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ABSTRACT 
In this article we have discussed the chaos synchronization of the photogravitational  magnetic-binaries problem when 
the bigger primary is a source of radiation. We have designed a nonlinear controller based on the Lyapunov stability 
theory. Simulation studies are conducted to show the effectiveness of the proposed method. 
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1   INTRODUCTION 
 
In the last several decades, much effort has been devoted to the study of nonlinear chaotic systems. Chaos control and 
synchronization are especially noteworthy and important research fields leveling to affect dynamics of chaotic systems 
in order to apply them for different kinds of applications that can be examined within many different scientific  
research.  At present, there are different kinds of control methods and techniques that have been proposed for carrying 
out chaos control and synchronization of chaotic dynamical systems. Chaotic synchronization did not attract much 
attention until Pec-ora and Carroll introduced a method to synchronize two identical chaotic systems with deferent 
initial conditions in 1990 and they demonstrated that chaotic synchronization could be achieved by driving or replacing 
one of the variables of a chaotic system with a variable of another similar chaotic device. Various techniques have been 
proposed and implemented successfully for achieving stable synchronization between identical and non-identical 
systems notable among these methods, the active control scheme proposed by E. W. Bai & K. E. Lonngren 1997 has 
been received and successfully implemented in almost all the field of nonlinear sciences for synchronization for 
different systems with various techniques.  
 
Nonlinear control is an effective method for making two different chaotic systems by synchronized. However, this 
method usually assumes that the Lyapunov function of error dynamic of synchronization is formed as 𝑉 = 1

2
 𝑒𝑡𝑒. 

 
The synchronization problem via nonlinear control scheme is studied by Chen and Han in 2003, Chen 2005, Ju H. Park 
2005, Amir Abbas Emadzadeh, and Mohammad Haeri 2005 and M. Mossa Al-sawalha, M.S.M. Noorani in 2009.  
 
The different cases of the magnetic binaries problem have been studied by A. Mavragnais (1978, …… 1988) . 
 
In 2015 Mohd Arif.  have  studied  the equilibrium points of  the photogravitational magnetic binaries  problem. 
 
In this article we have discussed the chaos synchronization of the photogravitational  magnetic-binaries problem when 
the bigger primary is a source of radiation, here we have designed a nonlinear controller based on the Lyapunov 
stability. The system under consideration is chaotic for some values of parameter involved in the system. Here two 
systems (master and slave) are synchronized and start with deferent initial conditions. Hence the slave chaotic system 
completely traces the dynamics of the master system in the course of time. 
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2   EQUATION OF MOTION 
 
In formulating the problem we shall assume that the two primaries (dipoles) in which the bigger primary is a source of 
radiation with magnetic fields move under the influence of gravitational force and a charged particle P (small body) of 
charge q and mass m moves in the vicinity of these primaries. The equation of motion and the integral of relative 
energy in the rotating coordinate system including the effect of the gravitational forces of the primaries on the small 
body written as: 

𝑥̈ − 𝑦̇ ƒ= 𝑈𝑥                                                                                                                                                        (1) 
𝑦̈ + 𝑥̇ ƒ= 𝑈𝑦                                                                                                                                                        (2) 
𝑥̇2 + 𝑦̇2 = 2U − C                                                                                                                                              (3) 

 Where  
ƒ =2 – ( 𝑞1

r1
3  +  𝜆

𝑟2
3 ) ,  𝑈𝑥 = 𝜕𝑈

𝜕𝑥
  and  𝑈𝑦 = 𝜕𝑈

𝜕𝑦
 

𝑈 =   (𝑥2 + 𝑦2 ) �1
2

+ 𝑞1
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𝑟2
3� +𝑥 �
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3 −   𝜆(1−µ)

𝑟2
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                                                                     (4) 

𝑟12= (𝑥 − µ)2+𝑦2,  𝑟22 = (𝑥 + 1 − µ)2 + 𝑦2,  𝜆 = 𝑀2
𝑀1

  (𝑀1, 𝑀2 are the magnetic moments of the primaries which lies 
perpendicular to the plane of the motion).  𝑞1 is the source of radiation of bigger primary. 
 
Here we have assumed that the distance between the primaries as the unit of distance and the coordinate of one primary 
is (µ, 0, 0) then the other is (µ−1, 0, 0). We also assumed that the sum of their masses as the unit of mass. If mass of 
the one primaries µ then the mass of the other is (1− µ). We choose the unit of time in such a way that the gravitational 
constant G has the value unity and 𝑞 = 𝑚𝑐 where 𝑐 is the velocity of light. 
 
3. CHAOS  SYNCHRONIZATION VIA NONLINEAR CONTROL 
 
Let 

𝑥 = 𝑥1,   𝑥̇ = 𝑥2,  𝑦 = 𝑥3,  𝑦̇ = 𝑥4 
 
Then the equation (1) and  (2) can be written as:  

𝑥1̇ = 𝑥2                                                                                                                                                                (5) 
𝑥2̇ = 2 𝑥4 + 𝑥1 + 𝐴1                                                                                                                                           (6) 
𝑥3̇ = 𝑥4                                                                                                                                                                (7) 
𝑥4̇ = −2 𝑥2 + 𝑥3 + 𝐴2                                                                                                                                        (8) 

Where 
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r1
5 + 𝜆 (𝑥1+1−µ)2

r2
5 � − 3𝑥32 �𝑞1(𝑥1−µ)

r1
5 + 𝜆 (𝑥1+1−µ)

r2
5 � + �𝑞1(𝑥1−µ)

r1
3 + 𝜆 (𝑥1+1−µ)

r2
3 � 

+𝑥1 �
𝑞1
r13

+
𝜆
r23
� − �

𝑞1(1 − µ)(𝑥1 − µ)
r13

−
µ(𝑥1 + 1 − µ))

r23
�−𝑥4 � 

𝑞1
r13

 +   
𝜆
𝑟23

 �, 

𝐴2 =  −3 𝑥1𝑥3 �𝑞1(𝑥1−µ)
r1
5 + 𝜆 (𝑥1+1−µ)

r2
5 � − 3𝑥33 �𝑞1

r1
5 + 𝜆 

r2
5�+𝑥4( 𝑞1

r1
3  +   𝜆

𝑟2
3 )  + 2 𝑥3 �

𝑞1
r1
3 + 𝜆

r2
3� − 𝑥3 �

𝑞1(1−µ)
r1
3 − µ

r2
3�, 

𝑟12= (𝑥1 − µ)2 + 𝑥32,   𝑟22 = (𝑥1 + 1 − µ)2 + 𝑥32, 
 
Corresponding to master system (5, 6, 7 and 8), the identical slave system are: 

𝑦1̇ = 𝑦2 + 𝑢1(𝑡)                                                                                                                                                  (9) 
𝑦2̇ = 2 𝑦4 + 𝑦1 + 𝐴3 + 𝑢2(𝑡)                                                                                                                           (10) 
𝑦3̇ = 𝑦4 +𝑢3(𝑡)                                                                                                                                                 (11) 
𝑦4̇ = −2 𝑦2 + 𝑦3 + 𝐴4 + 𝑢4(𝑡)                                                                                                                        (12) 

Where 
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𝑟12= (𝑦1 − µ)2+ 𝑦32,   𝑟22 = (𝑦1 + 1 − µ)2 + 𝑦32, 
 
where 𝑢𝑖(𝑡); 𝑖 =1 ,2,3,4 are control functions to be determined. Let 𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖 ; i = 1, 2, 3, 4 be the synchronization 
errors. From (5) to (12), we obtain the error dynamics as follows: 

𝑒1̇ = 𝑒2 + 𝑢1(𝑡)                                                                                                                                                (13) 
𝑒2̇ = 2𝑒4 + 𝑒1 + 𝐴3 − 𝐴1 + 𝑢2(𝑡)                                                                                                                    (14) 
𝑒3̇ = 𝑒4 + 𝑢3(𝑡)                                                                                                                                                (15) 
𝑒4̇ = −2𝑒2 + 𝑒3 + 𝐴4 − 𝐴2 + 𝑢4(𝑡)                                                                                                                (16) 

 



Mohd. Arif* / Chaos Syncronization of The Photogravitational Magnetic Binaries Problem Via Nonlinea… / IJMA- 8(7), July-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                         21  

 
According to the Lyapunov stability theory, when controller satisfies the assumption with 𝑉(𝑒) = 1

2
 𝑒𝑡𝑒  a positive 

definite function and the first derivative of this function 𝑉̇ < 0 the chaos synchronization of two identical systems 
(master and slave) for different initial conditions is achived.  
 
Let a positive definite Lyapunov function 

𝑉(𝑒) = 1
2

 𝑒𝑡𝑒  
 
Then we have the first derivative of  𝑉(𝑒): 

𝑉̇ = 𝑒1[𝑒2 + 𝑢1(𝑡)] + 𝑒2[2𝑒4 + 𝑒1 + 𝐴3 − 𝐴1 + 𝑢2(𝑡)] + 𝑒3[𝑒4 + 𝑢3(𝑡)] + 𝑒4[−2𝑒2 + 𝑒3 + 𝐴4 − 𝐴2 + 𝑢4(𝑡)]                                                                                                                                    
                                                                                                                                                                                                     (17) 

Therefore, if we choose the controller 𝑢 as follows, 
𝑢1 = −2𝑒2 − 𝑒1                                                                                                                                                (18) 
𝑢2 = −𝑒2 − 𝐴3 + 𝐴1                                                                                                                                         (19) 
𝑢3 = −𝑒3 − 2𝑒4                                                                                                                                                (20) 
𝑢4 = −𝐴4 + 𝐴2 − 𝑒4                                                                                                                                        (21) 

Then 
𝑉̇ = −𝑒12 − 𝑒22 − 𝑒32 − 𝑒42 < 0                                                                                                                    (22) 

 
Hence the error state  

lim
𝑡→∞

‖𝑒(𝑡)‖ = 0 
which gives asymptotic stability of the system. This means that the controlled chaotic systems (5, 6, 7, 8) and (9, 10, 
11, 12) is synchronized for any initial conditions. 
 
4. NUMERICAL SIMULATION  
 
We select the parameters 𝜇 = .0001 𝑞1 = 1.5 and 𝜆 = 1, the state orbits of the chaotic system  are shown in Figure 1, 
with the different initial conditions [𝑥1(0) = 0.0,𝑥2(0) = 12.0, 𝑥3(0) = 1.0, 𝑥4(0) = 4.0] for master systems and  
[𝑦1(0) = 10.0,𝑦2(0) = 2.0, 𝑦3(0) = 4.0, 𝑦4(0) = 0.0]  for slave systems Simulation results for uncoupled system are 
presented in figures.2,4,6,8 and that of controlled system are shown in figures.3,5,7 and 9  respectively.  Figures        
(10, 11, 12, 13)  display the chaos-synchronization errors of systems. 
  
It can be seen from the figures that the chaos-synchronization errors converge to zero rapidly. 

 
Figure-1 

    
                              Figure-2                                                                       Figure-3   
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,     
                        Figure-4                                                                         Figure-5   
 

         
,                        Figure-6                                                                          Figure-7   
 

          
                             Figure-8                                                                        Figure-9   
 

      
             Figure-10                                                                       Figure-11   
   

     
                               Figure-12                                                                       Figure-13 
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5. CONCLUSION 
 
An investigation on chaos synchronization in the photogravitational magnetic-binaries problem when the bigger 
primary is a source of radiation including the effect of the gravitational forces of the primaries on the small body, via 
nonlinear controller based on the Lyapunov stability theory have been made. Here two systems (master and slave) are 
synchronized and start with deferent initial conditions. This problem may be treated as the design of control laws for 
chaotic slave system using the known information of the master system so as to ensure that the controlled receiver 
synchronizes with master system. Hence the slave chaotic system completely traces the dynamics of the master system 
in the course of time. The results were validated by numerical simulations using Mathematica. 
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