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ABSTRACT 
In this paper we present fixed point results for generalized 𝛼 − 𝜓 −expansive type mappings in digital metric spaces. 
We also provide some examples to illustrate our results. 
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1. INTRODUCTION 
 
Fixed point theory is a beautiful subject for dynamic research in non-linear analysis. In 1912, Brouwer [2] proved a 
result that a unit closed ball in ℝ𝑛 has a fixed point. The most remarkable result in the fixed point theory was given by 
Banach [1] in 1922. He proved that each contraction in a complete metric space has a unique fixed point. Later on, 
many authors generalized the Banach fixed point theorem in various ways [13, 14, 15, 18, 19, 22, 24]. In 1984, Wang 
[23] introduced the concept of expansive mappings in complete metric spaces. Recently, Samet et al. [21] introduced 
the notion of 𝛼-𝜓 contractive mappings and proved the related fixed point theorems.  
 
Digital topology is a developing area based on general topology and functional analysis which studies features of 2D 
and 3D digital images. Rosenfield [20] was the first to consider digital topology as the tool to study digital images. 
Kong [17], then introduced the digital fundamental group of a discrete object. The digital versions of the topological 
concepts were given by Boxer [3], who later studied digital continuous functions [4]. Later, he gave results of digital 
homology groups of 2D digital images in [6] and [7]. Ege and Karaca [9, 10] give relative and reduced Lefschetz fixed 
point theorem for digital images. They also calculate degree of antipodal map for the sphere like digital images using 
fixed point properties. Ege and Karaca [11] then defined a digital metric space and proved the famous Banach 
Contraction Principle for digital images. 
 
In this paper, we generalize the concept of 𝛼-𝜓 mappings as 𝑑-𝛼-𝜓-expansive mappings in the setting of dislocated 
metric spaces. 
 
2. PRELIMINARIES   
 
In 1984, Wang et al. [2] defined expansive mappings in the form of the following theorem: 
 
Theorem 2.1: Let 𝑇 be a self map on a complete metric space 𝑋 such that   

(i) 𝑇 is onto, 
(ii) 𝑑(𝑇𝑥,𝑇𝑦) ≥ 𝑘𝑑(𝑥,𝑦), 𝑘 ≥ 1. 

Then 𝑇 has a unique fixed point in 𝑋. 
 
Recently, Samet et al. [3] Introduced the following concepts. 
 
Definition 2.2: Let 𝜓 be a family of functions 𝜓: [0�, �∞) → [0�, �∞) satisfying the following conditions: 

(i) 𝜓 is nondecreasing; 
(ii) ∑ 𝜓𝑛 < ∞∞

𝑛=1  for each 𝑡 > 0, where 𝜓𝑛 is the nth iterate of 𝜓; 
 
Definition 2.3: Let 𝑇:𝑋 → 𝑋 and 𝛼 ∶ 𝑋 × 𝑋 → [0,∞). we say that 𝑇 is 𝛼-admissible if for all𝑥,𝑦 𝜖 𝑋, we have  

𝛼(𝑥,𝑦) ≥ 1    ⟹    𝛼(𝑇𝑥,𝑇𝑦) ≥ 1  
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Definition 2.4: Let (𝑋,𝑑) be a metric space and let 𝑇 ∶ 𝑋 → 𝑋  be a given mapping. We say that 𝑇  is an 𝛼 − 𝜓-
contractive mapping if there exist two functions 𝛼 ∶ 𝑋 × 𝑋 → [0�, �∞) and 𝜓 ∈ Ψ such that 

𝛼(𝑥,𝑦)𝑑(𝑇𝑥,𝑇𝑦) ≤ 𝜓(𝑑(𝑥,𝑦)) 
For all 𝑥,𝑦 𝜖 𝑋 
 
Let 𝑋 be a subset of ℤ𝑛 for a positive integer 𝑛 where ℤ𝑛 is the set of lattice points in the 𝑛- dimensional Euclidean 
space and 𝜌 represent an adjacency relation for the members of 𝑋. A digital image consists of (𝑋,𝜌).  
 
Definition 2.5[9]: Let 𝑙,𝑛 be positive integers, 1 ≤ 𝑙 ≤ 𝑛 and two distinct points 

𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛), 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑛) ∈ ℤ𝑛 
𝑎 and 𝑏 are 𝑘𝑙 - adjacent if there are at most 𝑙 indices 𝑖 such that |𝑎𝑖 − 𝑏𝑖| = 1 and for all other indices 𝑗 such that 
�𝑎𝑗 − 𝑏𝑗� ≠ 1, 𝑎𝑗 = 𝑏𝑗 . 
 
There are some statements which can be obtained from definition 2.1: 

•  𝑎 and 𝑏 are 2- adjacent if |𝑎 − 𝑏| = 1. 
•  𝑎 and 𝑏 in ℤ2 are 8- adjacent if they are distinct and differ by at most 1 in each coordinate. 
•  𝑎 and 𝑏 in ℤ3 are 26- adjacent if they are distinct and differ at most 1 in each coordinate. 
•  𝑎 and 𝑏 in ℤ3 are 18- adjacent if are 26- adjacent and differ by at most two coordinates. 
•  𝑎 and 𝑏 are 6- adjacent if they are 18- adjacent and differ in exactly one coordinate. 

A 𝜌-neighbour [9] of 𝑎 ∈ ℤ𝑛 is a point of ℤ𝑛 that is 𝜌- adjacent to 𝑎 where 𝜌 ∈ {2,4,8,6,18,26} and 𝑛 ∈ 1,2,3. The set 
Ν𝜌(𝑎) = {𝑏|𝑏 𝑖𝑠 𝜌 − 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑎} 

is called the 𝜌- neighbourhood of 𝑎. A digital interval [9] is defined by  
[𝑝, 𝑞]ℤ = {𝑧 ∈ ℤ|𝑝 ≤ 𝑧 ≤ 𝑞} 

where 𝑝, 𝑞 ∈ ℤ and 𝑝 < 𝑞. 
 
A digital image 𝑋 ⊂ ℤ𝑛 is 𝜌- connected [10] if and only if for every pair of different points 𝑢, 𝑣 ∈ 𝑋, there is a set 
{𝑢0,𝑢1, … ,𝑢𝑟}  of points of digital image 𝑋  such that 𝑢 = 𝑢0, 𝑣 = 𝑢𝑟  and 𝑢𝑖  and 𝑢𝑖+1  are 𝜌 - neighbours where            
𝑖 = 0,1, … , 𝑟 − 1. 
 
Definition 2.6: Let (𝑋,𝜌0) ⊂ ℤ𝑛0 , (𝑌,𝜌1) ⊂ ℤ𝑛1 be digital images and 𝑇:𝑋 → 𝑌 be a function. 

• 𝑇 is said to be (𝜌0,𝜌1)- continuous[9], if for all 𝜌0- connected subset 𝐸 of 𝑋, 𝑓(𝐸) is a 𝜌1- connected subset of 𝑌. 
• For all 𝜌0- adjacent points {𝑢0,𝑢1} of 𝑋, either 𝑇(𝑢0) = 𝑇(𝑢1) or 𝑇(𝑢0) and 𝑇(𝑢1) are a 𝜌1- adjacent in 𝑌 if 

and only if 𝑇 is (𝜌0,𝜌1)- continuous [9]. 
• If 𝑓 is (𝜌0,𝜌1)- continuous, bijective and 𝑇−1 is (𝜌1,𝜌0)- continuous, then 𝑇 is called (𝜌0,𝜌1)- isomorphism 

[11] and denoted by 𝑋 ≅(𝜌0,𝜌1) 𝑌. 
 
A (2,𝜌)- continuous function 𝑇, is called a digital 𝜌- path [9] from 𝑢 to 𝑣 in a digital image 𝑋 if 𝑇: [0,𝑚]ℤ → 𝑋 such 
that 𝑇(0) = 𝑢  and 𝑇(𝑚) = 𝑣 . A simple closed 𝜌- curve of 𝑚 ≥ 4 points [12] in a digital image 𝑋  is a sequence 
{𝑇(0),𝑇(1), … ,𝑇(𝑚 − 1)} of images of the 𝜌- path 𝑇: [0,𝑚 − 1]ℤ → 𝑋 such that 𝑇(𝑖) and 𝑇(𝑗) are 𝜌- adjacent if and 
only if 𝑗 = 𝑖 ± 𝑚𝑜𝑑 𝑚. 
 
Definition 2.7[8]: A sequence {𝑥𝑛} of points of a digital metric space (𝑋,𝑑,𝜌) is a Cauchy sequence if for all ∈> 0, 
there exists 𝛿 ∈ ℕ such that for all 𝑛,𝑚 > 𝛿, then  

𝑑(𝑥𝑛, 𝑥𝑚) <∈. 
 
Definition 2.8[8]: A sequence {𝑥𝑛} of points of a digital metric space (𝑋,𝑑,𝜌) converges to a limit 𝑝 ∈ 𝑋 if for all 
∈> 0, there exists 𝛼 ∈ ℕ such that for all 𝑛 > 𝛿, then 

𝑑(𝑥𝑛, 𝑝) <∈. 
 
Definition 2.9[8]: A digital metric space (𝑋,𝑑,𝜌) is a digital metric space if any Cauchy sequence {𝑥𝑛} of points of 
(𝑋,𝑑,𝜌) converges to a point 𝑝 of (𝑋,𝑑,𝜌). 
 
Definition 2.10[8]: Let, (𝑋,𝑑,𝜌) be any digital metric space and 𝑇: (𝑋,𝑑,𝜌) → (𝑋,𝑑,𝜌) be a self digital map. If there 
exists 𝛼 ∈ (0,1) such that for all 𝑥,𝑦 ∈ 𝑋, 

𝑑�𝑓(𝑥), 𝑓(𝑦)� ≤  𝛼𝑑(𝑥,𝑦), 
then 𝑇 is called a digital contraction map. 
 
Proposition 2.11[8]: Every digital contraction map is digitally continuous. 
 
Theorem 2.12[8]: (Banach Contraction principle) Let (𝑋,𝑑,𝜌) be a complete metric space which has a usual Euclidean 
metric in ℤ𝑛. Let, 𝑇:𝑋 → 𝑋 be a digital contraction map. Then 𝑇 has a unique fixed point, i.e. there exists a unique 
𝑝 ∈ 𝑋 such that 𝑓(𝑝) = 𝑝. 



Kumari Jyoti*, Asha Rani / Fixed point results for expansive mappings in digital metric spaces / IJMA- 8(6), June-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                       267  

 
3. MAIN RESULTS 
 
We introduce the concept of generalized 𝛼-𝜓-expansive mapping in digital metric spaces as follows: 
Definition 3.1: Let (𝑋,𝑑,𝜌) be a digital metric space and let 𝑇 ∶ 𝑋 → 𝑋  be a given mapping. We say that 𝑇  is a 
generalised 𝛼 -𝜓 -expansive mapping, if there exist two functions 𝛼 ∶ 𝑋 × 𝑋 → [0,∞)  and 𝜓 ∈ Ψ  such that for all 
𝑥,𝑦 ∈ 𝑋, we have 

𝜓(𝑑(𝑇𝑥,𝑇𝑦)) ≥ 𝛼(𝑥,𝑦)𝑀(𝑥,𝑦).                                                                                                                       (1) 
where     𝑀(𝑥,𝑦) = 𝑚𝑎𝑥 �𝑑(𝑥,𝑦), 𝑑(𝑥,𝑇𝑥)+𝑑(𝑦,𝑇𝑦)

2
, 𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
�                  

 
Remark 3.2: Clearly, any expansive mapping is a generalized 𝛼 -𝜓 -expansive mapping with 𝛼(𝑥,𝑦) = 1  for all 
𝑥,𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡, for all 𝑡 ≥ 0 and 𝑘 ∈ (0,1). 
 
Definition 3.3: Let  𝑇 ∶ 𝑋 → 𝑋 and 𝛼 ∶ 𝑋 × 𝑋 → [0,∞). We say that  𝑇 is 𝛼-admissible if for all 𝑥,𝑦 ∈ 𝑋, we have   

𝛼(𝑥,𝑦) ≥ 1    ⟹    𝛼(𝑇𝑥,𝑇𝑦) ≥ 1 
 
Now, we prove our main results. 
 
Theorem 3.4: Let (𝑋,𝑑,𝜌) be a complete digital metric space and let 𝑇 ∶ 𝑋 → 𝑋 is a bijective and generalised 𝛼-𝜓-
expansive mapping and satisfies the following conditions: 

(i) 𝑇−1 is 𝛼-admissible 
(ii) there exist 𝑥0  ∈ 𝑋 such that 𝛼(𝑥0,𝑇−1𝑥0) ≥ 1; 
(iii) 𝑇 is digital continuous. 

Then 𝑇 has a fixed point. 
 
Proof: Let 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0,𝑇−1𝑥0) ≥ 1 ( given by condition (ii)). Define the sequence {𝑥𝑛} in 𝑋 by 𝑥𝑛 = 𝑇𝑥𝑛+1 
for all 𝑛 ≥ 0. If 𝑥𝑛 = 𝑥𝑛+1 for some 𝑛, then 𝑥𝑛 is a fixed point of 𝑇. So, we can assume that 𝑥𝑛 ≠ 𝑥𝑛+1 for all 𝑛. Since 
𝑇−1 is 𝛼-admissible, we have 

        𝛼(𝑥0, 𝑥1) = 𝛼(𝑥0,𝑇−1𝑥0) ≥ 1                                                                                                                   (2) 
⟹    𝛼(𝑇−1𝑥0,𝑇−1𝑥1) = 𝛼(𝑥1, 𝑥2) ≥ 1. 

 
Inductively, we have 

𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1   for all 𝑛 = 0,1,2 … … ..                                                                                                           (3) 
 
From (1) and (3), it follows that for all 𝑛 ≥ 1, we have 

𝜓�𝑑(𝑥𝑛−1, 𝑥𝑛)� = 𝜓�𝑑(𝑇𝑥𝑛,𝑇𝑥𝑛+1)�  ≥ 𝛼(𝑥𝑛 , 𝑥𝑛+1)𝑀(𝑥𝑛 , 𝑥𝑛+1) ≥ 𝑀(𝑥𝑛 , 𝑥𝑛+1) 
𝜓(𝑑(𝑇𝑥𝑛−1,𝑇𝑥𝑛) ≥ 𝑀(𝑥𝑛, 𝑥𝑛+1)                                                                                                                       (4) 

where     𝑀(𝑥𝑛 , 𝑥𝑛+1) = 𝑚𝑎𝑥 �𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛,𝑇𝑥𝑛)+𝑑(𝑥𝑛+1,𝑇𝑥𝑛+1)
2

, 𝑑(𝑥𝑛,𝑇𝑥𝑛+1)+𝑑(𝑇𝑥𝑛,𝑥𝑛+1)
2

�    

 = 𝑚𝑎𝑥 �𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛,𝑥𝑛−1)+𝑑(𝑥𝑛+1,𝑥𝑛)
2

, 𝑑(𝑥𝑛−1,𝑥𝑛+1)
2

� 

 ≤  𝑚𝑎𝑥 �𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛 ,𝑥𝑛−1)+𝑑(𝑥𝑛+1,𝑥𝑛)
2

� 
 ≤  𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛+1),𝑑(𝑥𝑛 , 𝑥𝑛−1)}                                                                                                (5) 

 
From (4) and taking in consideration that 𝜓 is a non-decreasing function, we get that 

𝜓�𝑑(𝑥𝑛+1, 𝑥𝑛)� ≥ (𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛−1),𝑑(𝑥𝑛 , 𝑥𝑛+1)}).                                                                                      (6) 
 
for all 𝑛 ≥ 1. If for some 𝑛 ≥ 1, we have 𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝑑(𝑥𝑛 , 𝑥𝑛−1), from (6), we obtain that 

𝑑(𝑥𝑛, 𝑥𝑛−1) ≥ 𝜓�𝑑(𝑥𝑛, 𝑥𝑛−1)� > 𝑑(𝑥𝑛 , 𝑥𝑛−1),                                                                                                 (7) 
 
a contradiction. Thus, for all 𝑛 ≥ 1, we have 

𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛−1),𝑑(𝑥𝑛 , 𝑥𝑛+1)} = 𝑑(𝑥𝑛 , 𝑥𝑛+1).                                                                                                (8) 
 
Using (6) and (8), we get that 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓�𝑑(𝑥𝑛, 𝑥𝑛−1)�,                                                                                                                          (9) 
for all 𝑛 ≥ 1. By induction, we get 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓𝑛�𝑑(𝑥1, 𝑥0)�, for all 𝑛 ≥ 1                                                                                                    (10) 
 
From (10) and using the triangular inequality, for all 𝑘 ≥ 1, we have 

𝑑(𝑥𝑛, 𝑥𝑛+𝑘) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1) + ⋯ . . +𝑑(𝑥𝑛+𝑘−1, 𝑥𝑛+𝑘) 
≤ ∑ 𝜓𝑝�𝑑(𝑥1, 𝑥0)�𝑛+𝑘−1

𝑝=𝑛 , 
≤ ∑ 𝜓𝑝�𝑑(𝑥1, 𝑥0)�∞

𝑝=𝑛 → 0  as 𝑛 → ∞ 



Kumari Jyoti*, Asha Rani / Fixed point results for expansive mappings in digital metric spaces / IJMA- 8(6), June-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                       268  

 
This implies that {𝑥𝑛} is a Cauchy sequence in the digital metric space (𝑋,𝑑,𝜌). since (𝑋,𝑑,𝜌) is complete, there exist 
𝑢 ∈ 𝑋 such that {𝑥𝑛} is digital convergent to 𝑢. since 𝑇 is digital continuous, it follows that {𝑇𝑥𝑛} is digital convergent 
to 𝑇𝑢. By the  uniqueness of the limit, we get 𝑢 = 𝑇𝑢, that is, 𝑢 is a fixed point of 𝑇. 
 
The next theorem does not require continuity of 𝑇.                                                             
 
Theorem 3.5: Let  (𝑋,𝑑,𝜌) be a complete digital metric space. Suppose that 𝑇:𝑋 → 𝑋 is a generalized 𝛼-𝜓-expansive 
mapping and the following conditions hold: 

(i) 𝑇−1 is 𝛼-admissible; 
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0,𝑇−1𝑥0) ≥ 1; 
(iii) if {𝑥𝑛} is a sequence in 𝑋  such that 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛 and {𝑥𝑛} is digital convergent to 𝑥 ∈ 𝑋, then 

𝛼(𝑇−1𝑥𝑛 ,𝑇−1𝑥) ≥ 1 for all 𝑛. 
Then there exist 𝑢 ∈ 𝑈 such that  𝑇𝑢 = 𝑢. 
 
Proof: Following the proof of theorem 3.4, we know that the sequence {𝑥𝑛} is a digital Cauchy sequence in the 
complete metric space (𝑋,𝑑,𝜌)  such that 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛  and 𝑥𝑛 → 𝑢  as 𝑛 → ∞.  
 
From (iii), we have 

𝛼(𝑇−1𝑥𝑛 ,𝑇−1𝑢) ≥ 1   for all 𝑛 ≥ 0.                                                                                                                 (11) 
 
Using triangle inequality of digital metric space, we have 

𝑑(𝑇−1𝑢,𝑢) ≤ 𝑑(𝑇−1𝑢, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1,𝑢) 

= 𝑑(𝑇−1𝑢,𝑇−1𝑥𝑛) + 𝑑(𝑥𝑛+1,𝑢) 
≤ 𝑀(𝑇−1𝑢,𝑇−1𝑥𝑛) + 𝑑(𝑥𝑛+1,𝑢) 
≤ 𝛼(𝑇−1𝑢,𝑇−1𝑥𝑛)𝑀(𝑇−1𝑢, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1,𝑢) 
≤ 𝜓�𝑑(𝑢, 𝑥𝑛)� + 𝑑(𝑥𝑛+1,𝑢). 

 
Since 𝜓  is continuous at 𝑡 = 0, implies that 𝑑(𝑇−1𝑢,𝑢) = 0 as 𝑛 → ∞. That is, 𝑇−1𝑢 = 𝑢.  
 
consider 𝑇𝑢 = 𝑇(𝑇−1𝑢) = 𝑢, which implies that, 𝑢 is a fixed point of 𝑇. 
 
We now provide some examples in support of our results and show that hypotheses of Theorem 3.4 and 3.5 do not 
guarantees uniqueness of fixed point. 
 
Example 3.6: let 𝑋 = [0,∞) be the digital metric space, where 𝑑(𝑥,𝑦) = |x − y| for all 𝑥,𝑦 ∈ 𝑋. Consider the self- 
mapping 𝑇 ∶ 𝑋 → 𝑋  given by 

𝑇𝑥 = �
2𝑥 −

11
6

                        𝑖𝑓 𝑥 > 1,
𝑥
6

                            𝑖𝑓 0 ≤ 𝑥 ≤ 1.
� 

 
Define 𝛼:𝑋 × 𝑋 → [0,∞), as 

𝛼(𝑥,𝑦) = �0      𝑖𝑓 𝑥,𝑦 ∈ [0,1],
1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

� 
 
Let 𝜓(𝑡) = 𝑡

6
 for 𝑡 ≥ 0. Then we conclude that 𝑇 is a generalised-𝛼-𝜓-expansive mapping. In fact, for all 𝑥,𝑦 ∈ 𝑋, we 

have  1
6
𝑑(𝑇𝑥,𝑇𝑦) ≥ 𝛼(𝑥,𝑦)𝑀(𝑥,𝑦). 

 
On the other hand, there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0,𝑇−1𝑥0) ≥ 1. Indeed, for 𝑥0 = 1, we have 𝛼(1,𝑇−11) = 1. 
 
Notice also that 𝑇 is digital continuous. It is sufficient to show that 𝑇−1 is 𝛼-admissible. For this purpose, let 𝑥,𝑦 ∈ 𝑋 
such that 𝛼(𝑥,𝑦) ≥ 1.  This implies that 𝑥 ≥ 1 𝑎𝑛𝑑 𝑦 ≥ 1, and by definition of 𝑇−1and 𝛼, we have 

𝑇−1𝑥 = 𝑥
2

+ 11
12
≥ 1,      𝑇−1𝑦 = 𝑦

2
+ 11

12
∈ [0,1]. 

 
Hence, 𝛼(𝑇−1𝑥,𝑇−1𝑦) ≥ 1.  Then 𝑇−1 is 𝛼-admissible. 
 
As a result, all the conditions of theorem 3.4 are satisfied. Consequently, 𝑇 has a fixed point. In this example 0 and 
11
6

are two fixed points of 𝑇. 
 
In the following example 𝑇 is not continuous. 
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Example 3.7: Let 𝑋,𝐺 and 𝛽 be defined as in example 3.6. Let 𝑇:𝑋 → 𝑋 

𝑇𝑥 = �
2𝑥 −

5
2

       𝑖𝑓 𝑥 > 1,
𝑥
5

          𝑖𝑓 0 ≤ 𝑥 ≤ 1.
� 

let 𝜓(𝑡) = 𝑡
5
 for 𝑡 ≥ 0. Then we conclude that 𝑇 is a generalised-𝛼-𝜓-expansive mapping. In fact, for all 𝑥,𝑦 ∈ 𝑋, we 

have 

𝛼(𝑥,𝑦)𝑑(𝑇𝑥,𝑇𝑦) ≤
1
2
𝑀(𝑥,𝑦) 

 
Furthermore, there exist 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0,𝑇𝑥0) ≥ 1. For 𝑥0 = 1, we have 𝛼(1,𝑇1) = 𝛼 �1, 1

3
� = 1. 

 
Let {𝑥𝑛} be a sequence such that 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛 ∈ ℕ and  as 𝑥𝑛 → 𝑥 as 𝑛 → ∞. By the definition of 𝛼, we 
have 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛 ∈ ℕ, then we see that 𝑥𝑛 ∈ [0,1]. Thus, 𝛼(𝑇−1𝑥𝑛 ,𝑇−1𝑥) ≥ 1. 
 
To show that 𝑇 satisfies all the hypotheses of Theorem 3.5, it is sufficient to observe that 𝑇 is 𝛼 –admissible. For this 
purpose let𝑥,𝑦 ∈ 𝑋 such that 𝛼(𝑥,𝑦) ≥ 1. It is equivalent to saying that 𝑥,𝑦 ∈ [0,1]. Due to the definition of 𝛼 and 𝑇, 
we have 

𝑇𝑥 =
𝑥
3
∈ [0,1],            𝑇𝑦 =

𝑦
3
∈ [0,1]. 

Hence 𝛼(𝑇𝑥,𝑇𝑦) ≥ 1. 
 
As a result, all the conditions of the theorem 3.5 are satisfied. In this example, 0 and 7

4
 are two fixed points of 𝑇. 

 
Theorem 3.8: Adding the following condition to the hypotheses of theorem 3.5 (resp. the theorem 3.4) we obtain the 
uniqueness of a fixed point of 𝑇.  

(iv) For all 𝑢,𝑢∗ ∈ 𝑋, there exist 𝑣 ∈ 𝑋 such that 𝛼(𝑢, 𝑣) ≥ 1 and 𝛼(𝑢∗,𝑣) ≥ 1. 
 
Proof: From the theorem 3.4 and 3.5 the set of fixed points is non-empty. We shall show that if 𝑢, 𝑢∗are two fixed 
points of 𝑇, that is, 𝑇(𝑢) = 𝑢 and 𝑇(𝑢∗) = 𝑢∗, then 𝑢 = 𝑢∗.  
 
From the condition (iv) we have, 𝛼(𝑢, 𝑣) ≥ 1 and 𝛼(𝑢∗, 𝑣) ≥ 1.                                                                                  (12) 
 
We know 𝛼-admissible property of 𝑇−1, so we obtain from (12) 
𝛼(𝑢,𝑇−1𝑣) ≥ 1 and 𝛼(𝑢∗,𝑇−1𝑣) ≥ 1.  
 
Repeatedly applying the 𝛼-admissible property of  𝑇−1, we get  

𝛼(𝑢,𝑇−𝑛𝑣) ≥ 1    𝑎𝑛𝑑     𝛼(𝑢∗,𝑇−𝑛𝑣) ≥ 1         for all 𝑛 = 1,2,3, …                                                              (13) 
 
From (1) and (13), we have 

𝑑(𝑢,𝑇−𝑛𝑣) ≤ 𝑀(𝑢,𝑇−𝑛𝑣) ≤ 𝛼(𝑢,𝑇−𝑛𝑣)𝑀(𝑢,𝑇−𝑛, 𝑣) 
                                            ≤ 𝜓�𝑑(𝑇𝑢,𝑇−𝑛+1𝑣)� = 𝜓�𝑑(𝑢,𝑇−𝑛+1𝑣)�. 

 
Thus, we get by induction that 

𝑑(𝑢,𝑇−𝑛𝑣) ≤ 𝜓�𝑑(𝑢, 𝑣)�    for all 𝑛 = 1,2,3, … 
 
Letting 𝑛 → ∞, and since 𝜓 ∈ Ψ, we have 

𝑑(𝑢,𝑇−𝑛𝑣) → 0. 
 
This implies that {𝑇−𝑛𝑣}  is digital convergent to 𝑢.  Similarly, we get {𝑇−𝑛𝑣}  is digital convergent to 𝑢∗.  By the 
uniqueness of the limit of  𝑇−1, we get 𝑢 = 𝑢∗, that is, the fixed point of 𝑇 is unique. 
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