. et al. [8] 
 
In this paper we prove a common fixed point theorems for six self-maps satisfying contractive type implicit relation by 
using Common E.A like property in fuzzy metric space.  
 
2. PRELIMINARY NOTES 
 
Definition 2.1 [6]: A mapping ∗: [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if ∗ is satisfying the following 
conditions: 

1) ∗ is commutative and associative; 
2) The mapping  ∗: [0, 1]× [0, 1]→ [0, 1] is continuous. 
3) a ∗ 1= a for all a∈[0, 1]; 
4) a∗ b ≤c ∗d whenever a ≤ c and b ≤ d for all a ,b ,c ,d ∈[0, 1]. 

    
Definition 2.2 (Kramosil and Michalek[4]): A Fuzzy Metric Space is a triple (X,M, ∗) where X is a nonempty set , ∗ 
is a continuous t-norm and M is a fuzzy set on X2 × [0, 1] such that the 
followings axioms hold: 
      (KM-1) M(x, y, 0) = 0 for all x, y ∈ X; 
      (KM-2) M(x, y, t) = 1 for all x, y ∈ X where t > 0 x = y; 
      (KM-3) M(x, y, t) = M(y, x, t) for all x, y ∈ X 
      (KM-4) M(x, y, .): [0, ∞)→[0, 1] is left continuous for all x, y ∈ X; 
      (KM-5) M(x, z, t+s) ≥ M(x, y, t) ∗ M(y, z, s) for all x, y, z ∈ X and for all s, t > 0. 
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We will refer to these spaces as KM-fuzzy metric Spaces. 
 
Example 2.3[4]: Let (X, d) be a metric space a∗b =TM(a, b), and for all x, y ∈ X and t > 0 

M(x, y, t) = 𝑡
𝑡+𝑑(𝑥,𝑦)

  for all t > 0, M(x, y, 0) = 0, for all x, y ∈ X then (X, M, ∗) is a fuzzy metric space, it is 
called the  fuzzy metric space induced by (X, d). 

 
Definition 2.4 (George and Veeramani [2, 3]): A Fuzzy Metric Space is a triple (X, M, ∗) where X is a nonempty set 
, ∗ is a continous t-norm and M is a fuzzy set on X2 × [0, 1] such that the following axioms hold: 
         (GV-1) M(x, y, t) > 0; 
         (GV-2) M(x, y, t) =1 ⇔ x=y; 
         (GV-3) M(x, y, t) = M(y, x, t) ; 
         (GV-4) M(x, y, .): [0, ∞)→[0, 1] is continuous; 
         (GV-5) M(x, z, t+s) ≥ M(x, y, t) ∗ M(y, z, s) for all x, y, z ∈ X and for all s, t > 0. 
 
From (GV-1) to (GV-2), it follows that x ≠ y, then 0 < M(x, y, t) < 1for all t > 0. 
 
Fuzzy metric spaces in the sense of George and Veeramani will be called GV- fuzzy metric spaces.    
 
Lemma 2.5 Grabiec [5]: For every x, y ∈ X, the mappings M(x, y, .) is a non decreasing function. 
 
Definition 2.6 [6]: Let (X, M, ∗) be a fuzzy metric space. A sequence {xn} in X is said to be convergent to x∈ X if 
  limn→∞ M(xn, x, t)  =1    for all t>0 
 
Further, the sequence { xn } said to be Cauchy sequence in X if 
  limn→∞ M(xn,  xn+m , t)  =1 
for all t>0 and m ∈ N. 
 
A fuzzy metric space (X, M, ∗) is called complete if every Cauchy sequence converges to a point in X 
 
Definition 2.7 [6]: Two self mappings A and S on a fuzzy metric spaces (X, M, ∗) are said to be compatible if 
limn→∞ M(ASxn, SAxn, t)  =1 for all t > 0, . Whenever {xn} is a sequence in X such that 

lim n→∞Axn = lim n→∞Sxn = x∈ X. 
 
Definition 2.8 [6]: Two self mappings A and S on a fuzzy metric spaces (X, M, ∗) are said to be weakly compatible if 
they commute at their coincidence points, that is if for x∈ X, Ax = Sx implies that M(ASx, SAx, t)=1 for all t > 0. 
 
Definition 2.9 [6]: Two self mappings A and S on a fuzzy metric spaces (X, M, ∗) are said to be semi weakly 
compatible if  M(ASz, SAz, t) = 1 for all t>0,where z is a fixed point of either A or S. 
 
Definition 2.10 (E.A like property): Let A and B be two self maps of a fuzzy metric space (X, M, ∗) .We say that A 
and B satisfy the“E.A like property” if there exists a sequence {xn} such that  
  limn→∞ Axn= limn→∞ Bxn = z for some z ∈ A(X) or z ∈ B(X), i.e., z ∈ A(X) ∪ B(X).             
 
[7] Common E.A like property 
 
Let  A, B, S, T : X→ X where X is a fuzzy metric space then the  pair (A,S) and (B,T) said to  satisfy “Common E.A 
like property” if there exists two sequence {xn}  and {yn} in X such that   
  limn→∞ Axn= limn→∞ Sxn=limn→∞ Tyn = limn→∞ Byn =z 
for some z ∈ S(X)∩T(X) or  z ∈ A(X)∩B(X). 
 
Example 1: Let X = [-1, 1] and M(x, y, t)= 𝑡

𝑡+𝑑(𝑥,𝑦)
 for all x, y ∈ X then (X, M, *) is a fuzzy metric space where             

T(a, b) = min {a, b}. 
 
Define the self mappings A, B, S and T as  

A(X) = � 𝑥
 2
− 1

6
�, B(X) = �𝑥

4
� , S(X) = � 𝑥+1

 2
− 2

3
�,T(X) = 𝑥3 

 
Define the sequences {xn} and {yn} where  𝑥𝑛 = � 1

 3
+ 1

𝑛
�   and 𝑦𝑛= 1

2𝑛
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We have               A(X) = [−2

 3
,  1

 3
], B(X) = [ −1

 4
,  1

 4
 ], S(X) = [ −2

 3
,  1

 3
], T(X) = [-1, 1], 

  limn→∞ Axn = limn→∞ �
 � 1

 3+
1
𝑛�

 2
− 1

6
� = 0 ∈ S(X)  

  limn→∞ Sxn = limn→∞ �
 � 1

 3+
1
𝑛�+1

 2
− 2

3
� = 0 ∈ A(X) 

  limn→∞ Tyn = limn→∞ �
1
2𝑛
�
3
= 0 ∈ B(X) 

  limn→∞ Byn = limn→∞ �
1
2𝑛
4
� = 0 ∈ T(X) 

 
Thus limn→∞ Axn= limn→∞ Sxn= limn→∞ Tyn = limn→∞ Byn = 0 
Where 0 ∈ S(X)∩T(X) or  z ∈ A(X)∩B(X). 
 
Hence the pairs (A, S) and (B, T) satisfies Common E.A. Like Property. 
 
Definition 2.11 (A class of implicit relation): Let ∅ be the set of all real continuous function ∅: (𝑅+)4 → 𝑅, non 
decreasing in first argument and satisfying the following conditions . 

1) For u, v ≥ 0, 𝜑{u, 1, v, 1} ≥ 0   or  𝜑{u, 1,1, v} ≥ 0  implies that u ≥ 𝑣. 
2) 𝜑{u, u, 1,1} ≥ 0 implies that  u ≥ 1. 

 
Lemma 2.12 [1]: Let (X, M,∗) be a fuzzy metric space. If there exists a number k ∈ (0, 1)  

M(x, y, kt) ≥ M(x, y, t) for all x, y ∈ X & t  > 0 then x = y. 
 
3. MAIN RESULTS  

 
R.K. Sharma and Sonal Bharti [6] proved the following result- 
 
Theorem: Let A, B, S, T, P and Q be self mappings of a complete fuzzy metric space (X, M, ∗) satisfying  

1. A(X) ⊆ QT(X), B(X) ⊆ PS(X); 
2. the pairs (A, PS) is semi–compatible and (B, QT) is weakly compatible; 
3. One of A or PS is continuous; 
4. For some 𝜑 ∈ ∅ ,there exist k ∈ (0,1) such that for every x,y ∈ X and t > 0 

 𝜑{M(Ax, By, Kt), M(PSx, QTy, Kt), M(Ax, PSx, t), M(By, QTy, t)} ≥ 0                
 𝜑{M(Ax, By, Kt), M(PSx, QTy, t), M(Ax, PSx, kt), M(By, QTy, t)} ≥ 0  .           

5. The pairs (P, S) and (Q,T) are commuting mappings.  
6. The pairs (P, A), (S, A), (Q, B) (T, B) are semi weakly compatible mappings. 

Then A, B, S, T, P and Q have unique common fixed point in X. 
 
Now we prove our main results for weakly compatible maps under Common E.A like property for four & six self 
mappings as follows: 
 
Theorem 3.1: Let A, B, P and Q be self mappings of a complete fuzzy metric space (X, M, ∗) satisfying  

1. Pairs (A, P) and (B,Q) satisfy common E.A like property. 
2. Pairs (A, P) and (B,Q) are weakly compatible. 
3. For some 𝜑 ∈ ∅ ,there exist k ∈ (0,1) such that for every x,y ∈  X and t > 0 
        𝜑{M(Ax, By, Kt), M(Px, Qy, Kt), M(Ax, Px, t), M(By, Qy, t)} ≥ 0                                                                (3.1.1) 

then A,B,P and Q have unique common fixed point in X. 
 
Proof: Since (A,P) and (B,Q) satisfy common E.A like property therefore there exists two sequences {xn}  and {yn} in 
X such that  

lim n→∞Axn = lim n→∞Pxn = lim n→∞Byn = lim n→∞Qyn = z 
Where z ∈ P(X)∩Q(X) or z ∈ A(X)∩B(X) 
 
Suppose z ∈ P(X) ∩ Q(X) now we have lim n→∞Axn= z ∈ P(X) then z=Pu for some u ∈ X 
 
Now we claim that Au=Pu, from (3.1.1) we have,  
  𝜑{M(Au, Byn, Kt), M(Pu, Qyn, Kt), M(Au, Pu, t), M(Byn, Qyn, t)} ≥ 0 
 
Taking limit n→∞, we get 
  𝜑{M(Au, z, Kt), M(z, z, Kt), M(Au, z, t), M(z, z, t)} ≥ 0 
  𝜑{M(Au, z, Kt), 1, M(Au, z, t), 1} ≥ 0 



Kamal Wadhwa, Ashlekha Dubey* /  
Common Fixed point Theorems using E.A. like property in Fuzzy Metric Spaces / IJMA- 8(6), June-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                       207  

 
From 2.11 (1) we have, 
  M(Au, z, Kt) ≥  M(Au, z, t) 
 
Hence from the lemma 2.12 we have Au = z implies that Au = z = Pu, 
 
Since the pairs (A, P) is weakly compatible therefore  Az = APu = Pau = Pz. 
 
Again lim n→∞Byn = z ∈ Q(X) then z = Qv for some v ∈ X 
 
Now we claim that Qv = Bv, from (3.1.1) we have, 
  𝜑{M(Axn, Bv, Kt), M(Pxn, Qv, Kt), M(Axn, Pxn, t), M(Bv, Qv, Kt)} ≥ = 0   
 
Taking limit n→∞, we get 
  𝜑{M(z, Bv, Kt), M(z, z, Kt), M(z, z, t), M(Bv, z, t)} ≥ 0 
  𝜑{M(z, Bv, Kt), 1,1, M(Bv, z, t)} ≥ 0 
 
From 2.11 (1) we have, 
  M(z, Bv, Kt) ≥ M(Bv, z, t) 
 
Hence from the lemma 2.12 we have z = Bv implies that z = Qv = Bv. 
 
Since the pairs (B, Q) is weak compatible, therefore Qz = QBv = BQv = Bz. 
 
Now we show that Az=z, from (3.1.1) we have  
  𝜑{M(Az, Byn, Kt), M(Pz, Qyn, Kt), M(Az, Pz, t), M(Byn, Qyn, t)} ≥ 0 
 
Taking limit n→∞, we get 
  𝜑{M(Az, z, Kt), M(z, z, Kt), M(Az, z, t), M(z, z, t)} ≥ 0 
  𝜑{M(Az, z, Kt), 1, M(Az, z, t), 1} ≥ 0 
 
From 2.11 (1) we have, 
  M(Az, z, Kt) ≥ M(Az, z, t) 
 
Hence from lemma 2.12, we have Az = z 
 
Now we show that Bz = z, from (3.1.1) we have  
  𝜑{M(Axn, Bz, Kt), M(Pxn, Qz, Kt), M(Axn, Pxn, t), M(Bz, Qz, t)} ≥ 0 
 
Taking limit n→∞, we get 
  𝜑{M(z, Bz, Kt), M(z, z, Kt), M(z, z, t), M(Bz, z, t)} ≥ 0 
  𝜑{M(z, Bz, Kt), 1,1, M(Bz, z, t)} ≥ 0 
 
From 2.11 (1) we have, 
  M(Bz, z, Kt) ≥ M(Bz, z, t) 
 
Hence from the lemma 2.12 we have Bz = z also Qz = z therefore Az = Pz = Bz = Qz = z.           
 
Uniqueness: To prove the uniqueness we suppose that z and w are the two common fixed point of A, B, P & Q. 
 
Putting x = z and y = w in (3.1.1), we get 
  𝜑{M(Az, Bw, Kt), M(Pz, Qw, Kt), M(Az, Pz, t), M(Bw, Qw, t)} ≥ 0 
  𝜑{M(z, w, Kt), M(z, w, Kt), M(z, z, t), M(w, w, t)} ≥ 0 
  𝜑{M(z, w, Kt), M(z, w, Kt), 1,1} ≥ 0 
 
From 2.11 (2) we have, 
  M(z, w, Kt) ≥ 1 Yields that z = w 
  
Hence Aw = Pw = Bw = Qw = w.  w is the unique common fixed point of the self maps A, B, P and Q . 
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Theorem 3.2: Let A, B, S, T, P and Q be self mappings of a complete fuzzy metric space (X, M, ∗) satisfying  

1. Pairs (A, PS) and (B, Q T) satisfy Common E.A like property. 
2. Pairs (A, PS) and (B, QT) are weakly compatible. 
3. Pairs (P, S) and (Q, T) are commuting mappings. 
4. For some 𝜑 ∈ ∅,  there exist k ∈ (0,1) such that for every x,y ∈  X and t > 0 
 𝜑{M(Ax, By, Kt), M(PSx, QTy, Kt), M(Ax, PSx, t), M(By, QTy, t)}  ≥ 0                                                        (3.2.1) 
5. Pairs (P, S) and (Q, T) are commuting mappings. 
6. Pairs (P, A), (S, A),(Q, B) (T,B) are semi weakly compatible mappings. 

then A, B, S, T, P and Q have unique common fixed point in X. 
 
Proof. Since (A, PS) and (B, QT) satisfy Common E.A like property therefore there exists two sequence {xn}  and {yn} 
in X such that  

lim n→∞Axn = lim n→∞PSxn = lim n→∞Byn = lim n→∞QTyn = z 
Where z ∈ PS(X)∩QT(X) or z ∈ A(X)∩B(X) 
 
Suppose z ∈ PS(X) ∩ QT(X) now we have lim n→∞Axn = z ∈ PS(X) then z = PSu for some u ∈ X 
 
Now we claim that Au=PSu, from (3.2.1) we have,  
  𝜑{M(Au, Byn, Kt), M(PSu, QTyn, Kt), M(Au, PSu, t), M(Byn, QTyn, t)} ≥ 0 
 
Taking limit n→∞, we get 
  𝜑{M(Au, z, Kt), M(z, z, Kt), M(Au, z, t), M(z, z, t)} ≥ 0 
  𝜑{M(Au, z, Kt), 1, M(Au, z, t), 1} ≥ 0 
 
From 2.11 (1) we have,  
  M(Au, z, Kt) ≥  M(Au, z, t) 
 
Hence from the lemma 2.12, we have Au = z implies that Au = z = PS. 
 
Since the pairs (A, PS) is weakly compatible therefore  Az = APSu = PSAu = PSz. 
 
Again lim n→∞Byn = z ∈ QT(X) then z=Tv for some v ∈ X 
 
Now we claim that QTv = Bv, from (3.2.1) we have, 
  𝜑{M(Axn, Bv, Kt), M(PSxn, QTv, Kt), M(Axn, PSxn, t), M(Bv, QTv, Kt)} ≥ 0 
 
Taking limit n→∞, we get 
  𝜑{M(z, Bv, Kt), M(z, z, Kt), M(z, z, t), M(Bv, z, t)} ≥ 0 
  𝜑{M(z, Bv, Kt), 1,1, M(Bv, z, t)} ≥ 0 
 
From 2.11 (1) we have,  
  M(z, Bv, Kt) ≥  M(Bv, z, t) 
 
Hence from the lemma 2.12 we have z = QTv = Bv 
 
Since the pairs (B, QT) is weakly compatible, therefore QTz = QTBv = BQTv = Bz. 
 
Now we show that Az = z, from (3.2.1) we have  
  𝜑{M(Az, Byn, Kt), M(PSz, QTyn, Kt), M(Az, PSz, t), M(Byn, QTyn, t)} ≥ 0 
 
Taking limit n→∞, we get 
  𝜑{M(Az, z, Kt), M(z, z, Kt), M(Az, z, t), M(z, z, t)} ≥ 0 
  𝜑{M(Az, z, Kt), 1, M(Az, z, t), 1} ≥ 0 
 
From 2.11 (1) we have, 
  M(Az, z, Kt) ≥ M(Az, z, t) 
 
Hence from lemma 2.12 Az = z 
 
Now we show that Bz = z, from (3.2.1) we have  
  𝜑{M(Axn, Bz, Kt), M(PSxn, QTz, Kt), M(Axn, PSxn, t), M(Bz, QTz, t)} ≥ 0 
 



Kamal Wadhwa, Ashlekha Dubey* /  
Common Fixed point Theorems using E.A. like property in Fuzzy Metric Spaces / IJMA- 8(6), June-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                       209  

 
Taking limit n→∞, we get 
  𝜑{M(z, Bz, Kt), M(z, z, Kt), M(z, z, t), M(Bz, z, t)} ≥ 0 
  𝜑{M(z, Bz, Kt), 1,1, M(Bz, z, t)} ≥ 0 
 
From 2.11 (1) we have, 
  M(Bz, z, Kt) ≥ M(Bz, z, t) 
 
Now it is clear from the lemma 2.12 that Bz = z  hence  QTz = z. 
 
Therefore Az = PSz = Bz = QTz = z .           
 
Uniqueness: To prove the uniqueness we suppose that z and w are the two common fixed point of A, B, PS & QT. 
 
Putting x = z and y = w in (3.2.1), we get 
  𝜑{M(Az, Bw, Kt), M(PSz, QTw, Kt), M(Az, PSz, t), M(Bw, QTw, t)} ≥ 0 
  𝜑{M(z, w, Kt), M(z, w, Kt), M(z, z, t), M(w, w, t)} ≥ 0 
  𝜑{M(z, w, Kt), M(z, w, Kt), 1,1} ≥ 0 
 
From 2.11 (2) we have, 
  M(z, w, Kt) ≥ 1 Yields that z = w. 
 
Hence z is the unique common fixed point of the self maps A, B, PS and QT Az = PSz = Bz = QTz = z.     
 
By using condition 5 and 6 we have 

Pz = P(PSz) = P(SPz) = PS(Pz); 
Pz = P(Az) = A(Pz); 
Sz = S(PSz) = SP(Sz) = PS(Sz); 
Sz = SAz = ASz; 

 
Pz and Sz are common fixed points of the maps PS and A 
 
Therefore z = Pz = Sz = Az = PSz                                                                                                                              (3.2.2) 

Qz = Q(QTz) = Q(TQz) = QT(Qz); 
Qz = Q(Bz) = B(Qz); 
Tz = T(QTz) = TQ(Tz) = QT(Tz); 
Tz = TBz = BTz; 

 
Qz and Tz are common fixed points of the maps QT and B 
 
Therefore z = Qz = Tz = Bz = QTz                                                                                                                             (3.2.3) 
 
From (3.2.2) and (3.2.3) we have z = Az = Bz = Sz = Tz = Pz = Q that's why z is the common fixed point of the maps 
A, B, PS and QT Consequently it is the unique common fixed point of the maps A, B, S, T, P, Q. 
 
4. CONCLUSION 
 
Our results improve the results of R.K. Sharma and Sonal Bharti [6] in the following senses: 

i. Containment of ranges has been removed in theorem 3.2. 
ii. Continuity of mappings is not needed in theorem 3.2. 
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