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ABSTRACT 
Given a graph 𝐺 with vertex set 𝑉(𝐺), edge set 𝐸(𝐺) and block set 𝑈(𝐺), let 𝐺 be the complement, 𝐿(𝐺) the line 
graph and 𝐵(𝐺) the block graph of 𝐺. Let 𝐺0 be the graph with 𝑉(𝐺0) = 𝑉(𝐺) and with no edges, 𝐺1 the complete 
graph with 𝑉(𝐺1) = 𝑉(𝐺), 𝐺+ = 𝐺, and 𝐺− = 𝐺. Let 𝑏𝑞(𝐺) (𝑏𝑞(𝐺)) be the graph whose vertices can be put in one 
to one correspondence with the set of edges and blocks of G in such a way that two vertices of 𝑏𝑞(𝐺) (𝑟𝑒𝑠𝑝., 𝑏𝑞(𝐺)) 
are adjacent if and only if one corresponds to a block 𝐵 of 𝐺 and the other to an edge 𝑒 of 𝐺 and 𝑒 is in (resp., is not 
in) 𝐵. Given 𝑎, 𝑏, 𝑐 ∈ {0,1, +,−}, the abc - block edge transformation graph 𝑄𝑎𝑏𝑐(𝐺) of 𝐺 is the graph with vertex set 
𝑉(𝑄𝑎𝑏𝑐(𝐺)) = 𝐸(𝐺) ∪ 𝑈(𝐺) and the edge set 𝐸(𝑄𝑎𝑏𝑐(𝐺)) = 𝐸((𝐿(𝐺))𝑎) ∪ 𝐸((𝐵(𝐺))𝑏) ∪ 𝐸(𝐻) where 𝐻 = 𝑏𝑞(𝐺) 
if 𝑐 = +, 𝐻 = 𝑏𝑞(𝐺) if 𝑐 = −, 𝐻 is the graph with 𝑉(𝐻) = 𝐸(𝐺) ∪ 𝑈(𝐺) and with no edges if 𝑐 = 0, 𝐻  is the 
complete bipartite graph with parts 𝐸(𝐺) and 𝑈(𝐺) if 𝑐 = 1. In this paper, we investigate some basic properties such 
as order, size, vertex degree and connectedness of the these generalized abc - block edge transformation graphs 
𝑄𝑎𝑏𝑐(𝐺).  
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1. INTRODUCTION 
 
All the graphs considered here are finite, undirected without loops or multiple edges. We refer to [3] or [4] for 
unexplained terminology and notation. A block of a graph is a maximal nonseparable subgraph. Let 𝐺 = (𝑉,𝐸) be a 
graph with block set 𝑈(𝐺)={𝐵𝑖 ; 𝐵𝑖  is a block of 𝐺}, |𝑉(𝐺)| = 𝑛, |𝐸(𝐺)| = 𝑚 and |𝑈(𝐺)| = 𝑟. The degree of a vertex 
𝑣𝑖 in 𝐺 is the number of edges incident to 𝑣𝑖 and is denoted by 𝑑𝑖 = 𝑑𝑒𝑔(𝑣𝑖). As usual, 𝐾𝑛 be the complete graph of 
order 𝑛, 𝐾𝑝,𝑞 the complete bipartite graph, 𝑆𝑝,𝑞  the double star and 𝑑𝐺(𝑣) the degree of a vertex 𝑣 in 𝐺. If a block 
𝐵 ∈ 𝑈(𝐺) with the edge set {𝑒1, 𝑒2, . . . , 𝑒𝑠; 𝑠 ≥ 1}, then we say that the edge 𝑒𝑖 and block 𝐵 are incident with each 
other, where 1 ≤ 𝑖 ≤ 𝑠. If two distinct blocks are incident with a common cutvertex, then they are adjacent blocks. The 
degree of a block 𝐵 in 𝐺, denoted by 𝑑𝐺(𝐵), is the number of blocks adjacent to 𝐵 in 𝐺. We denote the number of 
edges incident with 𝐵 in 𝐺 by 𝐷𝐺(𝐵). The line graph 𝐿(𝐺) of a graph 𝐺 is the graph with vertex set as the edge set of 
𝐺  and two vertices of 𝐿(𝐺) are adjacent whenever the corresponding edges in 𝐺  have a vertex in common. The 
complement of line graph is a jump graph [2]. Let 𝑏𝑞(𝐺) (𝑏𝑞(𝐺)) be the graph whose vertices can be put in one to one 
correspondence with the set of edges and blocks of G in such a way that two vertices of 𝑏𝑞(𝐺) (𝑟𝑒𝑠𝑝., 𝑏𝑞(𝐺)) are 
adjacent if and only if one corresponds to a block 𝐵 of 𝐺 and the other to an edge 𝑒 of 𝐺 and 𝑒 is in (resp., is not in) 
𝐵. 

 
2. GENERALIZED abc - BLOCK EDGE TRANSFORMATION GRAPHS 
 
Inspired by the definition of total transformation graphs [5] and block-transformation graphs [1], we introduce the graph 
valued functions namely generalized 𝑎𝑏𝑐 - block edge transformation graphs. 
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For a graph 𝐺 = (𝑉,𝐸), let 𝐺0 be the graph with 𝑉(𝐺0) = 𝑉(𝐺) and with no edges, 𝐺1  the complete graph with 
𝑉(𝐺1) = 𝑉(𝐺), 𝐺+ = 𝐺, and 𝐺− = 𝐺. 
 
In this paper, we consider some graph valued functions 𝑄𝑎𝑏𝑐 :𝒢 → 𝒢  from set of graphs 𝒢  into 𝒢 , depending on 
parameters 𝑎, 𝑏, 𝑐 ∈ {0,1, +,−} and call 𝑄𝑎𝑏𝑐(𝐺) the generalized 𝑎𝑏𝑐 - block edge transformation graph of 𝐺. 
 
Definition: Given a graph 𝐺 with edge set 𝐸(𝐺) and block set 𝑈(𝐺) and three variables 𝑎, 𝑏, 𝑐 ∈ {0,1, +,−}, the 
generalized abc - block edge transformation graph 𝑄𝑎𝑏𝑐(𝐺) of 𝐺 is the graph with vertex set 𝑉(𝑄𝑎𝑏𝑐(𝐺)) = 𝐸(𝐺) ∪
𝑈(𝐺) and the edge set 𝐸(𝑄𝑎𝑏𝑐(𝐺)) = 𝐸((𝐿(𝐺))𝑎) ∪ 𝐸((𝐵(𝐺))𝑏) ∪ 𝐸(𝐻) where   

(i) 𝐻 = 𝑏𝑞(𝐺) if 𝑐 = +.  
(ii) 𝐻 = 𝑏𝑞(𝐺) if 𝑐 = −.  
(iii) 𝐻 is the graph with 𝑉(𝐻) = 𝐸(𝐺) ∪ 𝑈(𝐺) and with no edges if 𝑐 = 0.  
(iv) 𝐻 is the complete bipartite graph with parts 𝐸(𝐺) and 𝑈(𝐺) if 𝑐 = 1.  

 
Thus we obtain 64 abc - block edge transformation graphs 𝑄𝑎𝑏𝑐(𝐺). Here note that 𝑄00+(𝐺) = 𝑏𝑞(𝐺) and 𝑄00−(𝐺) =
𝑏𝑞(𝐺). 
 

 
Figure-1: Graph G.  

 
  

 
Figure-2: abc - block edge transformation graphs when 𝑐 = 0.  
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Figure-3: abc - block edge transformation graphs when 𝑐 = 1.  

 
  

 
Figure-4: abc - block edge transformation graphs when 𝑐 = +.  
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Figure-5: abc - block edge transformation graphs when 𝑐 = −.  

  
A graph 𝐺 and all its 64 abc - block edge transformation graphs are shown in Figures 1-5. The vertex 𝑒𝑖′ of 𝑄𝑎𝑏𝑐(𝐺) 
corresponding to edge 𝑒𝑖 of 𝐺 and is refereed as edge-vertex. The vertex 𝐵𝑖′ of 𝑄𝑎𝑏𝑐(𝐺) corresponding to block 𝐵𝑖  of 
G and is refereed as block-vertex. In Figure 2 to 5, the edge-vertices are denoted by circles and block-vertices are by 
squares. 
 
The following remarks will be useful in the proof of our results. 
 
Remark 2.1: 

(i) 𝐿(𝐺) is an induced subgraph of 𝑄+𝑏𝑐(𝐺). 
(ii) 𝐿(𝐺) is an induced subgraph of 𝑄−𝑏𝑐(𝐺). 
(iii) 𝐾𝑚 is an induced subgraph of 𝑄1𝑏𝑐(𝐺).  

 
Remark 2.2: 

(i) 𝐵(𝐺) is an induced subgraph of 𝑄𝑎+𝑐(𝐺). 
(ii) 𝐵(𝐺) is an induced subgraph of 𝑄𝑎−𝑐(𝐺). 
(iii) 𝐾𝑟  is an induced subgraph of 𝑄𝑎1𝑐(𝐺).  

 
Remark 2.3: 

(i) 𝑏𝑞(𝐺) is a spanning subgraph of 𝑄𝑎𝑏+(𝐺). 
(ii) 𝑏𝑞(𝐺) is a spanning subgraph of 𝑄𝑎𝑏−(𝐺). 
(iii) 𝐾𝑚,𝑟 is a spanning subgraph of 𝑄𝑎𝑏1(𝐺).  

 
Theorem 2.1 [6]: Let 𝐺 be a graph of size 𝑞 ≥ 1. Then 𝐿(𝐺) is connected if and only if 𝐺 contains no edge that is 
adjacent to every other edge of 𝐺 unless 𝐺 = 𝐾4 or 𝐶4. 

 
Since abc - block edge transformation graphs 𝑄𝑎𝑏𝑐(𝐺) are defined on the edge set and block set of a graph 𝐺. Isolated 
vertices of 𝐺 (if 𝐺 has) play no rule in 𝑄𝑎𝑏𝑐(𝐺), we assume that the graph 𝐺 under consideration is nonempty and has 
no isolated vertices. In this paper, we investigate some basic properties such as order, size, vertex degree and 
connectedness of the these generalized abc - block edge transformation graphs 𝑄𝑎𝑏𝑐(𝐺). 
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3. ORDER, SIZE AND VERTEX DEGREE OF 𝑸𝒂𝒃𝒄(𝑮) 
 
It is shown in [3] that let 𝑏𝐺(𝑣) be the number of blocks to which vertex 𝑣 belongs in a connected graph 𝐺. Then the 
number of blocks of 𝐺 is given by 𝑟 = 𝑏(𝐺) = 1 − 𝑛 + ∑  𝑣∈𝑉(𝐺) 𝑏𝐺(𝑣). 

 
Theorem 3.1: Let 𝐺 be an (𝑛,𝑚) connected graph with 𝑟 blocks and let 𝑏𝐺(𝑣) be the number of blocks to which 
vertex 𝑣 belongs in 𝐺. Then   
(i) The order of 𝑄𝑎𝑏𝑐(𝐺) = 𝑚 + 𝑟.  

(ii) The size of 𝑄𝑎𝑏𝑐(𝐺)= 

⎩
⎪
⎨

⎪
⎧|𝐸((𝐿(𝐺))𝑎)| + |𝐸((𝐵(𝐺))𝑏)| 𝑖𝑓  𝑐 = 0.

|𝐸((𝐿(𝐺))𝑎)| + |𝐸((𝐵(𝐺))𝑏)| + 𝑚𝑟 𝑖𝑓  𝑐 = 1.
|𝐸((𝐿(𝐺))𝑎)| + |𝐸((𝐵(𝐺))𝑏)| + 𝑚 𝑖𝑓  𝑐 = +.
|𝐸((𝐿(𝐺))𝑎)| + |𝐸((𝐵(𝐺))𝑏)| + 𝑚𝑟 −𝑚 𝑖𝑓  𝑐 = −.

� 

where  

 𝐸((𝐿(𝐺))𝑎)= 

⎩
⎪
⎨

⎪
⎧

0 𝑖𝑓  𝑎 = 0.
𝑚(𝑚−1)

2
𝑖𝑓  𝑎 = 1.

−𝑚 + 1
2
∑  𝑣∈𝑉(𝐺) 𝑑𝐺2(𝑣) 𝑖𝑓  𝑎 = +.

𝑚(𝑚+1)
2

− 1
2
∑  𝑣∈𝑉(𝐺) 𝑑𝐺2(𝑣) 𝑖𝑓  𝑎 = −.

� 

and 

𝐸((𝐵(𝐺))𝑏)= 

⎩
⎪
⎨

⎪
⎧

0 𝑖𝑓  𝑏 = 0.
𝑟(𝑟−1)

2
𝑖𝑓  𝑏 = 1.

∑  𝑣∈𝑉(𝐺)
𝑏𝐺(𝑣)(𝑏𝐺(𝑣)−1)

2
𝑖𝑓  𝑏 = +.

𝑟(𝑟−1)
2

− ∑  𝑣∈𝑉(𝐺)
𝑏𝐺(𝑣)(𝑏𝐺(𝑣)−1)

2
𝑖𝑓  𝑏 = −.

�  

 
Theorem 3.2: Let 𝐺  be an (𝑛,𝑚)-graph with 𝑟  blocks. Then the degree of edge-vertex 𝑒′  (𝑒 = 𝑢𝑣  in 𝐺)  and 
block-vertex 𝐵′ in 𝑄𝑎𝑏𝑐(𝐺) when 𝑐 = 0 are   

(i) 𝑑𝑄𝑎𝑏0(𝐺)(𝑒′) =�

0 𝑖𝑓  𝑎 = 0  &  𝑏 ∈ {0,1, +,−}.
𝑚 − 1 𝑖𝑓  𝑎 = 1  &  𝑏 ∈ {0,1, +,−}.
𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2 𝑖𝑓  𝑎 = +  &  𝑏 ∈ {0,1, +,−}.
𝑚 + 1 − 𝑑𝐺(𝑢) − 𝑑𝐺(𝑣) 𝑖𝑓  𝑎 = −  &  𝑏 ∈ {0,1, +,−}.

� 

 

(ii) 𝑑𝑄𝑎𝑏0(𝐺)(𝐵′) =�

0 𝑖𝑓  𝑏 = 0  &  𝑎 ∈ {0,1, +,−}.
𝑟 − 1 𝑖𝑓  𝑏 = 1  &  𝑎 ∈ {0,1, +,−}.
𝑑𝐺(𝐵) 𝑖𝑓  𝑏 = +  &  𝑎 ∈ {0,1, +,−}.
𝑟 − 1 − 𝑑𝐺(𝐵) 𝑖𝑓  𝑏 = −  &  𝑎 ∈ {0,1, +,−}.

�  

  
Theorem 3.3: Let 𝐺  be an (𝑛,𝑚)-graph with 𝑟  blocks. Then the degree of edge-vertex 𝑒′  (𝑒 = 𝑢𝑣  in 𝐺)  and 
block-vertex 𝐵′ in 𝑄𝑎𝑏𝑐(𝐺) when 𝑐 = 1 are   

(i) 𝑑𝑄𝑎𝑏1(𝐺)(𝑒′) =�

𝑟 𝑖𝑓  𝑎 = 0  &  𝑏 ∈ {0,1, +,−}.
𝑟 + 𝑚 − 1 𝑖𝑓  𝑎 = 1  &  𝑏 ∈ {0,1, +,−}.
𝑟 + 𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2 𝑖𝑓  𝑎 = +  &  𝑏 ∈ {0,1, +,−}.
𝑟 + 𝑚 + 1 − 𝑑𝐺(𝑢) − 𝑑𝐺(𝑣) 𝑖𝑓  𝑎 = −  &  𝑏 ∈ {0,1, +,−}.

� 

 

(ii) 𝑑𝑄𝑎𝑏1(𝐺)(𝐵′) =�

𝑚 𝑖𝑓  𝑏 = 0  &  𝑎 ∈ {0,1, +,−}.
𝑚 + 𝑟 − 1 𝑖𝑓  𝑏 = 1  &  𝑎 ∈ {0,1, +,−}.
𝑚 + 𝑑𝐺(𝐵) 𝑖𝑓  𝑏 = +  &  𝑎 ∈ {0,1, +,−}.
𝑚 + 𝑟 − 1 − 𝑑𝐺(𝐵) 𝑖𝑓  𝑏 = −  &  𝑎 ∈ {0,1, +,−}.

�  

  
Theorem 3.4: Let 𝐺  be an (𝑛,𝑚)-graph with 𝑟  blocks. Then the degree of edge-vertex 𝑒′  (𝑒 = 𝑢𝑣  in 𝐺)  and 
block-vertex 𝐵′ in 𝑄𝑎𝑏𝑐(𝐺) when 𝑐 = + are   

(i) 𝑑𝑄𝑎𝑏+(𝐺)(𝑒′) =�

1 𝑖𝑓  𝑎 = 0  &  𝑏 ∈ {0,1, +,−}.
𝑚 𝑖𝑓  𝑎 = 1  &  𝑏 ∈ {0,1, +,−}.
𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 1 𝑖𝑓  𝑎 = +  &  𝑏 ∈ {0,1, +,−}.
𝑚 + 2 − 𝑑𝐺(𝑢) − 𝑑𝐺(𝑣) 𝑖𝑓  𝑎 = −  &  𝑏 ∈ {0,1, +,−}.

� 
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(ii) 𝑑𝑄𝑎𝑏+(𝐺)(𝐵′) =�

𝐷𝐺(𝐵) 𝑖𝑓  𝑏 = 0  &  𝑎 ∈ {0,1, +,−}.
𝐷𝐺(𝐵) + 𝑟 − 1 𝑖𝑓  𝑏 = 1  &  𝑎 ∈ {0,1, +,−}.
𝐷𝐺(𝐵) + 𝑑𝐺(𝐵) 𝑖𝑓  𝑏 = +  &  𝑎 ∈ {0,1, +,−}.
𝐷𝐺(𝐵) + 𝑟 − 1 − 𝑑𝐺(𝐵) 𝑖𝑓  𝑏 = −  &  𝑎 ∈ {0,1, +,−}.

�  

  
Theorem 3.5: Let 𝐺  be an (𝑛,𝑚)-graph with 𝑟  blocks. Then the degree of edge-vertex 𝑒′  (𝑒 = 𝑢𝑣  in 𝐺)  and 
block-vertex 𝐵′ in 𝑄𝑎𝑏𝑐(𝐺) when 𝑐 = − are   

(i) 𝑑𝑄𝑎𝑏−(𝐺)(𝑒′) =�

𝑟 − 1 𝑖𝑓  𝑎 = 0  &  𝑏 ∈ {0,1, +,−}.
𝑚 + 𝑟 − 2 𝑖𝑓  𝑎 = 1  &  𝑏 ∈ {0,1, +,−}.
𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 𝑟 − 3 𝑖𝑓  𝑎 = +  &  𝑏 ∈ {0,1, +,−}.
𝑚 + 𝑟 − 𝑑𝐺(𝑢) − 𝑑𝐺(𝑣) 𝑖𝑓  𝑎 = −  &  𝑏 ∈ {0,1, +,−}.

� 

 

(ii) 𝑑𝑄𝑎𝑏−(𝐺)(𝐵′) =�

𝑚 − 𝐷𝐺(𝐵) 𝑖𝑓  𝑏 = 0  &  𝑎 ∈ {0,1, +,−}.
𝑚 + 𝑟 − 𝐷𝐺(𝐵) − 1 𝑖𝑓  𝑏 = 1  &  𝑎 ∈ {0,1, +,−}.
𝑑𝐺(𝐵) + 𝑚 −𝐷𝐺(𝐵) 𝑖𝑓  𝑏 = +  &  𝑎 ∈ {0,1, +,−}.
𝑚 + 𝑟 − 1 − 𝐷𝐺(𝐵) − 𝑑𝐺(𝐵) 𝑖𝑓  𝑏 = −  &  𝑎 ∈ {0,1, +,−}.

�  

  
4. CONNECTEDNESS OF 𝑸𝒂𝒃𝒄(𝑮) 
 
The first theorem is well-known. 
 
Theorem 4.1: For a given graph 𝐺, 𝑄𝑎𝑏0(𝐺) is not connected.  

 
Theorem 4.2: For a given graph 𝐺, 𝑄𝑎𝑏1(𝐺) is connected.  
 
Proof: The result follows from the fact of Remark 2.3 (iii) i. e., 𝐾𝑚,𝑟 is a spanning subgraph of 𝑄𝑎𝑏1(𝐺) with parts 
𝐸(𝐺) and 𝑈(𝐺). Therefore 𝑄𝑎𝑏1(𝐺) is connected  
When 𝑐 = +, we have the following theorems:  
 
Theorem 4.3: For a given graph 𝐺, 𝑄00+(𝐺) is connected if and only if 𝐺 is a block. 
 
Proof: Suppose 𝐺 is a block with 𝑚 edges. Then 𝑄00+(𝐺) = 𝐾1,𝑚 and which is connected. 
 
Conversely, if 𝐺  has at least two blocks, then 𝑄00+(𝐺)  has at least two disjoint stars. Therefore 𝑄00+(𝐺)  is 
disconnected, a contradiction.  

 
Theorem 4.4: For a given graph 𝐺, 𝑄1𝑏+(𝐺) is connected.  
 
Proof: From Remark 2.1 (iii), we have 𝐾𝑚  is an induced subgraph of 𝑄1𝑏+(𝐺)  with vertex set 𝐸(𝐺)  and each 
block-vertex 𝐵′ is adjacent to at least one edge-vertex 𝑒′ where 𝑒 is incident with a block 𝐵 in 𝐺. Therefore 𝑄1𝑏+(𝐺) 
is connected.  

 
Theorem 4.5: For a given graph 𝐺, 𝑄+0+(𝐺) is connected if and only if 𝐺 is connected.  
 
Proof: Suppose 𝐺 is connected. Then 𝐿(𝐺) is connected. By Remark 2.1 (i), 𝐿(𝐺) is a connected induced subgraph of 
𝑄+0+(𝐺) and each block-vertex 𝐵′ is adjacent to at least one edge-vertex 𝑒′ where 𝑒 is incident with a block 𝐵 in 𝐺. 
Therefore 𝑄+0+(𝐺) is connected. 
 
Conversely, suppose 𝑄+0+(𝐺) is connected. If 𝐺 is a disconnected graph with at least two components 𝐺1 and 𝐺2, then 
𝑄+0+(𝐺) = 𝑄+0+(𝐺1) ∪ 𝑄+0+(𝐺2) is disconnected, a contradiction.  

 
Theorem 4.6: For a given graph 𝐺, 𝑄−0+(𝐺) is connected if and only if 𝐺 contains no block 𝐾2 that is adjacent to 
every other edge of 𝐺.  
 
Proof: Suppose a graph 𝐺 contains no block 𝐾2 that is adjacent to every other edge of 𝐺. If 𝐺 is a block, then 
 𝑄−0+(𝐺) = 𝐿(𝐺) + 𝐾1 is connected. If 𝐺 has more than one block, then we consider the following two cases: 
 
Case-1: If 𝐺 contains no edge that is adjacent to every other edge of 𝐺, then by Remark 2.1 and Theorem 2.1, 𝐿(𝐺) is a 
connected subgraph of 𝑄−0+(𝐺), and in 𝑄−0+(𝐺), each block-vertex 𝐵𝑖′ is adjacent to at least one edge-vertex 𝑒𝑗′, 
where 𝑒𝑗 is incident with 𝐵𝑖  in 𝐺. Thus 𝑄−0+(𝐺) is connected.  
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Case-2: If 𝐺 contains an edge 𝑒 that is adjacent to every other edge of 𝐺, then clearly 𝑒 is incident with a block 𝐵 of 
size more than 2. And 𝑄−0+(𝐺 − 𝑒) is a connected subgraph of 𝑄−0+(𝐺) and 𝑒′,𝐵′, 𝑒1′  is a path in 𝑄−0+(𝐺), where 
𝑒1 is incident with 𝐵, and each block-vertex 𝐵𝑖′ in 𝑄−0+(𝐺) is adjacent to at least one edge-vertex 𝑒𝑗′, where 𝑒𝑗 is 
incident with 𝐵𝑖  in 𝐺. Hence 𝑄−0+(𝐺) is connected. 
 
Conversely, suppose 𝑄−0+(𝐺) is connected. Assume 𝐺 contains a block 𝐾2, say 𝑒, that is adjacent to every other edge 
of 𝐺, then it is easy to see that 𝑄−0+(𝐺) = 𝑄−0+(𝐺 − 𝑒) ∪ 𝐾2 is disconnected, a contradiction.  

 
Theorem 4.7: For a given graph 𝐺, 𝑄𝑎1+(𝐺) is connected.  
 
Proof: From Remark 2.2 (iii), we have 𝐾𝑟  is an induced subgraph of 𝑄𝑎1+(𝐺)  with vertex set 𝑈(𝐺)  and each 
edge-vertex 𝑒′ is adjacent to exactly one block-vertex 𝐵′ where 𝑒 is incident with a block 𝐵 in 𝐺. Therefore 𝑄𝑎1+(𝐺) 
is connected.  

 
Theorem 4.8: For a given graph 𝐺, 𝑄0++(𝐺) is connected if and only if 𝐺 is connected..  
 
Proof: Suppose 𝐺 is connected. Then 𝐵(𝐺) is connected. By Remark 2.2 (i), 𝐵(𝐺) is a connected induced subgraph of 
𝑄0++(𝐺) and each edge-vertex 𝑒′ is adjacent to exactly one block-vertex 𝐵′ where 𝑒 is incident with a block 𝐵 in 𝐺. 
Therefore 𝑄0++(𝐺) is connected. 
 
Conversely, suppose 𝑄0++(𝐺) is connected. If 𝐺 is disconnected graph with at least two component 𝐺1 and 𝐺2, then 
𝑄0++(𝐺) = 𝑄0++(𝐺1) ∪ 𝑄0++(𝐺2) is disconnected, a contradiction.  

 
Theorem 4.9: For a given graph 𝐺, 𝑄+++(𝐺) is connected if and only if 𝐺 is connected.  
 
Proof: Suppose 𝐺 is connected. Then by Theorem 4.8, 𝑄0++(𝐺) is connected, and we have 𝑄+++(𝐺) is spanning 
subgraph of 𝑄+++(𝐺). Therefore, 𝑄+++(𝐺) is connected. 
 
Conversely, suppose 𝑄+++(𝐺) is connected. If 𝐺 is disconnected graph with at least two component 𝐺1 and 𝐺2, then 
𝑄+++(𝐺) = 𝑄+++(𝐺1) ∪ 𝑄+++(𝐺2) is disconnected, a contradiction.  

 
Theorem 4.10: 𝑄−++(𝐺) is connected for any graph 𝐺.  
 
Proof: If 𝐺  is connected, then by Remark 2.2 (i), 𝐵(𝐺) is a connected induced subgraph of 𝑄−++(𝐺), and each 
edge-vertex 𝑒𝑖′  in 𝑄−++(𝐺) is adjacent to exactly one block-vertex 𝐵𝑥′ , where 𝐵𝑥  is incident with 𝑒𝑖  in 𝐺 . Thus 
𝑄−++(𝐺) is connected. 
 
If 𝐺 is disconnected, then by Remark 2.1 (ii) and Theorem 2.1, 𝐿(𝐺) is a connected induced subgraph of 𝑄−++(𝐺), and 
each block-vertex 𝐵𝑥′  in 𝑄−++(𝐺) is adjacent to at least one edge-vertex 𝑒𝑖′, where 𝑒𝑖 is incident with 𝐵𝑥 in 𝐺. Thus 
𝑄−++(𝐺) is connected.  

 
Theorem 4.11: For a given graph 𝐺, 𝑄0−+(𝐺) is connected if and only if 𝐺 contains no block that is adjacent to every 
other block of 𝐺.  
 
Proof: Suppose a graph 𝐺 contains no block that is adjacent to every other block of 𝐺. Then 𝐵(𝐺) is a connected 
induced subgraph of 𝑄0−+(𝐺) with vertex set 𝑈(𝐺), and each edge-vertex 𝑒′ is adjacent to exactly one block-vertex 𝐵′ 
where 𝑒 is incident with a block 𝐵 in 𝐺. Therefore 𝑄0−+(𝐺) is connected. 
 
Conversely, suppose 𝑄0−+(𝐺) is connected. Assume 𝐺 contains a block 𝐵 that is adjacent to every other blocks of 𝐺, 
and 𝐵 is incident with 𝑒1, 𝑒2, . . . , 𝑒𝑠 edges. Then it is easy to see that 𝑄0−+(𝐺) = 𝑄0−+(𝐺 − {𝑒1, 𝑒2, . . . , 𝑒𝑠}) ∪ 𝐾1,𝑠 is 
disconnected, a contradiction.  

 
Theorem 4.12: 𝑄+−+(𝐺) is connected for any graph 𝐺.  
 
Proof: If 𝐺  is connected, then by Remark 2.1 (i), 𝐿(𝐺) is a connected induced subgraph of 𝑄+−+(𝐺), and each 
block-vertex 𝐵𝑥′  in 𝑄+−+(𝐺) is adjacent to at least one edge-vertex 𝑒𝑖′ , where 𝑒𝑖  is incident with 𝐵𝑥  in 𝐺 . Thus 
𝑄+−+(𝐺) is connected. 
 
If 𝐺 is disconnected, then by Remark 2.2 (ii), 𝐵(𝐺) is a connected induced subgraph of 𝑄+−+(𝐺), and each edge-vertex 
𝑒𝑖′  in 𝐺+−+  is adjacent to exactly one block-vertex 𝐵𝑥′ , where 𝐵𝑥  is incident with 𝑒𝑖  in 𝐺 . Thus 𝑄+−+(𝐺)  is 
connected.  
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Theorem 4.13: For a given graph 𝐺, 𝑄−−+(𝐺) is connected if and only if 𝐺 contains no block 𝐾2 that is adjacent to 
every other edge of 𝐺.  
 
Proof: Suppose a graph 𝐺 contains no block 𝐾2 that is adjacent to every other edge of 𝐺. Then by Theorem 4.6, 
𝑄−0+(𝐺) is connected, and we have 𝑄−0+(𝐺) is a spanning subgraph of 𝑄−−+(𝐺). Therefore, 𝑄−−+(𝐺) is connected. 
Conversely, suppose 𝑄−−+(𝐺) is connected. Assume 𝐺 contains a block 𝐾2, say 𝑒, that is adjacent to every other edge 
of 𝐺. Then it is easy to see that 𝑄−−+(𝐺) = 𝑄−−+(𝐺 − 𝑒) ∪ 𝐾2 is disconnected, a contradiction.  

 
When 𝑐 = −, we have the following theorems:  
 
Theorem 4.14: For a given graph 𝐺, 𝑄00−(𝐺) is connected if and only if 𝐺 has at least three blocks.  
 
Proof: Suppose 𝐺 contains at least three blocks. Then each edge-vertex is adjacent to at least two block-vertex in 
𝑄00−(𝐺) . Therefore it is sufficient to prove every pair of edge-vertices are connected. Let 𝑒′1  and 𝑒′2  be the 
edge-vertices of 𝑄00−(𝐺). Then there exist a block 𝐵′ which is not incident with 𝑒1 and 𝑒2 in 𝐺 such that 𝑒′1 and 𝑒′2 
are connected through 𝐵′ in 𝑄00−(𝐺). Therefore, every pair of vertices in 𝑄00−(𝐺) are connected. Hence 𝑄00−(𝐺) is 
connected. 
 
Conversely, suppose 𝑄00−(𝐺) is connected. Assume 𝐺 is a block. Then 𝑄00−(𝐺) = (𝑚 + 1)𝐾1  is disconnected, a 
contradiction. Assume 𝐺  has two blocks 𝐵1  and 𝐵2  with 𝑥  and 𝑦  number of incident edges respectively. Then 
𝑄00−(𝐺) = 𝐾1,𝑥 ∪ 𝐾1,𝑦 is disconnected, a contradiction.  

 
Theorem 4.15: For a given graph 𝐺, 𝑄1𝑏−(𝐺) is connected if and only if 𝐺 is not a block.  
 
Proof: Suppose 𝐺 is not a block. By Remark 2.1 (iii), we have 𝐾𝑚 is an induced subgraph of 𝑄1𝑏−(𝐺) with vertex set 
𝐸(𝐺), and each block-vertex 𝐵′ is adjacent with at least one edge-vertex 𝑒′ where 𝑒 is not incident with block 𝐵 in 𝐺. 
Therefore 𝑄1𝑏−(𝐺) is connected. 
 
Conversely, suppose 𝑄1𝑏−(𝐺)  is connected. Assume 𝐺  is a block. Then 𝑄1𝑏−(𝐺) = 𝐾𝑚 ∪ 𝐾1  is disconnected, a 
contradiction.  

 
Theorem 4.16: For a given graph 𝐺, 𝑄+0−(𝐺) is connected if and only if 𝐺 is neither a block nor a union of two 
blocks.  
 
Proof: Suppose 𝐺 is neither a block nor a union of two blocks. Then we consider the following cases: 
 
Case-1: Suppose 𝐺 is connected. Then it has at least two blocks. Hence by Remark 2.1 (i), 𝐿(𝐺) is a connected 
subgraph of 𝑄+0−(𝐺), and also each block-vertex 𝐵𝑖′ in 𝑄+0−(𝐺) is adjacent to at least one edge-vertex 𝑒𝑗′, where 𝑒𝑗 is 
not incident with 𝐵𝑖  in 𝐺. Thus 𝑄+0−(𝐺) is connected.  
 
Case-2: Suppose 𝐺 is disconnected. Then it has at least three blocks. We see that in 𝑄+0−(𝐺), each block-vertex 𝐵𝑖′ is 
adjacent at least two edge-vertices 𝑒𝑗′, where 𝑒𝑗 is not incident with 𝐵𝑖  in 𝐺, and each edge-vertex 𝑒𝑗′ is adjacent to 
edge-vertex 𝑒𝑘′  and at least two block-vertices 𝐵𝑖′ in 𝑄+0−(𝐺), where 𝑒𝑘 is adjacent to 𝑒𝑗, and 𝐵𝑖  is not incident with 
𝑒𝑗 in 𝐺. 
 
Since in such a case, there is a path between any two vertices of 𝑄+0−(𝐺). Hence 𝑄+0−(𝐺) is connected. 
 
Conversely, suppose 𝑄+0−(𝐺)  is connected. If 𝐺  is a block, then 𝑄+0−(𝐺) = 𝐿(𝐺) ∪ 𝐾1  is disconnected, a 
contradiction. If 𝐺 = 𝐵1 ∪ 𝐵2 is a union of two blocks, then 𝑄+0−(𝐺) is a disconnected graph having two components 
namely 𝐿(𝐵1) + 𝐾1 and 𝐿(𝐵1) + 𝐾1, a contradiction.  

 
Theorem 4.17: For a given graph 𝐺, 𝑄−0−(𝐺) is connected if and only if 𝐺 ≠ 𝑃3 is not a block.  
 
Proof: Suppose 𝐺 ≠ 𝑃3 is not a block. We consider the following two cases: 
 
Case-1: Suppose 𝐺 contains no edge that is adjacent to every other edge of 𝐺. Then by Remark 2.1 (ii) and Theorem 2.1, 
𝐿(𝐺) is a connected subgraph of 𝑄−0−(𝐺), and each block-vertex 𝐵𝑖′ is adjacent to at least one edge-vertex 𝑒𝑗′ in 
𝑄−0−(𝐺), where 𝑒𝑗 is not incident with 𝐵𝑖  in 𝐺. Thus 𝑄−0−(𝐺) is connected. 
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Case-2: Suppose 𝐺 contains an edge 𝑒 that is adjacent to all other edge of 𝐺. Then by definition of 𝑄−0−(𝐺), each 
edge-vertex 𝑒𝑖′ is adjacent to edge-vertex 𝑒𝑘′  and at least one block-vertex 𝐵𝑗′, where 𝐵𝑗  is not incident with 𝑒𝑖, and 𝑒𝑘 
is not adjacent to 𝑒𝑖 in G. And also each block-vertex 𝐵𝑗′ is adjacent to at least one edge-vertex 𝑒𝑖′, where 𝑒𝑖 is not 
incident with 𝐵𝑗  in 𝐺. Hence there is a path between any two vertices of 𝑄−0−(𝐺). Therefore 𝑄−0−(𝐺) is connected. 
 
Conversely, suppose 𝑄−0−(𝐺)  is connected. If 𝐺  is a block, then 𝑄−0−(𝐺) = 𝐿(𝐺) ∪ 𝐾1  is disconnected, a 
contradiction. If 𝐺 = 𝑃3, then 𝑄−0−(𝐺) = 2𝐾2 is disconnected, a contradiction.  

 
Theorem 4.18: For a given graph 𝐺, 𝑄𝑎1−(𝐺) is connected if and only if 𝐺 is not a block.  
 
Proof: Suppose 𝐺 is not a block. By Remark 2.2 (iii), we have 𝐾𝑟  is an induced subgraph of 𝑄𝑎1−(𝐺) with vertex set 
𝑈(𝐺), and each edge-vertex 𝑒′ is adjacent to at least one block-vertex 𝐵′ where 𝑒 is not incident with block 𝐵 in 𝐺. 
Therefore, 𝑄𝑎1−(𝐺) is connected. 
 
Conversely, suppose 𝑄𝑎1−(𝐺) is connected. Assume 𝐺 is a block. Then 𝑄𝑎1−(𝐺) = (𝐿(𝐺))𝑎 ∪ 𝐾1 is disconnected, a 
contradiction.  

 
Theorem 4.19: For a given graph 𝐺, 𝑄0+−(𝐺) is connected if and only if 𝐺 is neither a block nor a union of two 
blocks. 
 
Proof: Suppose 𝐺 is neither a block nor a union of two blocks. Then we consider the following cases: 
 
Case-1: Suppose 𝐺 is connected. Then it has at least two blocks. By Remark 2.2 (i), 𝐵(𝐺) is a connected induced 
subgraph of 𝑄0+−(𝐺) with vertex set 𝑈(𝐺), and also each edge-vertex 𝑒𝑖′  in 𝑄0+−(𝐺) is adjacent to at least one 
block-vertex 𝐵𝑗′, where 𝑒𝑖 is not incident with 𝐵𝑗  in 𝐺. Therefore 𝑄0+−(𝐺) is connected.  
 
Case-2: Suppose 𝐺 is disconnected. Then it has at least three blocks and we have 𝑄00−(𝐺) is a spanning subgraph of 
𝑄0+−(𝐺). Therefore by Theorem 4.14, 𝑄0+−(𝐺) is connected. 
 
Conversely, suppose 𝑄0+−(𝐺)  is connected. If 𝐺  is a block, then 𝑄0+−(𝐺) = (𝑚 + 1)𝐾1  is disconnected, a 
contradiction. If 𝐺 = 𝐵1 ∪ 𝐵2 is not a union of blocks, where 𝐵1 and 𝐵2 are blocks incident with 𝑥 and 𝑦 number of 
edges respectively, then 𝑄0+−(𝐺) = 𝐾1,𝑥 ∪ 𝐾1,𝑦 is disconnected, a contradiction.  

 
Theorem 4.20: For a given graph 𝐺, 𝐺++− is connected if and only if 𝐺 is neither a block nor a union of two blocks. 
 
Proof: Suppose 𝐺 is neither a block nor a union of two blocks. Then by Theorem 4.19, 𝑄0+−(𝐺) is connected, and we 
have 𝑄0+−(𝐺) is spanning subgraph of 𝑄++−(𝐺). Therefore, 𝑄++−(𝐺) is connected. 
 
Conversely, suppose 𝑄++−(𝐺)  is connected. If 𝐺  is a block, then 𝑄++−(𝐺) = 𝐿(𝐺) ∪ 𝐾1  is disconnected, a 
contradiction. If 𝐺 = 𝐵1 ∪ 𝐵2 is not a union of blocks, then 𝑄++−(𝐺) = (𝐿(𝐵1) + 𝐾1) ∪ (𝐿(𝐵2) + 𝐾1) is disconnected, 
a contradiction.  
 
Theorem 4.21: For a given graph 𝐺, 𝑄−+−(𝐺) is connected if and only if 𝐺 is not a block. 
 
Proof: Suppose 𝐺 ≠ 𝑃3  is not a block. Then by Theorem 4.17, 𝑄−0−(𝐺) is connected, and we have 𝑄−0−(𝐺) is 
spanning subgraph of 𝑄−+−(𝐺). Therefore, 𝑄−+−(𝐺) is connected. If 𝐺 = 𝑃3, then 𝑄−+−(𝐺) = 𝑃4 is connected. 
Conversely, if 𝐺 is a block, then 𝐺−+− = 𝐿(𝐺) ∪ 𝐾1 is disconnected, a contradiction.  

 
Theorem 4.22: For a given graph 𝐺, 𝑄0−−(𝐺) is connected if and only if 𝐺 is not a connected graph with one or two 
blocks.  
 
Proof: Suppose 𝐺 is not a connected graph with one or two blocks. We consider the following cases: 
 
Case-1: If 𝐺 is a connected graph. Then 𝐺 contains at least three blocks and we have 𝑄00−(𝐺) is a spanning subgraph 
of 𝑄0−−(𝐺). Hence by Theorem 4.14, 𝑄0−−(𝐺) is connected. 
 
Case-2: If 𝐺 is not a connected graph, then 𝐺 contains at least two blocks. Suppose 𝐺 contains at least three blocks. 
Then result is oblivious by Theorem 4.14. If 𝐺 = 𝐵𝑖 ∪ 𝐵𝑗  where 𝐵𝑖  and 𝐵𝑗  are blocks with 𝑥  and 𝑦  number of 
incident edges respectively, then 𝑄0−−(𝐺) = 𝑆𝑥,𝑦 is connected. 
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Conversely, suppose 𝑄0−−(𝐺) is connected. Assume 𝐺 is a block. Then 𝑄0−−(𝐺) = 𝐵(𝐺) ∪ 𝐾1  is disconnected, a 
contradiction. Assume 𝐺 is a connected graph with two blocks 𝐵1 and 𝐵2 having 𝑥 and 𝑦 number of incident edges 
respectively, then 𝑄0−−(𝐺) = 𝐾1,𝑥 ∪ 𝐾1,𝑦 is disconnected, a contradiction.  

 
Theorem 4.23: For a given graph 𝐺, 𝑄+−−(𝐺) is connected if and only if 𝐺 is not a block.  
 
Proof: Suppose 𝐺 is not a block. Then by Theorem 4.22, 𝑄0−−(𝐺) is connected, and we have 𝑄0−−(𝐺) is spanning 
subgraph of 𝑄+−−(𝐺). Therefore, 𝑄+−−(𝐺) is connected. If 𝐺 is connected graph with two blocks, then 𝑄+−−(𝐺) is 
connected. 
 
Converse is obvious.  

  
Theorem 4.24: For a given graph 𝐺, 𝑄−−−(𝐺) is connected if and only if 𝐺 ≠ 𝑃3 is not a block.  
 
Proof: Suppose 𝐺 ≠ 𝑃3  is not a block. Then by Theorem 4.17, 𝑄−0−(𝐺) is connected, and we have 𝑄0−−(𝐺) is 
spanning subgraph of 𝑄−−−(𝐺). Therefore, 𝑄−−−(𝐺) is connected. 
 
Conversely, suppose 𝑄−−−(𝐺)  is connected. If 𝐺  is a block, then 𝑄−−−(𝐺) = 𝐿(𝐺) ∪ 𝐾1  is disconnected, a 
contradiction. If 𝐺 = 𝑃3, then 𝑄−−−(𝐺) = 2𝐾2 is disconnected, a contradiction.  

 
5. CONCLUSION 
 
In this paper, we have introduced 64 abc - block edge transformation graphs and studied their order, size, vertex degree 
and connectedness of these 64 abc-block edge transformation graphs. The study of diameter, traversability, planarity, 
chromatic number, domination number, spectra, energy and topological indices of these new graphs can be interesting. 
Characterization of these 64 abc - block edge transformation graphs can be quite challenging, (i.e., to prove that: A graph 
𝐺 is a generalized 𝑎𝑏𝑐 - block edge transformation graph if and only if it is isomorphic to the generalized 𝑎𝑏𝑐 - block 
edge transformation graph 𝑄𝑎𝑏𝑐(𝐻) of some graph 𝐻). 
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