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ABSTRACT 
Let 𝐺 be a connected simple graph. A restrained convex dominating set 𝑆 in a connected graph 𝐺 is a secure 
restrained convex dominating set, if for each element 𝑢 in 𝑉(𝐺)\𝑆 there exists an element 𝑣 in 𝑆 such that 𝑢𝑣 ∈ 𝐸(𝐺)  
and (𝑆 \{ 𝑣 }) ∪ { 𝑢 } is a restrained convex dominating set.  The secure restrained convex domination number of 𝐺, 
denoted by 𝛾𝑠𝑟𝑐(𝐺), is the minimum cardinality of a secure restrained convex dominating set in 𝐺. A secure restrained 
convex dominating set of cardinality 𝛾𝑠𝑟𝑐(𝐺) will be called a 𝛾𝑠𝑟𝑐-𝑠𝑒𝑡. In this paper, we give some realization problems 
will be given. In particular, we show that given positive integers 𝑘 and 𝑛 such that 𝑛 ≥  5 and 𝑘 ∈ { 1,2, . . . ,𝑛 − 2,𝑛 }, 
there exists a connected graph 𝐺 with |𝑉(𝐺)| = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = 𝑘. Further, we characterize the secure restrained 
convex dominating sets in the join of two graphs and give some important results.  
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1.  INTRODUCTION 
 
Domination in graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [11]. However, it was not until 
1977, following an article [4] by Ernie Cockayne and Stephen Hedetniemi, that domination in graphs became an area of 
study by many researchers. One type of domination parameter is the secure domination number in a graph. This was 
studied and introduced by E.J. Cockayne [5]. Secure dominating sets can be applied as protection strategies by 
minimizing the number of guards to secure a system so as to be cost effective as possible.  Other type of domination 
parameter is the restrained domination number in a graph. This was introduced by Telle and Proskurowski [9] 
indirectly as a vertex partitioning problem. Moreover, restrained dominating set can found in [8]. One practical 
application of restrained domination is that of prisoners and guards. Here, each vertex not in the restrained dominating 
set corresponds to a position of a prisoner, and every vertex in the restrained dominating set corresponds to a position 
of a guard. To effect security, each prisoner's position is observed by a guard's position. To protect the rights of 
prisoners, each prisoner's position is seen by at least one other prisoner's position. To be cost effective, it is desirable to 
place a few guards as possible. In [12], Pushpam and Suseendran paper's "Secure Restrained Domination in Graphs" 
studied few properties of secure restrained domination number of certain classes of graphs and evaluate 𝛾𝑠𝑟(𝐺) values. 
Convexity in graphs has been discussed and studied in [7]. On the other hand, convex domination in graphs has been 
defined and studied in [10]. In [2], Enriquez and Canoy, introduced the concepts of secure convex and restrained 
convex domination in graphs. In this paper, we give some realization problems and characterize the secure restrained 
convex dominating sets in the join of two graphs. For general concepts we refer the reader to [6]. 
 
2. RESULTS 
 
From the definitions above, the following result is immediate. 
  
Remark 2.1: Let 𝐺 be a nontrivial connected graph of order 𝑛 ≥  2. Then     
       (i)  𝛾(𝐺) ≤ 𝛾𝑟𝑐𝑜𝑛(𝐺) ≤ 𝛾𝑠𝑟𝑐(𝐺);  and  
       (ii) 𝛾𝑠𝑟𝑐 ∈  {1,2, . . ,𝑛 − 3,𝑛 − 2,𝑛}.    
  
It is worth mentioning that the upper bound in Remark 2.1(ii) is sharp. For example, 𝛾𝑠𝑟𝑐(𝑃𝑛)  =  𝑛 for all 𝑛 ≥  2. The 
lower bound is also attainable as the following result shows. 
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Theorem 2.2 (Realization Problem 1): Given positive integers 𝑘 and 𝑛 such that 𝑛 ≥  5 and 𝑘 ∈  {1,2, . . . ,𝑛 − 2,𝑛}, 
there exists a connected graph 𝐺 with |𝑉(𝐺)| = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = 𝑘. 
 
Proof: Consider the following cases: 
 
Case-1: Suppose that 𝑘 = 1.  Let 𝐺 = 𝐾𝑛. Then |𝑉(𝐺)| = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = 1. 
 
Case-2: Suppose that 𝑘 = 2.  Let 𝐺 = 𝐾𝑛 − 𝑒 for some 𝑒 ∈  𝐸(𝐾𝑛) (see Figure 1). 

 
Figure-1: A graph 𝐺 with |𝑉(𝐺)| = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = 2 

 
The set 𝑆 = { 𝑥1, 𝑥𝑛 } is a 𝛾𝑠𝑟𝑐-𝑠𝑒𝑡 of 𝐺.  Hence, |𝑉(𝐺)| = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = 2. 
 
Case-3: Suppose 3 ≤  𝑘 ≤  𝑛 − 2. Let 𝑟 = 𝑛 − 𝑘 + 1 (𝑟 ≥  3). Consider the graph 𝐺 = 〈 { 𝑣 } 〉 + (𝐾𝑟 ∪  𝐾�𝑘−2) (see 
Figure 2). 
 

 
Figure-2: A graph 𝐺 with |𝑉(𝐺)| = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = 𝑘 

 
The set 𝑆 = { 𝑥1, 𝑣, 𝑎1, 𝑎2, . . . , 𝑎𝑘−2 } is a 𝛾𝑠𝑟𝑐-𝑠𝑒𝑡 of 𝐺. Hence, |𝑉(𝐺)| = 𝑟 + (𝑘 − 2) + 1 = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = (𝑘 −
2) + 2 = 𝑘. 
  
Case-4:  Suppose 𝑘 = 𝑛. Let 𝐺 = 𝐾1,𝑛−1. Then |𝑉(𝐺)| = 𝑛 and 𝛾𝑠𝑟𝑐(𝐺) = 𝑘. This proves the assertion.   
 
Theorem 2.3  (Realization Problem 2):  Given positive integers 𝑘,𝑚 ≥  2 and 𝑛 ≥  6 such that 1 ≤  𝑘 ≤  𝑚 − 1 and 
𝑚 ∈ { 2,3, . . . ,𝑛 − 2,𝑛 }, there exists a connected graph 𝐺 with |𝑉(𝐺)| = 𝑛, 𝛾𝑠𝑟𝑐(𝐺) = 𝑚, and 𝛾𝑟𝑐𝑜𝑛(𝐺) = 𝑘. 
   
Proof:  Consider the following cases: 
 
Case-1: Suppose that 𝑚 = 𝑛. Let the path 𝑃𝑘 = [𝑣1, 𝑣2, . . . , 𝑣𝑘] and the path 𝑃𝑝 = [𝑥1, 𝑥2, . . . , 𝑥𝑝] with 𝑘 ≥  2, 𝑝 ≥  2. 
Consider the graph 𝐺 obtained from 𝑃𝑘 by adding the edges 𝑥𝑖𝑣1, where 𝑖 = 1,2, . . . , 𝑝 (see Figure 3). 

 
Figure-3: A graph 𝐺 with 𝛾𝑠𝑟𝑐(𝐺) = 𝑛 = 𝑚 and 𝛾𝑟𝑐𝑜𝑛(𝐺) = 𝑘 

 
The sets 𝐴1 = { 𝑣1, 𝑣2, . . . , 𝑣𝑘  } and 𝐵1 = 𝑉(𝐺) are, respectively, a 𝛾𝑟𝑐𝑜𝑛-𝑠𝑒𝑡 and a 𝛾𝑠𝑟𝑐-𝑠𝑒𝑡 of 𝐺. It follows that 
|𝑉(𝐺)| = 𝑛 = 𝑚 = 𝛾𝑠𝑟𝑐(𝐺) and 𝛾𝑟𝑐𝑜𝑛(𝐺) = 𝑘.   
  
Case-2: Suppose that 𝑚 < 𝑛. Let 𝑟 = 𝑛 − 𝑘 (𝑟 ≥  3) and suppose that 𝑘 = 𝑚 − 1. Let 𝐻2 be the complete graph 𝐾𝑟+1 
and let 𝐺 be the graph obtained from 𝐻2 by adding the edges 𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑘−1𝑣𝑘 (see Figure 4). 
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Figure-4: A graph 𝐺 with 𝛾𝑠𝑟𝑐(𝐺) = 𝑘 + 1 = 𝑚 and 𝛾𝑟𝑐𝑜𝑛(𝐺) = 𝑘 

 
The set 𝐴2 = { 𝑣1, 𝑣2, . . . , 𝑣𝑘  } is a 𝛾𝑟𝑐𝑜𝑛-𝑠𝑒𝑡 of 𝐺 and the set 𝐵2 = { 𝑦1 , 𝑣1, 𝑣2, . . . , 𝑣𝑘} is a 𝛾𝑠𝑟𝑐-𝑠𝑒𝑡 of 𝐺. Hence, 
𝛾𝑟𝑐𝑜𝑛(𝐺) = 𝑘, 𝛾𝑠𝑟𝑐(𝐺) = 𝑘 + 1 = 𝑚, and |𝑉(𝐺)| = 𝑟 + 𝑘 = 𝑛.  
 
Suppose that 𝑘 < 𝑚 − 1. Let 𝑟 = 𝑛 − 𝑚 + 1 and 𝑝 = 𝑚 − 𝑘 − 1. Consider the graph 𝐺 in Figure 4 and let 𝐺1 be the 
graph obtained from 𝐺 and the path 𝑃𝑝 = [𝑥1, 𝑥2, . . . , 𝑥𝑝] with 𝑝 ≥  2 by adding the 𝑥𝑖𝑣1, where 𝑖 = 1,2, . . . , 𝑝 . The set 
𝐴3 = { 𝑣1, 𝑣2, . . . , 𝑣𝑘  } is a 𝛾𝑟𝑐𝑜𝑛-𝑠𝑒𝑡 of 𝐺1 and the set 𝐵3 = {𝑦1 , 𝑥1, 𝑥2, . . . , 𝑥𝑝 , 𝑣1, 𝑣2, . . . , 𝑣𝑘} is a 𝛾𝑠𝑟𝑐-𝑠𝑒𝑡 of 𝐺1 (see 
Figure 5). 

 
Figure-5: A graph 𝐺1 with 𝛾𝑠𝑟𝑐(𝐺1) = 𝑝 + 𝑘 + 1 = 𝑚 and 𝛾𝑟𝑐𝑜𝑛(𝐺1) = 𝑘 

 
Hence, 𝛾𝑟𝑐𝑜𝑛(𝐺1) = 𝑘, 𝛾𝑠𝑟𝑐(𝐺1) = 𝑝 + 𝑘 + 1 = 𝑚, and |𝑉(𝐺1)| = 𝑟 + 𝑝 + 𝑘 = 𝑛. This proves the assertion. 
 
Corollary 2.4: The difference 𝛾𝑠𝑟𝑐 − 𝛾𝑟𝑐𝑜𝑛 can be made arbitrarily large. 
 
Proof: Let 𝑛 be a positive integer. By Theorem 2.3, there exists a connected graph 𝐺 such that 𝛾𝑠𝑟𝑐(𝐺) = 𝑛 + 1 and 
𝛾𝑟𝑐𝑜𝑛(𝐺) = 1. Thus, 𝛾𝑠𝑟𝑐(𝐺) − 𝛾𝑟𝑐𝑜𝑛(𝐺) = 𝑛. Therefore,  𝛾𝑠𝑟𝑐 − 𝛾𝑟𝑐𝑜𝑛 can be made arbitrarily large.  
 
Lemma 2.5: If 𝑆 is a secure restrained convex dominating set in a graph 𝐺, then 𝑆 is a secure convex dominating set in 
𝐺.  
 
Proof: Suppose that 𝑆 is a secure restrained convex dominating set in 𝐺. Then 𝑆 is a restrained convex dominating set 
in 𝐺, that is, 𝑆 is a convex dominating set in 𝐺. Let 𝑢 ∈  𝑉(𝐺) ∖ 𝑆. Then there exists 𝑣 ∈  𝑆 such that 𝑢𝑣 ∈ 𝐸(𝐺) and 
𝑆𝑢 = (𝑆 ∖  {𝑣}) ∪  {𝑢} is a restrained convex dominating set in 𝐺, that is, 𝑆𝑢 is a convex dominating set in 𝐺. Hence, 𝑆 
is a secure convex dominating set in 𝐺.  
 
The converse of the above Lemma is not necessarily true. For example, consider the graph $𝐺$ below (see Figure 6). 
The set 𝑆 = {𝑥,𝑦, 𝑧,𝑤} is a secure convex dominating set in 𝐺 but not a secure restrained convex dominating set in 𝐺.   
 

 
Figure-6: A graph 𝐺 with 𝛾𝑠𝑐𝑜𝑛(𝐺) = 4 

 
We need the following Theorems and Corollary for our next result. 
  
Theorem 2.6 [2]: Let 𝐺 be any connected graph. Then 𝛾𝑠𝑐𝑜𝑛(𝐺) = 1 if and only if  𝐺 is complete. 
  
Theorem 2.7: Let 𝐺 be a connected graph of order 𝑛 ≥  3. Then 𝛾𝑠𝑟𝑐(𝐺) = 1 if and only if  𝐺 is complete. 
  
Proof: Suppose that 𝛾𝑠𝑟𝑐(𝐺) = 1, say 𝑆 = { 𝑣 } is a 𝛾𝑠𝑟𝑐-𝑠𝑒𝑡 of 𝐺. Then 𝑆 is a secure convex dominating set of 𝐺 by 
Lemma 2.5. Thus, 𝐺 is complete by Theorem 2.6.   
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For the converse, suppose that 𝐺 is complete. Then for every 𝑣 ∈ 𝑉(𝐺), the set 𝑆 = { 𝑣 } is a convex dominating set of 
𝐺. Since 𝑛 ≥  3, there exists 𝑥,𝑦 ∈  𝑉(𝐺) ∖  𝑆 such that 𝑣𝑥, 𝑥𝑦 ∈  𝐸(𝐺). Hence, 𝑆 is a restrained convex dominating set 
of 𝐺. Since 𝑆 ∖ { 𝑣 } ∪  { 𝑧 } is also a restrained convex dominating set of 𝐺 for all 𝑧 ∈  𝑉(𝐺) ∖  𝑆, it follows that 𝑆 is a 
𝛾𝑠𝑟𝑐-𝑠𝑒𝑡 of 𝐺. Therefore, 𝛾𝑠𝑟𝑐(𝐺) = 1. 
 
The following result is a quick consequence of Theorem 2.7. 
 
Corollary 2.8: Let 𝐺 and 𝐻 be nontrivial connected graphs. Then 𝛾𝑠𝑟𝑐(𝐺 + 𝐻) = 1 if and only if 𝐺 and 𝐻 are complete 
graphs. 
  
Corollary 2.9: 𝛾𝑠𝑟𝑐(𝐺 ∘  𝐻) = 1 if and only if 𝐺 is a trivial graph and 𝐻 is a nontrivial complete graph.   
  
A nonempty subset 𝑆 of 𝑉(𝐺), where 𝐺 is any graph, is a clique in 𝐺 if the graph 𝐺[𝑆] = 〈 𝑆 〉 induced by 𝑆 is 
complete. A clique 𝑆 in 𝐺 is a \textit{clique dominating} set if it is a dominating set. It is a secure clique dominating set 
in 𝐺 if for every 𝑢 ∈  𝑉(𝐺) ∖  𝑆, there exists 𝑣 ∈  𝑆 ∩  𝑁𝐺(𝑢) such that (𝑆 ∖  { 𝑣 }) ∪  { 𝑢 } is a clique dominating set in 
𝐺. The secure clique domination number of 𝐺, denoted by 𝛾𝑠𝑐𝑙(𝐺), is the minimum cardinality of a secure clique 
dominating set of 𝐺. 
 
Theorem 2.10 [1]: Let 𝐺 and 𝐻 be non-complete graphs. Then 𝑆 ⊆  𝑉(𝐺 + 𝐻) is a restrained convex dominating set in 
𝐺 + 𝐻 if and only if one of the following holds. 
      (i)  𝑆 is a clique dominating set in 𝐺.     
      (ii) 𝑆 is a clique dominating set in 𝐻. 
      (iii) 𝑆 = 𝑆𝐺 ∪  𝑆𝐻, where 𝑆𝐺  and 𝑆𝐻 are cliques in 𝐺 and 𝐻, respectively.  
  
Theorem 2.11 [2]: Let 𝐺 and 𝐻 be connected non-complete graphs. Then a proper subset 𝑆 of 𝑉(𝐺 + 𝐻) is a secure 
convex dominating set in 𝐺 + 𝐻 if and only if one of the following statements holds: 

(i) 𝑆 is a secure clique dominating set in 𝐺 and |𝑆| ≥  2. 
(ii) 𝑆 is a secure clique dominating set in 𝐻 and |𝑆| ≥  2. 
(iii) 𝑆 = { 𝑣 } ∪  { 𝑤 } where { 𝑣 } and { 𝑤 } are dominating sets in 𝐺 and 𝐻 respectively. 
(iv) 𝑆 = { 𝑣 } ∪  𝑆𝐻 where { 𝑣 } is a dominating set in 𝐺, and |𝑆𝐻| ≥  2, and 𝑆𝐻 is a secure clique dominating set in 𝐻. 
(v) 𝑆 = 𝑆𝐺 ∪  { 𝑤 } where { 𝑤 } is a dominating set in 𝐻, and |𝑆𝐺| ≥  2, and 𝑆𝐺  is a secure clique dominating set in 𝐺. 
(vi)𝑆 = 𝑆𝐺 ∪  𝑆𝐻 where |𝑆𝐺| ≥  2, |𝑆𝐻| ≥  2, and 𝑆𝐺  and 𝑆𝐻 are secure clique dominating sets in 𝐺 and 

𝐻 respectively. 
The following characterizes the secure restrained convex dominating sets in the join of two connected non-complete 
graphs. 
  
Theorem 2.12: Let 𝐺 and 𝐻 be connected non-complete graphs. Then a proper subset 𝑆 of 𝑉(𝐺 + 𝐻) is a secure 
restrained convex dominating set in 𝐺 + 𝐻 if and only if it is a secure convex dominating set in 𝐺 + 𝐻.  
  
Proof: Suppose that 𝑆 is a secure restrained convex dominating set in 𝐺 + 𝐻. Then 𝑆 is a secure convex dominating set 
in 𝐺 + 𝐻 by Lemma 2.5.  
 
For the converse, suppose that 𝑆 is a secure convex dominating set in 𝐺 + 𝐻. Then statement (𝑖) or (𝑖𝑖) or (𝑖𝑖𝑖) or (𝑖𝑣) 
or $(𝑣)$ or (𝑣𝑖) of Theorem 2.11 holds. Suppose first that statement (𝑖) holds. Then 𝑆 is a restrained convex 
dominating set in 𝐺 + 𝐻 by Theorem 2.10(𝑖). Since 𝑉(𝐺 + 𝐻) ∖  𝑆 ≠ ∅, let 𝑧 ∈  𝑉(𝐺 + 𝐻) ∖ 𝑆.  
 
Suppose that 𝑧 ∈ 𝑉(𝐺). Then by assumption, there exists 𝑎 ∈ 𝑆 such 𝑎𝑧 ∈ 𝐸(𝐺) ⊂  𝐸(𝐺 + 𝐻) and 𝑆𝑧 = (𝑆 ∖  { 𝑎 }) ∪
 { 𝑧 } is a convex dominating set in 𝐺 (and hence in 𝐺 + 𝐻). To show that 𝑆𝑧 is a restrained dominating set, let 𝑢 ∈
 𝑉(𝐺 + 𝐻) ∖  𝑆𝑧 . If 𝑢 ∈  𝑉(𝐺), then 𝑢𝑤 ∈  𝐸(𝐺 + 𝐻) for all 𝑤 ∈  𝑉(𝐻) ∖  𝑆𝑧 ⊂  𝑉(𝐺 + 𝐻) ∖  𝑆𝑧 and 𝑢𝑥 ∈  𝐸(𝐺) ⊂
 𝐸(𝐺 + 𝐻) for some 𝑥 ∈ 𝑆𝑧 . If 𝑢 ∈  𝑉(𝐻), then 𝑢𝑦 ∈  𝐸(𝐺 + 𝐻) for all 𝑦 ∈  𝑉(𝐺) ∖  𝑆𝑧 ⊂  𝑉(𝐺 + 𝐻) ∖  𝑆𝑧 and 
𝑢𝑥 ∈  𝐸(𝐺 + 𝐻) for some 𝑥 ∈  𝑆𝑧 . Thus, for each 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆𝑧 , there exists 𝑥 ∈  𝑆𝑧  such that 𝑢𝑥 ∈  𝐸(𝐺 + 𝐻) 
and there exists 𝑡 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆𝑧 such that 𝑢𝑡 ∈  𝐸(𝐺 + 𝐻). This implies that 〈 𝑉(𝐺 + 𝐻) ∖  𝑆𝑧〉 has no isolated 
vertices. Hence 𝑆𝑧 is a restrained dominating set of 𝐺 + 𝐻, that is, 𝑆𝑧 is a restrained convex dominating set of 𝐺 + 𝐻. 
Similarly, if 𝑧 ∈  𝑉(𝐻), then 𝑆𝑧 is a restrained convex dominating set in 𝐺 + 𝐻. Accordingly, 𝑆 is a secure restrained 
convex dominating set in 𝐺 + 𝐻.   
 
Next, if statement (𝑖𝑖) of Theorem 2.11 holds, then 𝑆 is a restrained convex dominating set in 𝐺 + 𝐻 by Theorem 
2.10(𝑖𝑖). By using similar proofs when statement (𝑖) of Theorem 2.11 holds, 𝑆 is a secure restrained convex dominating 
set in 𝐺 + 𝐻. 
 
Now, suppose that statement (𝑖𝑖𝑖) of Theorem 2.11 holds. Let 𝑆𝐺 = { 𝑣 } ⊂  𝑉(𝐺) and 𝑆𝐻 = { 𝑤 } ⊂  𝑉(𝐻). Then 
𝑆 = 𝑆𝐺 ∪  𝑆𝐻 , where 𝑆𝐺  and 𝑆𝐻 are cliques in 𝐺 and 𝐻, respectively. Thus, 𝑆 is a restrained convex dominating set in 
𝐺 + 𝐻 by Theorem 2.10(𝑖𝑖𝑖). Since 𝑉(𝐺 + 𝐻) ∖  𝑆 ≠ ∅ , let 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖ 𝑆.  
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Suppose that 𝑢 ∈  𝑉(𝐺). Since 𝑆 is a secure convex dominating set in 𝐺 + 𝐻, there exists 𝑥 ∈  𝑆, say 𝑥 = 𝑤, such that 
𝑢𝑤 ∈  𝐸(𝐺 + 𝐻) and 𝑆𝑢 = (𝑆 ∖  { 𝑤 }) ∪  { 𝑢 } is a convex dominating set in 𝐺 + 𝐻 and 𝑆𝑢 = { 𝑣,𝑢 } ⊂  𝑉(𝐺). This 
implies that 𝑆𝑢 is a clique dominating set in 𝐺. Thus, 𝑆𝑢 is a restrained convex dominating set in 𝐺 by Theorem 2.10(𝑖). 
Similarly, if 𝑢 ∈  𝑉(𝐻), then 𝑆𝑢 is a restrained convex dominating set of 𝐺 + 𝐻. Accordingly 𝑆 is a secure restrained 
convex dominating set in 𝐺 + 𝐻.  
 
Suppose that statement (𝑖𝑣) of Theorem 2.11 holds. Since 𝑆 = { 𝑣 } ∪  𝑆𝐻, where { 𝑣 } and 𝑆𝐻 are cliques in 𝐺 and 𝐻 
respectively, it follows that 𝑆 is a restrained convex dominating set in 𝐺 + 𝐻 by Theorem 2.10(𝑖𝑖𝑖). Since 𝑉(𝐺 + 𝐻) ∖
 𝑆 ≠ ∅, let 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆.  
 
If 𝑢 ∈  𝑉(𝐺), then  𝑆𝑢 = (𝑆 ∖  { 𝑣 }) ∪  { 𝑢 } = 𝑆𝐻 ∪  { 𝑢 }. Since { 𝑢 } and 𝑆𝐻 are cliques in 𝐺 and 𝐻 respectively, it 
follows that 𝑆𝑢 is a restrained convex dominating set in 𝐺 + 𝐻 by Theorem 2.10(𝑖𝑖𝑖). Now, if 𝑢 ∈  𝑉(𝐻), then there 
exists 𝑤 ∈  𝑆𝐻  such that 𝑢𝑤 ∈  𝐸(𝐻) and (𝑆𝐻 ∖  { 𝑤 }) ∪  { 𝑢 } is a clique dominating set in 𝐻. This implies that 
𝑆𝑢 = (𝑆 ∖  { 𝑤 }) ∪  {𝑢 } = ({ 𝑣 } ∪  𝑆𝐻 ∖  { 𝑤 }) ∪  { 𝑢 }. Since { 𝑣 } and (𝑆𝐻 ∖ { 𝑤 }) ∪  { 𝑢 } are cliques in 𝐺 and 𝐻 
respectively, it follows that 𝑆𝑢 is a restrained convex dominating set in 𝐺 + 𝐻 by Theorem 2.10(𝑖𝑖𝑖). Accordingly, 𝑆 is 
a secure restrained dominating set of 𝐺 + 𝐻. Similarly, if statement (𝑣) of Theorem 2.11 holds, then 𝑆 is a secure 
restrained dominating set of 𝐺 + 𝐻. 
 
Finally, if statement (𝑣𝑖) of Theorem 2.11 holds, then 𝑆 is a secure restrained convex dominating set in 𝐺 + 𝐻 (using 
similar proofs). 
 
The following result is a quick consequence of Theorem 2.12. 
  
Corollary 2.13: Let 𝐺 and 𝐻 be connected non-complete graphs. Then  

 𝛾𝑠𝑟𝑐(𝐺 + 𝐻) =  � 2, 𝑖𝑓 𝛾(𝐺) = 1 = 𝛾(𝐻) 𝑜𝑟 𝛾𝑠𝑐𝑙(𝐺) = 2 𝑜𝑟 𝛾𝑠𝑐𝑙(𝐻) = 2
𝑉(𝐺 + 𝐻), 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 
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