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ABSTRACT

By applying the concept of fractional ( -calculus, we investigate coefficient bounds and convolution
multivalent functions with coefficients of alternating type
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1. INTRODUCTION

Let Ap denote the class of functions of the form

f(z2)=zP+ > az"

k=p+1
which are analytic in the open unitdisc E ={z:|z|<1}.

For —1<A<B<], let P ( A B) [3] denote the class of functions which are of the form
1+ Aw(z)
p(z2)=—1—
1+ Bw(z)
where @ is a bounded analytic function satisfying the conditions @(0) =0 and|@(z) |<1.

We consider another subclass M b which consists of functions of the form

f(z)=z" +Zk:p+l(—1)k”ak+lzk”, a,.,>0.

The Q -shifted factorial is defined for &, € C asa product of n factors by

) 1, n=_0;
((Z, q)n - {(1_a)(l_aq)...(l_aqn_l), ne N

and in terms of the basic analogue of the gamma function
[ (x+n)(1-q)"
a9’ o
I (@)
where the (-gamma functions [1, 2] is defined by

(a*;09), =

rq (X) — (q;q)wx(l_q)l—x (0 <q <1)
(@*;a),

(1.1)

(1.2)

(1.3)

(1.4)
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Note that, if | (|<1, the Q-shifted factorial (1.2) remains meaningful for N = oo as a convergent infinite product

(), = [ [A-ea™.

m=0

Now recall the following ( -analogue definitions given by Gasper and Rahman [1]. The recurrence relation for Q
-gamma function is given by

T, (x+1) = [X],T, (x), where[x], —(( _qq)) (L5)

and called (] -analogue of X.

Jackson’s (] -derivative and ( -integral of a function f defined on a subset of C are, respectively, given by (see
Gasper and Rahman  [1])

D,1() =P (220020) @6

[RIGENOE z(1—q)m2:0qm f(zq"). @
In view of the relation

i gyt = &

we observe that the Q -shifted fractional (1.1) reduces to the familiar Pochhammer symbol (), , where

(@), =a(a+1)---(a¢+n+1).

Consider the following definitions.

S:(A.B) ={f (fen and @) oy B)}

f(2)
H,(AB)={f|fcA and Dy (2D, (T(2)) 5 gy

D,(f(2))
M;(A,B):{ﬂfemp and MEP(A,B)}

(2)

C,(AB)=f|feM, and D, (2D,(T(2)) 50 gyl

D,(f(2))

Note that these classes generalize the classes of Padamanabhan and Ganeshan [5], Silverman [6], Khairnar and Meena
More [4].

If f(z)=2z" +zk p+1( 1)“"a,,,z“" and g(z)=1z" +zk p+1( 1)**'b, ,,z***, then their modified hadamard
product is defined by
- _ N k K
h(z)= f(2)*g(2) = 2"+ 3 (-1)"a.b,. .2
k=p+1

In this paper we discuss some properties of convolution for the class M ;(A, B) and C,(A, B).

2. MAIN RESULTS

Lemma2.1 Afunction f(z)=1z" +Z (-1)*a, .2, a,,, >0 isin M_(A,B) ifand only if

k=p+1

Z‘O: [k +1],(B+1)-(A+1) N
(A+1)-(B+1)[p],

(2.1)
k=p+1
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Proof: Consider

f(z)=2"+ > (-1)a,z*"

k=p+1

p N gk kel
2D,  (2) _ [p] 2" + Z( 1) a, [k +1],2

k=p+1
f(Z) Zp + Z (_1)k+lak+1zk+l
k=p+1
zD,f (2) ) )
Now ——~ e P(A,B) ifand only if
f(2)
z° + 3 -1)**a, [k +1],z""*
[p]q kzzm—l( ) k+1[ ]q _ 1+ Aa)(z)
7P 4 Z (_1)k+1ak+1zk+1 1+ Ba)(Z)
k=p+1
W(Z){(B[ pl,— Az + D (1) (Blk +1], - A)amzk”} =(1-[pl))z" + D (-1)**(1-[k+1] a2
k=p+1 k=p+1

by using the condition | @(z) <1, we get

A-[pl)2"+ 3 (-1)*(1-[k+1],)a, ,2°"

k=p+1

‘(B[ID]GI - Az’ + i (-D)**(Blk +1], - A)a,,,2""

k=p+1

<1.

Allowing |z|=r —>1

A-[pl)+ Y (@-[k+1],)a,,

k=p+1 Sl

(BIPL, - A+ 3 (BIK +1], - A)a,

k=p+1

i [1-(B+1[k+1], + Ala,, < (B+1)[p], - (A+1)

k=p+1

< [[[k+1],(B+1)— (A+1)] o <1
(A+1)-(B+1)[p],

k=p+1

and the result follows.

As a consequence we have the following result.

0

Lemma 2.2: A function f(z)=1z"+ Z -1)“*a_,z", a,,>0 isin C,(A,B) ifandonly if

> [k+1] {[k+1],(B+1)-(A+1)}
Z : : a‘k+1 <
[Pl {(A+1)-(B+1)[p],}

(2.2)

k=p+1
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Theorem 2.3: If f(z)=12" +z

are elements of classes M (A B) thenh(z) = f(z)*g(z) = z +Zk N
M. (A.B) with ~1<A <B <1 where A>-1 B <AT1"S

Proof: Since f,g e M;(A, B), by Lemma 2.1 we have,
i [[k +1],(B+1)-(A+1)] 8 <1
| (A+1)-(B+1)[p],

i [k +1],(B+1)— (A+1)] b <1,
(A+1)—-(B+1)[p],

k=p+1

Weneed A, B, suchthat —1< A <B; <1 and

h(z) = f(2)*9(2) e M, (A, B,).

Now h(z) e M;(Al,Bl) if
i [[k +1],(B, +1) - (A +1)] 8, b, <1.
(A +1)- (B, +1)[pl,

ie Zm Uay,,0,,; <1, where u —[[k+1]q(Bl+1)_(A1+1)]
- kepud T - (A+1)-(B,+1)[pl,

k=p+1

Using Cauchy-Schwarz inequality we have,

1 1
® 2
Z v ua'k+1 k+l — { z uak+l} { z ubk-¢—1} Sl'
k=p+1 k=p+1 k=p+1

[k +1],(B+1) - (A+1)]
(A+1)-(B+1)[p],
(2.3) is true if

ulak-+—1bk+1 su \V ak+1bk-¢—l
using (2.3) we have,

ulmﬁl for k=23

Therefore it is enough to find U, such that

1.y

u u

[k +10, (B +1) (A +1] _
(A+1)-(B,+1)[pl,

A12_1+(Bl+1)([k-|;1]q+[p]qu )

u+1

where U=

Consider B, =1 and k =2 to obtain,

© 2017, IIMA. All Rights Reserved

k+l k+l _ ® k+1 K+l
k= ps LD a2 and g(z) = z° +Zk:p+1(_1) Bz ab, 20

(-1)*"a, b, .,z is an element of

(2.3)
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2([3], +[pl,u?)
u?+1

,[31,(A+D) - (B+1)0p1, f +1p1, (31, (B+D - (A+D)f |
(A+1)-(B+D)[p], f +([8],(B+1) - (A+1)f

A>-1+

=-1+2s
o= [3L((A+ D)~ (B L), F+ o1, (31,8 + )~ (A1) |

where
(A+1)-(B+D)[p], f +([31,(B+1) - (A+1)f

Theorem 2.4: If f(2) e M;(A, B) and g(z) e M;(A’, B") then f(2)*g(z) e M;(Al, B,) where

A =>-1,B, <£’ with

_[81,((A+1)- (B+1)[p] XA +1) - (B"+1)[p], )+ [, ([31, (B +1) - (A+1)\[3], (B' +1) — (A" +1))
(A+1)-(B+1)[p], N(A +1) - (B’ +1)[p]) [31,(B+1) - (A+D))[3],(B'+1) - (A'+1))

Proof: Analogously proceeding as developed in Theorem 2.3, we require

{[[k+1]q(81+1)—(A1+1)]}< {[[k+1]q(B+1)—(A+1)]H[[k+1]q<B'+1>—<A'+1)] _

(A +1)- (B, +D)[pl, (A+1)-(B+DIp], (A'+1) - (B'+1[p],

Bl+1< o+1

A +1 [k+1] +5[p]

A+l [k+], +4lpl,

B, +1 o+1

A1+1>

B, +1

[k +1],((A+2)~ (B+1)[p], k(A +2) - (B'+1)[ p], )+ [P, [k +11, (B +2) —(A+ D) [k +1], (B +1) — (A'+1))
(A+1)-(B+1)[p], (A +1)- B+1)[p]) [k+1],(B+1)—(A+D)Jlk +1],(B'+1) - (A'+1))

A1+1>

B, +1

[31,((A+1) - (B+1)[p], K(A +1) — (B"+1)[p], )+ [P1, (3], (B +1) - (A+D)J[3], (B'+ 1) - (K +1)) _

((A+1)— (B+1)[p], N(A' +1) - (B’ +1)[p], )+ ([3], (B +1) — (A+1) \[3], (B’ +1) — (A'+1))

ie.,

Taking k =2, we get

A1+1
B, +1

1—
B <A X, But B, >2-1, weget A >-1.
X

>

Theorem 2.5: If f(z)eC, (A B) and g(z) eC,(A",B’) then f(z2)*g(z)eC,(A,B,) where A >-1,

+1-y

B, < A with

SLo] [3], (A+1) - (B+1)[p], )((A'+1)~ (B"+1)[p], )
U R, (131, (B +1) — (A+D))([3], (B +1) —(A'+1)

) ((A+1)=(B+1)[p], )((A"+1) - (B'+1)[p], )+ [k +1], ([3],(B +1) — (A+1))([3],(B'+1) — (A’ +1))
29
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Proof: The proof of the theorem follows the patteren of that in Theorem 2.4
A+1 S
B +1
(31, P1, 131, ((A+2) - (B+1)[pl, I(A +2) - (B'+ 1) P, )+ [P, (31, (B+1) - (A+D) 31, (B'+ 1) - (A'+1))] _
[p], ((A+1)-(B+D)[p], (A" +1)~ (B'+1)[p], )+[k+1] (131, (B +1) - (A+1) (31, (B' +1) - (A’ +1))
7, —Bp
B, +1
B, < Atlzy
y (2.4)
B, > -1, using (2.4) we get A =-1.

>y

Theorem 2.6: If f(z) =12 +Z -1)“'a,z*"a,,>0eM (A B) and

k=p+1

g(z)=1z +Zk:p+1(_1)k+lbk+l 1 with |b,,, [<1 for k>2 then f(Z)*g(Z)eS;(A, B).

Proof: Since f € M;(A, B) we have,

i [k +1],(B+1)— (A+1)] o b < i [k +1],(B+1)— (A+1)] o Ib . [<1.
(A+1)-(B+1)[p] (A+1)-(B+1)[p]

k=p+1 k=p+1

This shows that

f@)*9()=2°+ Y (-1)*a,.b,,2"" S (AB)

k=p+1

The proof of Theorem 2.7 below follows the patteren of that in Theorem 2.6.

Theorem2.7: If f(z)=2z"+ Z::;p+l(—1)k+1<’ik+1zk+1 ,8,,,20eC,(A B) and

9(z)=2" +Z:’zpﬂ(—l)k”bmzk+l with by, |<1 for k>2 then f(z)*g(z) e H,(A B).

Theorem2.8: If f,geM (A B) then h(z)=z"+ Z (-1)“*"@2,+b%,)z"" e M*(Ai, B, p,a)

where A > 1,8, < AF17S i s = 2131, (A+1) = (B +1)(p], f +[p], ([3],(B+1) - (A+1))2l
: (A1) (B + D01, ] + 31, (B +1) (A= D)

Proof: Since f(z),9(2) € M;(A, B) we have,
Z“’: [[kJrl]q(B+1)—(A+1)]ak+l <1
ra| (A+1)—(B+1)[p],

. {[[k+1]q(B+1)—(A+1)]}bk+1Sll

(A+1)-(B+1)[p],
We see that

i [[k+1]q(B+1)—(A+1)]}2ak2+lS - [[k+1]q(B+1)—(A+1)]ak+l 251.
| (A+1)=(B+1)[p], o (A+1)=(B+1)[p],

{w [lk-+11,(B+D) - (A+D)] }:
G (A+D)-(B+DIpl, Y| (2.6)
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Adding (2.5) and (2.6) we get

= [lk+1,B+) - (A1,
Z{ (A+1)—(B+l)[p]q }(ak+1+bk+1)S2.

k=il 2.7)

Now f(z),9(z)e M;(Ai, B, p,a)
i [[k +1],(B, +1)— (A +1)]
(A +1)-(B,+1)[p],

}(akzﬂ + bk2+1) < 1

k=p+1

(2.7) implies that it is enough show that
[[k +1]q(Bl+1)—(A1 +1)] <£{[[k +1]q(|3 +1)—(A+1)]}2 :ﬁ
(A+D)-(B,+Dlpl, 2| (A+D)-(B+D)p], 2
k(B,+1) _ u®+2
A+1  2[k+1], +[p],u’°

A+l 2[k+1], +[p],u®
k(B,+1) u?+2

= p(K).

Notice that (k) decreases as Kk increases and replacing k by 2 and simplifying we obtain,

o cAr-s o 2031((A+D) - (B+D)Ip], f +[pl,([31,(B+1) - (A+ D)

, S———,with §= .
2(A+1)-(B+1)[p], f +([31,(B+1) - (A+1)f

712_p1
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