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ABSTRACT 
In this paper, we consider the discrete time inventory system in which the demands are originated from the finite 
number of homogeneous population. The inter demand times of the primary arrival follows geometric distribution. The 
inventory is replenished according to (𝒔,𝑺) policy. According to the policy the inventory is reaches a level 𝒔, we place 
an order so that the inventory level is up to S and the lead times are assumed to follow a geometric distribution. The 
demands that occur during stock out period is permitted to enter into the pool. These pooled demands are satisfied only 
when the inventory level is above 𝒔. The pooled demands are selected one by one according to the first come first serve 
basis and the inter-selection time is distributed as geometric. The joint probability distribution of the number of 
demands in the pool and the inventory level is obtained in steady state case and some important system performance 
measures are derived in the steady state case. 
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1. INTRODUCTION 
 
Inventory models have been considered under continuous review as well as periodic review. In the recent past discrete 
time models have started receiving attention of researchers in the areas of queueing and telecommunications. In discrete 
time setting, it is assumed that the time axis is calibrated into epochs by small units and that all the events are deemed 
to occur only at these epochs. With the advent of fast computing devices and efficient transaction reporting facilities, 
such epochs with small gaps can be conveniently assumed so that events can occur at these epochs.  
 
In most of the continuous review inventory systems considered in the literature, the demanded items are directly 
delivered from the stock (if available) and the demands that occurred during the stock-out period are either lost (lost 
sales case) or satisfied only after the arrival of ordered items (backlogging case). In the latter case, it is assumed that 
either all (full backlogging case) or any prefixed number of demands (partial backlogging case) that occurred during the 
stock out period are satisfied. Continuous review inventory system with postponed demands has received considerable 
attention in the last few decades. Further there are researcher developed the inventory model with postponed demands 
under discrete time review as well. Berman et al. [3] introduced the concept of postponement of demand in the 
inventory system. They assumed that both demand and service rates are deterministic. The often quoted review articles 
Radhamani et al. [8], and Sivakumar et al., [9] provide excellent summaries of many of these modeling efforts. 
 
In the case of inventory modeling under discrete times, the first paper was by Bar-Lev and Perry [2], who assumed that 
demands are non-negative integer value random variables and items have constant life times.  In this paper, we consider 
the discrete time inventory system in which the demands are originated from the finite number of homogeneous 
population. The inter demand times of the primary arrival follows geometric distribution. The inventory is replenished 
according to (𝒔,𝑺) policy. According to the policy the inventory is reaches a level 𝒔, we place an order so that the 
inventory level is up to S and the lead times are assumed to follow a geometric distribution. The demands that occur 
during stock out period are permitted to enter into the pool. These pooled demands are satisfied only when the 
inventory level is above 𝒔. The pooled demands are selected one by one according to the first come first serve basis and 
the inter-selection time is distributed as geometric. 
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The rest of the paper is organized as follows. In Section 2, we describe the problem under consideration and in the next 
section we model the problem mathematically. The steady-state analysis of the model is presented in Section 4 and 
some important system performance measures are derived in Section 5. 
 
Notation: 

• 𝐴(𝑖, 𝑗): entry at (𝑖, 𝑗) th position of 𝐴 
• 0 : zero vector of appropriate dimension 
• 𝑒 : a column vector of 1’s of appropriate dimension 
• 𝐼𝑛: identity matrix of order 𝑛 
• 𝛿𝑖,𝑗: Kronecker delta function 

 
2. PROBLEM FORMULATIONS 
 
We consider a discrete time inventory system where the time axis is divided into intervals of equal length, called slots 
(epochs). It is assumed that all system activities (arrivals, postponed demand selection and replenishment) occur at the 
slot boundaries, and therefore they may occur at the same time. The maximum capacity of the inventory is 𝑺. 
 

 The arrival of demands generated from a homogeneous population of finite size (𝑀). Each demand generates 
the arrival according to a Bernoulli stream with rate 1 − 𝑎, thus  1 − 𝑎 is the probability that a demand arrives 
at a slot and  𝑎 is the probability that an arrival does not take place in a slot. When the on-hand inventory level 
is more than one then the arriving demand is satisfied immediately. 

 We consider (𝑠, 𝑆) ordering policy, according to the policy when the inventory reaches a level s, we place an 
order 𝑄(=  (𝑆 −  𝑠)  >  𝑠 +  1) units so that the inventory level is up to 𝑆. The lead time is assumed to follow 
geometric distribution with success probability  𝑏(>  0). The condition  𝑆 − 𝑠 >  𝑠 + 1  is assumed so that 
when the supply of an order is received during the stock out period, the inventory level would be brought 
above the reorder level. Otherwise the inventory will have perpetual stock out. 

 If the arrival finds the inventory level is zero, he is permitted to enter into the pool of his own choice. These 
pooled demands are satisfied only when the inventory level is above 𝑠. The pooled demands are selected one 
by one according to the first come first serve basis and the inter-selection time is distributed as geometric 
distribution with success probability 𝑐. 

 
Unlike continuous review inventory systems, multiple events such as demand, supply and pooled demand selection 
may occur between epochs 𝑛 and n+1, n = 0, 1, 2, . . . Hence we adopt the following convention: If the events such as 
demand for an item, pooled demand selection and supply of an order take place at 𝑛 (𝑛 =  1, 2, 3, . . . ), it is assumed 
that first supply is received then demand occurs and finally the pooled demand selection takes place. 
 
3. MODEL DESCRIPTIONS 
 
Let 𝑋𝑛 denote the number of demands in the pool, and 𝑌𝑛 denote the inventory level at time 𝑛. From the assumptions 
made on the input and output processes, it can be shown that the stochastic process (𝑋,𝑌 )  =  {(𝑋𝑛,𝑌𝑛),𝑛 ∈  𝑁} is a 
Discrete Time Markov Chain with state space given by, 𝐸 =  {(𝑖, 𝑗) ∶  𝑖 =  0, 1, . . . ,𝑀, 𝑗 =  0, 1, . . . , 𝑆}. 
 
The transition probability function is defined as for (𝑖, 𝑗), (𝑘, 𝑙) ∈ 𝐸, 
  𝑝((𝑖, 𝑗), (𝑘, 𝑙))  =  𝑃𝑟[𝑋𝑛+1  =  𝑘,𝑌𝑛+1  =  𝑙|𝑋𝑛  =  𝑖,𝑌𝑛  =  𝑗] 
 
The transition probability matrix 𝑃 of this process,  

𝑃 =  �� 𝑝�(𝑖, 𝑗), (𝑘, 𝑙)��� , (𝑖, 𝑗), (𝑘, 𝑙) ∈  𝐸 
 
Then the transition probability matrix 𝑃 can be viewed as, 
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Where, 
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Here we notice that, all the matrices 𝑨𝒌,𝑩𝒌 and 𝑪𝒌 are square matrix of order 𝑺 +  𝟏 
 
4. CALCULATING LIMITING PROBABILITIES 
 
It can be seen from the structure of P, the homogeneous Markov chain {(𝑋𝑛 , 𝐿𝑛),𝑛 ∈  𝑁} on the finite state space is 
irreducible. Hence the limiting probability distribution 

𝜋(𝑖,𝑗)  =  lim
𝑛→∞

Pr [Xn  =  i, Ln  =  j |X0  =  k, L0  =  l], 
Where 𝜋(𝑖,𝑗) is the steady state probability for the state (𝑖, 𝑗) exists and is independent of the initial state (𝑘, 𝑙). Let Π be 
the steady state limiting probability vector of 𝑃. That is, Π satisfies  
  Π𝑃 = 0,Π𝑒 = 1. 
 
The vector Π can be represented by, Π =  (Π<0>,Π<1>,Π<2>, … ,Π<M>), 
and Π<i>  =  �𝜋(𝑖,0),𝜋(𝑖,1), … ,𝜋(𝑖,𝑆)�,   for 𝑖 = 0,1,2, … ,𝑀. 
 
Now the structure of 𝑃 shows, the model under study is a finite birth death model in the Markovian environment. 
Hence we use the algorithm discussed by Gaver et al. [7] for computing the limiting probability vector. For the sake of 
completeness we provide the algorithm here. 
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Algorithm: 
1. Determine recursively the matrix 𝐷𝑛, 0 ≤  𝑛 ≤  𝑀 by using 

𝐷0   =   𝐴0 , Di   =   Ai  +  Ci (I − Di−1)−1B0, i = 1,2, … , M. 
2. Solve the system Π<M>(𝐼 − 𝐷𝑀)   =  0 
3. Compute recursively the vector  Π<i>, 𝑖 = 𝑀 − 1, … ,0, using 

 Π<i> = Π<i+1>𝐶𝑖+1(𝐼 − 𝐷𝑖)−1,   𝑖 = 𝑀 − 1, … ,0 
4. Normalize the vector Π , by using Π𝑒 = 1 

 
5. SYSTEM PERFORMANCE MEASURES 
 
In this section, we derive some system performance measures in the steady-state case. 
 
Expected inventory level 
Let 𝜁𝑖  denote the expected inventory level in the steady-state. Then 𝜁𝑖  is given by 

𝜁𝑖 = ��𝑗𝜋(𝑖,𝑗)
𝑆

𝑗=1

𝑀

𝑖=0

 

 
Expected reorder rate 
Let 𝜁𝑟  denote the expected reorder level in the steady-state. Then 𝜁𝑟  is given by 

𝜁𝑟 = (1 − 𝑎𝑀)𝜋(0,𝑠+1) + �[
𝑀

𝑖=1

(𝑐̅(1 − 𝑎𝑀−𝑖) + 𝑐𝑎𝑀−𝑖)𝜋(𝑖,𝑠+1) + (1 − 𝑎𝑀−𝑖)𝑐𝜋𝑖−𝑠+2] 

 
Expected number of customer in the Pool 
Let 𝜁𝑝 denote the expected number of customer in the pool in the steady-state. Then 𝜁𝑝 is given by 

𝜁𝑝 = �𝑖Π<i>𝑒
𝑀

𝑖=1

 

 
Long-run expected cost rate function 
The long-run expected cost rate for this model is defined to be 

𝐶(𝑆, 𝑠,𝑀) = 𝑐ℎ𝜁𝑖 + 𝑐𝑠𝜁𝑟 + 𝑐𝑤𝜁𝑝  

𝐶(𝑆, 𝑠,𝑀) = 𝑐ℎ  ��𝑗𝜋(𝑖,𝑗)
𝑆

𝑗=1

𝑀

𝑖=0

 +  𝑐𝑤  �𝑖Π<i>𝑒
𝑀

𝑖=1

+  𝑐𝑠 [�[
𝑀

𝑖=1

(𝑐̅(1 − 𝑎𝑀−𝑖) + 𝑐𝑎𝑀−𝑖)𝜋(𝑖,𝑠+1) + (1 − 𝑎𝑀−𝑖)𝑐𝜋𝑖−𝑠+2])

+ (1 − 𝑎𝑀)𝜋(0,𝑠+1)]  
Where, 
𝒄𝒔: Setup cost per order 
𝒄𝒉: The inventory carrying cost per unit item per unit time 
𝒄𝒘: Waiting cost of a customer in the orbit per unit time 
 
Due to the complex form of the limiting distribution, it is difficult to discuss the properties of the cost function 
𝐶(𝑆, 𝑠,𝑀) analytically. Although we have not established analytically, our experience with considerable numerical 
examples indicates the function, C(S, s, M) to be convex. A typical 3-dimensional plot of C(S, s, M) is presented in 
Figure 1.  

 
Figure-1: 3-dimensional plot of C(S, s, M) 
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We have studied the effect of varying the cost and other system parameters on the optimal values and the results agreed 
with what one would expect. That is, Figure 2 shows that, the cost function C(S, s, M) decreases when the probability of 
choosing the postponed demand from the pool increases and also the cost function C(S, s, M) decreases when the 
replenishment probability increases. 

 
Figure-2: c Vs b on C(S, s, M) 
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