
International Journal of Mathematical Archive-8(6), 2017, 253-264 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 8(6), June – 2017                                                                                                              253 

 
WEAK – WAVES IN GAS PARTICLE MIXTURE 

 
KANTI PANDEY*, DEWKI NANDAN TEWARI 

 
Department of Mathematics & Astronomy, Lucknow University, Lucknow 226007, India. 

 
Received On: 30-05-17; revised & Accepted On: 15-06-17) 

 
 

ABSTRACT 
In present paper an attempt has been made to discuss weak – non -linear waves in gas particle mixture for a binary 
dissociated gas when particle volume fraction is negligible and equilibrium is eventually established. Equation of 
motion, wave and weak shocks are discussed. Applying method of linearization compatibility condition, relatively 
undistorted wave condition and shock formation is obtained. For high frequency harmonic wave asymptotic analysis is 
applied to obtained the solution up to second order. Variation of velocity is interpreted through graphs for various 
values of density, specific heat of mixture and rate of internal change. In preparation of graphs Mathematica 7 is used. 
                                                                                                                             
Classification: 76 T, L.                                                                                                                                                               
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1. INTRODUCTION  
 
Equation of state with one rate dependent state variable arises in the study of gases subject to chemical dissociation or 
vibrational relaxation. In the former case the possible effects of diffusion are normally neglected so that the purely 
chemical phenomenon is treated in isolation. Comprehensive review articles in this field and its applications have been 
written by Lick [8]. The propagation of disturbances, governed by non linear hyperbolic systems, may exhibit a 
distortion of wave profile. This was studied by Varley and Cumberbatch [20], Dunwoody [4], Parker and Seymour [15] 
by using theory of relatively undistorted waves as an extension of the idea of Courant and Hilbert [2] for linear-waves. 
Sharma et.al [19] have considered non linear wave propagation in a hot- electron plasma by using theory of relatively 
undistorted wave. They have used a simple asymptotic expansion method to calculate first and second order solutions. 
 
The studies of non-linear effects on the wave propagation have been extensively carried out by Jeffery and Taniuti [7], 
Whitham [23], Courant and Friedrichs [3]. If the amplitude of the disturbance is not sufficiently small, the wave form is 
also altered by non-linear effects during propagation. Vincenti  and Kruger [22], Chu [1]   have formulated the general 
non linear equation for the relaxing gas flow and studied the effects of relaxation on acceleration-wave during 
propagation and their termination into a shock wave. Parker [16] has considered the effect of non linearity and 
relaxation on the propagation of a one dimensional wave.  
 
By two-phase flows we mean a special flow problem in which we consider the mechanism of two – phases of matter 
simultaneously. In general two-phase flows may be divided in two groups. The first group consists of flow problems of 
mixture of two-phases of four states – solids (pseudo – fluid), liquid, gas and plasma, where two-phases may be mixed 
homogeneously or in-homogenously. In second group of flow problems, interaction between the two-phases of matter 
through their interface is important. In present article we consider first group of two-phase flows neglecting particle 
interaction, which has its importance in internal ballistic, lunar ash flow, exploding wire phenomena, under water 
explosion, astrophysics (explosion in stars), atmosphere of earth etc. There are many engineering problems in which 
dilute phase of gas – particle is a good approximation of actual conditions. In such cases due to the existence of solid 
particles in the gas, properties of mixture differ significantly from those of gas alone. Such types of studies have 
numerous application in underground explosions [9, 10].  The study of wave propagation in a mixture of gas and dust 
particle has   received great attention during several years. There are many engineering application for flow of 
suspension of powdered material or liquid droplets in a gas. Dusty gas flow assume importance in such engineering 
problem as flow in rockets, nuclear reactors, fluid sprays, air pollution, medicine etc. Propagation of rapid pulses 
though a two phase mixture of gas and dust particles, when particle volume fraction is negligible is studied by Gupta  
et. al. [5] However they have used second order solution to describe the far field behavior of weak shock. In this 
context following references can be cited [6, 11-14]. 
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In present analysis, we consider the case of two – phase flows of solid particles (which are spheres of identical mass, 
radius, and specific heat) for negligible particle pressure and particle volume – fraction (the case of moderate particle 
loading). Equation of motion, wave condition and its termination in to shock wave is considered. Using asymptotic 
analysis solution up to second order is obtained. 
 
2. EQUATION OF MOTION 
 
Following Rudinger [18] and Vincenti and Kruger [22] equations governing one dimensional motion of gas particle 
mixture for a binary dissociated gas, when particle volume fraction can be neglected and equilibrium is eventually 
established is given by 
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where ( ) ,1 ρηρ +=m  ρ being density of gas and η  the  mass flow ratio, u and p being gas velocity and gas pressure 

respectively. ( )αρ ,, mpHH =
 
is the enthalpy of mixture and α is rate of dissociation. Comma followed by an 

index denotes partial differentiation with respect to that index.  
 
Equation (2.1) to (2.4) can be rewritten in the following matrix form  

0,, =++ CBUAU xt                                                                                                                     (2.5)  
where A, B are 4x4 matrix and  U & C are column vectors which can be obtained from equation (2.1) to (2.4) by 
inspection. Here we will consider the propagation of waves into an equilibrium state defined at a point ),( 00 0

αρmp
,
 

given by  
0),,( 000 =αvpf                                                                                                                          (2.6) 
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exists for all  t˃0 and α(t)→α0  as t→0 for all α ∗ such that .0,0 ><−∗ ξξαα                                                                                                                                                                                                                                        

Following thermodynamic properties given by Dunwoody4 we have 
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ξ =  c the specific heat of particle,  d the heat of 

reaction.   
 

A ‘wavelet’ is defined by the curve ),( txφφ =  and if we assume that 0,
t
ϕ∂
≠

∂
 then ),( φxTt =  is equivalently. 

By using transformation of co-ordinates (x, t) to (x,φ ) any vector valued function χ transforms as  
( , ( , )) ( , )x T x U xχ φ φ=     .                                                                                                          (2.8) 

 
Condition for relatively undistorted wave is defined by the relation  

xxU ,, χ≤ ,                                                                                                                                  (2.9) 
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where .   denote the Euclidean norm of a vector. Since 

xxxx TU ,,,, χχ += ,                                                                                                                      (2.10) 

from equation (2.9) txx T ,,, χχ −≅ .                                                                                                                            (2.11) 
 
Equation (2.10) hold exactly at an acceleration wave- front propagating into an undisturbed region in thermodynamic 

equilibrium. On all other wavelets in a non dissipative gas  0, =xU   i.e. )()),(,( φφχ UxTx = is a solution.     
  The equation (2.5) may be written as 

( ), , , ,x t xBT A BU Cχ− = +                                                                                                        (2.12) 

 
Thus equation (2.9) and (2.11) are compatible if  
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As  ,0)det( 1 =− − AWB   where   xTW ,=                                                                             (2.14) 
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compatibility condition  
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where l  is the left eigenvector associated with the eigen value 1.W −     
 
As conditions (2.9) and (2.13) may be satisfied at a near equilibrium state, to the first approximation     

( ),xBT A− , 0U ϕ =                .                                                                                                     (2.16)  
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where fa  local speed of sound and is given by 
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The left Eigen vector associated with Eigen value (2.17) is given by 

( ) ( ){ }1 , , 1 , , , , .f f fl H a H a a Hρ ρ αη ρ η= + + −                                                               (2.18) 

When equation (2.17) is substituted in equation (2.15) on integrating the resulting equation we have the solution to a 
plane wave propagating into a region which is in thermodynamic equilibrium given as 
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Here 000 ,, αρ p are the values of the state variables on the leading characteristics.           
 
3. RELATIVELY UNDISTORTED APPROXIMATION   
 
Since (2.19) gives the relation between u, p,ρ  and α then substituting equation (2.18) into equation (2.15) we have 
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From equation (2.19) we get 
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Using following linearization   
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Equation (3.1) and (3.3) reduces to 
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Integrating equation (3.5) we have 
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and ),()( txug ∗′=φ  i.e. φ  is the time that a wavelet leaves the station ∗x , where  λ will be positive. On 
substituting (3.7) in (3.6) and integrating the equation of any wavelet, =φ constant, is obtained as 
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The formation of shock wave is characterized by .0, =xT  
 
Differentiating equation (3.8) with respect to φ  we get  
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Differentiating equation (3.7) partially with respect to t we get  
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Putting the value of T,φ from equation (3.9) in to (3.10) we get (taking 0=φ ) 
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The relatively undistorted approximation is valid if 
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which is satisfied  automatically at a wave front 0=ϕ  where g(0) = 0 or near a shock wave 0, =φT . It is also 

satisfied in the degenerate case of ( λ
0f

a ) 0→  in which case the results for an ideal classical non dissipative gas are 

obtained in the limit. 
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At .1,0 , === ∗

φTxx  This approximation is valid if local frequency is given 
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The validity of approximation may be extended to all values of ),( ϕx provided 
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where M is finite.   
 
The condition is also satisfied by small amplitude high-frequency sound waves i.e. frequency is high in a sense relative 
to natural time 1

0 )( −λfa . 
 
Relations (3.13) suggest a parameter for an asymptotic analysis. 
 
4. WEAK SHOCK WAVE    
 
The behavior of a dissipative gas through a shock is exactly similar to that of its non-dissipative counterpart. In 
particular the relations [ ] 0=α , [ ] 0≥S , where S is entropy and  brackets denote the discontinuity in a variable across 
the shock must hold. For weak shock the entropy jump is of third order in the density jump, while to a first 
approximation,  the shock speed U is that of the  local resulting  speed of sound i.e.  faU ≅ . 
 
In the limit of weak shocks the relation (2.19) satisfy compatibility conditions i.e. the jump in any variable for two 
values of φ  say 1φ and 2φ coalesce at a shock. From equation (3.7) 

[ ] ( ) ( ){ } ( )
1 2 .x xu g g e λϕ ϕ

∗− −= −                                                                                                 (4.1) 
 
The speed of shock surface G is given by 

( ) ( )1 21 2
1 .
2 f fG a u a u ′ ′ ′ ′= + + + 

 
                                                                                             (4.2) 

 
To a first approximation and through equation (3.3) the relation 
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At the shock 21 tt = and 21 xx = where ),,( 11 tx ),( 22 tx are the coordinates of a point on 1φ  and 2φ respectively. 
From equation (3.8) putting values of these coordinates we get 
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In general characteristics have the explicit form 

)(),( xxft φφ +=                                                                                                                          (4.5) 
and any curve interested by these curves may be represented in (x, Ф) coordinates. Since shock will be described by a 
curve t=s(x) it follows from equation (4.5) and the implicit function theorem that  along the shock  
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From equation (4.3), (4.4) and (4.7) we get  
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From equation (4.3) and (4.7) 
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As Ф1 = 0, after integration we have                  
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From equation (3.7) and (4.12) 
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The distance by which the shock is ahead of the zero wavelet  
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In limit λ→0, all the above results reduce to those obtained by Whitham [23].  

 

5. ASYMPTOTIC ANALYSIS  
 
In this section we consider  the propagation of high frequency harmonic wave. At x = 0 the initial conditions are taken 
to be  
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Conditions (5.1) and (5.3) suggest that we can now consider asymptotic expansion of the form   
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In similar way asymptotic expansion for each Eigen value is given by  
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and  on any characteristic curve the relations 
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must hold. 
 
Equation (5.4) and (5.7) form the basis of the approximating scheme. 
 
Zeroth Approximation 
 
Substituting equation (5.5) in equation (5.4), (2.18) and equating constant terms (i.e. zeroth power of ∈) 𝑓𝑟𝑜𝑚  both 
sides, we have 
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First approximation: Proceeding exactly in similar ways as done for zeroth approximation for first and second 
approximation we have following results 
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From first three equations of (5.10) and the appropriate boundary conditions ,,sin 11 ββσ == Tu  we have 
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− = −                                                                             (5.11) 
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Thus we have following relations 
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Through equation (3.9) it is implied that shock will occur on all wavelets for which )(, β

β
g

 
is maximum i. e on 

 𝛽 = 2𝜋𝑛(𝑛 = 0,1,2,3 … … . . ) and is first located at  
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Equation (4.3) shows that shocks formed on ),.........2,1(,2 == nnπβ  propagate with speed of sound and so a 
constant distance apart. The leading shock however moves ahead of that on πβ 2=  as indicated by equation (4.14). 
Any two wavelet φπβ += n2  and φπβ −= n2  coalesce with the shock at the same instant and the substitution  

φσωββ sin)()( 1
12

−=−= gg                                                                                                  (5.15) 
 
satisfies equation (4.7). Equation (4.4) shows that these two wavelets reach the shock where 
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Therefore it is implied by (5.16) and (4.1) that the strength of these shocks (𝛽 = 2𝜋𝑛,𝑛 = 1,2,3, … … ) decays like 
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Those wavelets 𝛽 which lie in the region  

2n𝜋 + ∅ < 𝛽 < 2𝑛𝜋 − ∅        (n = 1, 2…….) 
 
 Never coalesce with a shock and so form the expansion regions separating the shocks. 
 
Second Approximation: For second approximation  

( )1

2 0

0

2
1 2

2, 2

( )
,f

x f f
f

u a
T a u a

a
−

 + = − + 
  

                                                                                 (5.17a) 

( ){ } ( ) { } ( ) ( )( )0 2 1 1(0) (0) (1) (1) (0) (1)
0, , 1, 0, , 1, ,ij x ij j ij x ij x ij j x ij j iB T A U B T B T A U T B U C− = − + − + +      (5.17b) 

( ){ } ( ){ }2 1(0) (0) (2) (0) (1) (1) (1) (0) (1)
, , ,i ij j i i ij j i ij j il B U C l B U l B U C+ = − − +                                          (5.17c) 

while the remaining equation for )2(l is not considered.  
 
With help of equation (5.11), (5.12), (5.13) we have 
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The arbitrary functions of x which arise in the integration are zero as the functions 222 ,, pu ρ and 2α are zero on 

0=β   the leading characteristic for all x. 2α  is independent of the others but dependent in its behavior on what has 
occurred on the precursor wavelets. Thus, on integrating (5.18c), we have 
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and  it is seen that at the piston ∗= xx  the degree of internal excitation induced is 
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α
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which is out of phase with the velocity wave. Its period is twice that of velocity and its effects is to induce frequency in 
the velocity wave. 
 
From equation (5.17c) and (5.18a) after certain manipulation we have  
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where )( ∗−= xxs  
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From equation (5.21) and (5.22) we have 
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6. RESULTS AND DISCUSSION 
 
We have discussed the weak non-linear waves in gas particle mixture for a binary dissociated gas when particle volume 
fraction is negligible and equilibrium is eventually established. Equation of motion, wave and weak shocks are 
discussed. Applying method of linearization compatibility condition, relatively undistorted wave condition and shock 
formation condition is obtained. With the help of asymptotic analysis solution up to second order is obtained. Through 
first approximation shock formation and its decay behavior is investigated. During second order approximation velocity 
and rate dissociation is obtained. Variation of velocity is interpreted through graphs for various values of density, 
specific heat of mixture and rate of internal change. In preparation of graphs Mathematica 7 is used. 
 

 
Figure-1: Variation of wave velocity for λ during first approximation. 

 

 
Figure-2: Variation in temperature for different values of specific heats of mixture during first approximation. 
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Figure-3: Variation of wave velocity for different values of  λ  in second approximation. 

 

 
Figure -4: Variation of wave velocity for different values of rate of internal state variable for second approximation. 

 

 
  

Figure-5: Variation of velocity for different values of density during with second approximation. 
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