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ABSTRACT 
We introduce the idea of relative L-Ritt order of entire Dirichlet series with respect to a meromorphic function and 
prove sum and product theorems and a theorem on derivative. 
 
Keywords:  Entire Dirichlet series, Relative order, L-Ritt order. 
 
AMS Subject Classification: 30B50, 30D99. 
 
 
1. INTRODUCTION AND DEFINITIONS 
 
For entire function f  let }.||:|)(max{|)( rzzfrF ==  If f  is non constant then )(rF  is strictly increasing and 
a continuous function of r  and its inverse  

),0()|,)0((|:1 ∞→∞− fF  exists and .)(lim 1 ∞=−

∞→
RF

R
 

 
In 1988, Bernal [1] introduced the definition of relative order of f  with respect to g  denoted by )( fgρ , as  

)()(:0inf{)( µµρ rGrFfg <>=  for all }.0)(0 >> µrr  
 
Let )(sf  be an entire function of the complex variable its += σ  defined by everywhere absolutely convergent 
Dirichlet series  

∑
∞

=1n

s
n

nea λ                                                                                                                                                        (1.1) 

where )1(0 1 ≥<< + nnn λλ , ∞→nλ  as ∞→n  and san
'  are complex constants. 

 
Let }.|,)({|..)( ∞<<−∞+= titfbulF σσ  Then the Ritt order [7] of )(sf , denoted by )( fρ  is given by 

σ
σρ

σ

)(loglogsuplim)( Ff
∞→

=  

                          )exp()(log:0inf{ σµσµ <>= F for all )}.(µσσ >  
 
In [5] Lahiri and Banerjee introduced relative Ritt order as follows. 
 
The relative Ritt order of )(sf with respect to an entire )(sg is defined by  

)()(log:0inf{)( σµσµρ GFfg <>= for all large }σ  

where }.||:|)(max{|)( rssgrG ==  
 
Let )(σLL = be a positive continuous function increasing slowly i.e., )()( σσ LaL ≈  as ∞→σ  for every 
constant .a  
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Then L-Ritt order [4] of )(sf is defined as follows: 

.
)(

)(loglogsuplim)(
σσ

σρ
σ L

FfL

∞→
=  

 
In 2014, A. Kumar and A. Rastogi [4] introduced relative L-Ritt order of an entire Dirichlet series as follows. 
 
The relative L-Ritt order )( fL

gρ  of )(sf  with respect to )(sg  is defined as  

.
)(

)(logsuplim)(
1

σσ
σρ

σ L
FGfL

g

−

∞→
=  

 
At this stage it therefore seems reasonable to define suitably the relative L-Ritt order of entire Dirichlet series (1.1) with 
respect to a meromorphic function and to enquire its basic properties. 
 
First we define characteristic function of an entire function )(sf  defined by everywhere absolutely convergent 
Dirichlet series (1.1) by  

.|)(|log
2
1)( θσ
π

σ θ
π

π

defT i
f ∫

−

+=  

 
Clearly ).(log)( σσ FTf

+≤  
 
The following definition is now introduced. 
 
Definition 1.1: The relative L-Ritt order  )( fL

gρ  of )(sf  with respect to a meromorphic )(sg  is defined as 

[ ]µσσσµρ )()()(:0inf{)( LTTf gf
L
g <>=  for all large }σ  

where     )(σgT  is the Nevanlinna Characteristic function of ).(sg  
 

Note 1.1: It is clear that [ ].)()(log
)(log

suplim)(
σσ

σ
ρ

σ LT
T

f
g

fL
g

∞→
=

 
 
Definition 1.2: A non constant meromorphic function )(sg  is said to have the property (B) if for any 1>n  and large 

,σ  )).(()( σσ gg TOnT =
  

2. SUM AND PRODUCT THEOREMS
  

In this section we assume that 21 , ff   etc., are entire functions of s  defined by everywhere absolutely convergent 

ordinary Dirichlet series ∑∑
∞

=

∞

= 11
,

n
s
n

n
s
n

n
b

n
a

 etc. The product of two such series is considered by Dirichlet product 

method which is also everywhere absolutely convergent {see [3], pp 66}. 
 
Theorem 2.1: Let 1f  and 2f  be entire functions having respective relative L-Ritt orders )( 1f

L
gρ  and )( 2fL

gρ with 
respect to meromorphic .g  

Then (i) )}(),(max{)( 2121 ffff L
g

L
g

L
g ρρρ ≤±   

and   (ii) )}.(),(max{)( 2121 ffff L
g

L
g

L
g ρρρ ≤  

 
Proof: We may suppose that )( 1f

L
gρ  and )( 2fL

gρ  are both finite, because if one of )( 1f
L
gρ , )( 2fL

gρ or both are 
infinite, the inequality are evident. 
 
Let )( i

L
gi fρρ = ,  2,1=i   and .21 ρρ ≤  
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For arbitrary 0>ε and for all large σ , we have 

[ ] [ ] ερερ σσσσσ ++ ≤< 21

1
)()()()()( LTLTT ggf  and [ ] .)()()( 2

2

ερσσσ +< LTT gf  
 
Now for all large ,σ  

                
2log)()()(

2121
++≤± σσσ ffff TTT  

                                 [ ] ερσσ +< 2)()(3 LTg  

                                 [ ] .)()( 32 ερσσ +< LTg  
 
So           .3)( 221 ερρ +≤± ffL

g  
 
Since 0>ε  is arbitrary,  

)}(),(max{)( 21221 ffff L
g

L
g

L
g ρρρρ =≤±

 
which proves (i).  
 
For (ii), since  

                 
)()()(

2121
σσσ ffff TTT +≤  

                                [ ] ερσσ +< 2)()(2 LTg  

                                [ ] .)()( 22 ερσσ +< LTg  
 
So          .2)( 221 ερρ +≤ffL

g  
 
Since 0>ε  is arbitrary,  

)}.(),(max{)( 21221 ffff L
g

L
g

L
g ρρρρ =≤

 
 
3. RELATIVE L-RITT ORDER ON DERIVATIVE 
 
Theorem 3.1: Let f be an entire function defined by (1.1) and g  is transcendental such that g  and g ′  satisfy 

property (B). Then ).()( ff L
g

L
g ρρ =′  

 
We need the following lemmas. 
 
Lemma 3.2 [6]: Let g  be a transcendental meromorphic function. Then  

)}2({)2(2)( σσσ ggg ToTT +≤′ for all large values of .σ  
 
Lemma 3.3 [2]: Let g  be a meromorphic function. Then for all large ,σ  

}log)2({)( σσσ +< ′gg TCT  

where C  is a constant which is only dependent on ).0(g  
 
Proof of the theorem: From Lemmas (3.2) and (3.3) we have for all large ,σ  

)2()( 1 σσ gg TKT <′                                                                                                                                     (3.1) 

and         )2()( 2 σσ gg TKT ′<                                                                                                                   (3.2) 

where 1K and 2K  are positive constants. 
 
For arbitrary 0>ε  and for all large ,σ  

[ ] .)()()( )( ερσσσ +
′

′≤ f
gf

L
gLTT  
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So,          ( )'log ( ) ( )L
f g

T fσ ρ ε< + 1log log (2 ) log ( )gK T Lσ σ + +  , using (3.1) 

                                  ( )( )L
g fρ ε′= + log( ( ( ))) log ( ) (1)gO T L Oσ σ + +  , since g has the property (B) 

                                  ( )( )L
g fρ ε′= + [log( ( ) ( )) (1)]gT L Oσ σ +

 
 

 

Therefore, [ ] .)(
)()(log

)(log
suplim ερ

σσ
σ

σ
+≤ ′

∞→
f

LT
T L

g
g

f  

 
Since 0>ε  is arbitrary, 

).()( ff L
g

L
g ′≤ ρρ                                                                                                                                         (3.3) 

 
Also for arbitrary 0>ε  and for all large σ  

[ ] .)()()( )( ερσσσ +< f
gf

L
gLTT  

 
So using (3.2) and since g ′  has property (B), we have 

( )log ( ) ( )L
f gT fσ ρ ε< + log( ( ) ( )) (1) .gT L Oσ σ′ +   

 

Therefore, [ ] .)(
)()(log

)(log
suplim ερ

σσ
σ

σ
+≤

′∞→
f

LT
T L

g
g

f  

 
Since 0>ε  is arbitrary, 

).()( ff L
g

L
g ρρ ≤′                                                                                                                                         (3.4) 

 
Hence from (3.3) and (3.4) 

).()( ff L
g

L
g ρρ =′  

 
4. FINITENESS OF )( fL

gρ  
 
Definition 4.1: Let f  be entire and g  be a meromorphic function which is not transcendental.  

Let µα inf=  such that [ ] σ
σσ

σσ

σ
µ d

LT

LT

g

f∫
∞

+
0

1)()(

)()(
 , 0'

00 >≥ σσ  converges. 

 

Lemma 4.1: If [ ] σ
σσ

σσ

σ
µ d

LT

LT

g

f∫
∞

+
0

1)()(

)()(
 is convergent then [ ] 0

)()(

)(
lim =

∞→ µσ σσ

σ

LT

T

g

f  where .0 ∞<< µ  

 
Proof: Given ,0>ε  there is a number 0

' )( σεσ ≥  such that  

[ ]∫
∞

+ <
σ

µ εdt
tLtT

tLtT

g

f
1)()(

)()(
 whenever )(' εσσ >  

and so  [ ]∫ <+

σ

σ
µ ε

2

1)()(

)()(
dt

tLtT

tLtT

g

f  for )(' εσσ > . 

 
Since )(),( σσ gf TT  and )(σL  are non-decreasing, we have for  )(' εσσ >  

[ ] ∫+>
σ

σ
µσσ

σσ
ε

2

1)2()2(

)()(
dt

LT

LT

g

f
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So,        [ ]
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σ
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Since g is not transcendental, so )(log)( σσ OTg =  and hence ))(()2( σσ gg TOT =  and also )()2( σσ LL ≈ as 

.∞→σ  

So      [ ] .0
)()(

)(
lim =

∞→ µσ σσ

σ

LT

T

g

f

 

This proves the lemma. 
 
Theorem 4.2: If )( fL

gρ  be the relative L-Ritt order of f  with respect to g  and  α  is defined by Definition (4.1), 

then )( fL
gρ  is finite if α  is finite. 

 
Proof: Suppose α  is given. 
Then for arbitrary 0>ε , the integral 

[ ]∫
∞

++
0

1)()(

)()(

σ
εα σ

σσ

σσ
d

LT

LT

g

f  converges. 

 

So by Lemma (4.1)  [ ] .0
)()(

)(
lim =+∞→ εασ σσ

σ

LT

T

g

f  

 
Thus for all sufficiently large values of σ  

[ ] ε
σσ

σ
εα <+)()(

)(

LT

T

g

f  

i.e.,         [ ] εασσεσ +< )()()( LTT gf  
 
i.e.,         [ ].)()(log)(log)(log σσεαεσ LTT gf ++<  
 

So,          [ ] .
)()(log

)(log
suplim εα

σσ
σ

σ
+≤

∞→ LT
T

g

f  

 
Since 0>ε is arbitrary, αρ ≤)( fL

g  and this proves the theorem. 
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