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ABSTRACT 
Let 𝑀 be a prime Γ-ring satisfying a certain assumption and  𝐷 a nonzero derivation on M. Let 𝑓:𝑀 → 𝑀 be a left 
generalized derivation such that  𝑓  is centralizing and commuting on a left ideal 𝐽 of 𝑀. Then we prove that 𝑀 is 
commutative. 
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PRELIMINARIES 
 
Let 𝑀 and Γ be additive abelian groups. If there exists a mapping (𝑥,𝛼,𝑦) → 𝑥𝛼𝑦 of 𝑀 × Γ × 𝑀 → 𝑀, which satisfies 
the conditions 

(i) 𝑥𝛼𝑦 ∈ 𝑀 
(ii) (𝑥 + 𝑦)𝛼𝑧 = 𝑥𝛼𝑧 + 𝑦𝛼𝑧, 𝑥(𝛼 + 𝛽)𝑧 = 𝑥𝛼𝑧 + 𝑥𝛽𝑧, 𝑥𝛼(𝑦 + 𝑧) = 𝑥𝛼𝑦 + 𝑥𝛼𝑧 
(iii) (𝑥𝛼𝑦)𝛽𝑧 = 𝑥𝛼(𝑦𝛽𝑧) for all 𝑥,𝑦, 𝑧 ∈ 𝑀 and 𝛼,𝛽 ∈ Γ, then 𝑀 is called a Γ-ring. 

 
Every ring 𝑀 is a Γ-ring with 𝑀 =Γ. However a Γ-ring need not be a ring. Let 𝑀  be a Γ-ring. Then an additive 
subgroup 𝑈 of 𝑀 is called a left (right) ideal of 𝑀 if  𝑀Γ𝑈 ⊂ 𝑈(𝑈Γ𝑀 ⊂ 𝑈). If 𝑈 is both a left and a right ideal, then 
we say 𝑈 is an ideal of 𝑀. Suppose again that 𝑀 is a Γ-ring. Then 𝑀 is said to be a 2-torsion free if 2𝑥 = 0 implies 
𝑥 = 0 for all 𝑥 ∈ 𝑀. An ideal  𝑃1 of a Γ-ring 𝑀  is said to be prime if for any ideals 𝐴 and 𝐵 of 𝑀, 𝐴Γ𝐵 ⊆ 𝑃1 implies 
𝐴 ⊆ 𝑃1  or 𝐵 ⊆ 𝑃1 . An ideal 𝑃2  of a Γ-ring 𝑀  is said to be semiprime if for any ideal 𝑈  of 𝑀 , 𝑈Γ𝑈 ⊆ 𝑃2  implies    
𝑈 ⊆ 𝑃2 . A Γ-ring 𝑀  is said to be prime if 𝑎Γ𝑀Γ𝑏 = (0) with 𝑎, 𝑏 ∈ 𝑀 , implies 𝑎 = 0 or 𝑏 = 0 and semiprime if 
𝑎Γ𝑀Γ𝑎 = (0)  with 𝑎 ∈ 𝑀  implies 𝑎 = 0 . Furthermore, 𝑀 is said to be commutative Γ-ring if 𝑥𝛼𝑦 = 𝑦𝛼𝑥  for all 
𝑥,𝑦 ∈ 𝑀 and 𝛼 ∈ Γ. Moreover, the set 𝑍(𝑀) = {𝑥 ∈ 𝑀: 𝑥𝛼𝑦 = 𝑦𝛼𝑥 for all 𝑦 ∈ 𝑀 and 𝛼 ∈ Γ} is called the centre of the 
Γ-ring 𝑀. If 𝑀 is a Γ-ring, then [𝑥,𝑦]𝛼 = 𝑥𝛼𝑦 − 𝑦𝛼𝑥  is known as the commutator of 𝑥  and 𝑦 with respect to 𝛼, where 
𝑥,𝑦 ∈ 𝑀 and 𝛼 ∈ Γ. We make the basic commutator identities: 
 [𝑥𝛼𝑦, 𝑧]𝛽 = [𝑥, 𝑧]𝛽𝛼𝑦 + 𝑥𝛼[𝑦, 𝑧]𝛽 and  [𝑥,𝑦𝛼𝑧]𝛽 = [𝑥,𝑦]𝛽𝛼𝑧 + 𝑦𝛼[𝑥, 𝑧]𝛽 , for all 𝑥,𝑦 ∈ 𝑀 and 𝛼 ∈ Γ. We consider 
the following assumption: 
(𝐴)..............𝑥𝛼𝑦𝛽𝑧 = 𝑥𝛽𝑦𝛼𝑧, for all 𝑥,𝑦, 𝑧 ∈ 𝑀 and 𝛼,𝛽 ∈ Γ. An additive mapping 𝐷:𝑀 → 𝑀 is called a derivation if 
𝐷(𝑥𝛼𝑦) = 𝐷(𝑥)𝛼𝑦 + 𝑥𝛼𝐷(𝑦) holds for all 𝑥,𝑦 ∈ 𝑀 and 𝛼 ∈ Γ. A mapping 𝑓 is said to be commuting on a left ideal 𝐽 
of 𝑀 if [𝑓(𝑥), 𝑥]𝛼 = 0 for all 𝑥 ∈ 𝐽 and 𝛼 ∈ Γ and 𝑓  is said to be centralizing if [𝑓(𝑥), 𝑥]𝛼 ∈ 𝑍(𝑀)for all 𝑥 ∈ 𝐽 and  
𝛼 ∈ Γ. An additive mapping 𝑓:𝑀 → 𝑀 is said to be a generalized derivation on 𝑀, if 𝑓(𝑥𝛼𝑦) = 𝑓(𝑥)𝛼𝑦 + 𝑥𝛼𝐷(𝑦) 
holds for all 𝑥,𝑦 ∈ 𝑀  and 𝛼 ∈ Γ, where 𝐷  is a derivation on  𝑀 .  An additive mapping 𝑓:𝑀 → 𝑀  is called a left 
generalized derivation on 𝑀, if 𝑓(𝑥𝛼𝑦) = 𝑥𝛼𝑓(𝑦) + 𝐷(𝑥)𝛼𝑦 holds for all 𝑥,𝑦 ∈ 𝑀 and 𝛼 ∈ Γ, where 𝐷 is a derivation 
on 𝑀. 
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INTRODUCTION 
 
The concept of the Γ-ring was first introduced by Nobusawa[13] and also shown that Γ-rings, more general than rings. 
Bernes [1] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa. Bresar[2] studied 
centralizing mappings and derivations in prime rings. Kyuno[9], Luh[10], Hoque and Paul[5], [6] and others were 
obtained a large numbers of important basic properties of Γ -rings in various ways and determined some more 
remarkable results of Γ-rings. Ceven[3] studied on Jordan left derivations on completely prime Γ-rings. Mayne[12] 
have developed some remarkable result on prime rings with commuting and centralizing. Jaya subba reddy.C et.al [8] 
studied centralizing and commutating left generalized derivation on prime ring is commutative. Hoque and paul [7] 
studied prime gamma rings with centralizing and commuting generalized derivations is a commutative. In this paper, 
we extended some results on prime gamma rings with centralizing and commuting left generalized derivations is a 
commutative. 
 
Some preliminary results 
 
We have to make some use of the following well-known results 
 
Remark 1: Let 𝑀 be a prime Γ-ring. If 𝑎𝛼𝑏 ∈ 𝑍(𝑀) with 0 ≠ 𝑎 ∈ 𝑍(𝑀), then 𝑏 ∈ 𝑍(𝑀). 
 
Remark 2: Let 𝑀 be a prime Γ-ring and  𝐽 a nonzero left ideal of 𝑀. If 𝐷 is a nonzero derivation on 𝑀, then 𝐷 is also a 
nonzero on  𝐽. 
 
Remark 3: Let 𝑀 be a prime Γ-ring and  𝐽 a nonzero left ideal of 𝑀. If  𝐽 is commutative, then 𝑀 is also commutative. 
 
Lemma 1: Suppose  𝑀 is a prime  Γ-ring satisfying the assumption (𝐴) and 𝐷:𝑀 → 𝑀 be a derivation. For an element  
𝑎 ∈ 𝑀, if  𝑎𝛼𝐷(𝑥) = 0,   for all 𝑥 ∈ 𝑀 and  𝛼 ∈ Γ, then either 𝑎 = 0 or 𝐷 = 0. 
 
Proof: By our assumption, 𝑎𝛼𝐷(𝑥) = 0, for all 𝑥 ∈ 𝑀, and 𝛼 ∈ Γ. 
 
Replacing 𝑥 by 𝑥𝛽𝑦 in above equation, we get 

𝑎𝛼𝐷(𝑥𝛽𝑦) = 0 
𝑎𝛼(𝐷(𝑥)𝛽𝑦 + 𝑥𝛽𝐷(𝑦)) = 0 
𝑎𝛼𝐷(𝑥)𝛽𝑦 + 𝑎𝛼𝑥𝛽𝐷(𝑦) = 0 
𝑎𝛼𝑥𝛽𝐷(𝑦) = 0, for all 𝑥,𝑦 ∈ 𝑀, and 𝛼,𝛽 ∈ Γ. 

 
If 𝐷 is not a zero, that is, if 𝐷(𝑦) ≠ 0, for some 𝑦 ∈ 𝑀. 
 
By definition of prime Γ-ring, then  𝑎 = 0. Hence proved. 
 
Lemma 2: Suppose  𝑀 is a prime Γ-ring satisfying the assumption (𝐴) and 𝐽 a nonzero left ideal of 𝑀. If  𝑀 has a 
derivation 𝐷 which is zero on 𝐽, then 𝐷 is zero on 𝑀. 
 
Proof: By the hypothesis, 𝐷(𝐽) = 0 
 
Replacing  𝐽  by 𝑀ΓJ in above equation then, we get 

𝐷( 𝑀ΓJ) = 0 
𝐷(𝑀)ΓJ + MΓD(J) = 0 
𝐷(𝑀)ΓJ = 0. 

 
By Lemma 1, 𝐷 must be zero, since 𝐽 is nonzero. 
 
Lemma 3[7]: Suppose  𝑀 is a prime Γ-ring satisfying the assumption (𝐴) and 𝐽 a nonzero left ideal of 𝑀. If 𝐽 is 
commutative on 𝑀, then 𝑀 is commutative. 
 
Lemma 4:  Suppose  𝑀 is a prime Γ-ring and 𝑓:𝑀 → 𝑀 be a additive mapping. If 𝑓 is centralizing on a left ideal 𝐽 of 
𝑀, then 𝑓(𝑎) ∈ 𝑍(𝑀), for all 𝑎 ∈ 𝐽 ∪ 𝑍(𝑀). 
 
Proof: 𝑓 is a centralizing a on left ideal 𝐽 of 𝑀, we have  [𝑓(𝑎), 𝑎]𝛼 ∈ 𝑍(𝑀) for all 𝑎 ∈ 𝐽 and 𝛼 ∈ Γ. 
 
By linearization, we have 

𝑎, 𝑏 ∈ 𝐽 ⟹ 𝑎 + 𝑏 ∈ 𝐽, for all 𝛼 ∈ Γ. 
 [𝑓(𝑎 + 𝑏), 𝑎 + 𝑏]𝛼 ∈ 𝑍(𝑀) 
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𝑓 is a additive mapping then 

 [𝑓(𝑎) + 𝑓(𝑏), 𝑎 + 𝑏]𝛼 ∈ 𝑍(𝑀) 
 [𝑓(𝑎), 𝑎]𝛼 + [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏), 𝑎]𝛼 + [𝑓(𝑏), 𝑏]𝛼 ∈ 𝑍(𝑀) 

 
𝑓 is a centralizing on left ideal 𝐽 of 𝑀 then, we get 

[𝑓(𝑎), 𝑎]𝛼 = 0, [𝑓(𝑏), 𝑏]𝛼 = 0 
 [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏),𝑎]𝛼 ∈ 𝑍(𝑀).                                                                                                                       (1) 

 
If 𝑎 ∈ 𝑍(𝑀), then equation (1) becomes 

[𝑓(𝑎), 𝑏]𝛼 ∈ 𝑍(𝑀). 
 
Replacing 𝑏 by 𝑓(𝑎)𝛽𝑏 in above equation then, we get 

 [𝑓(𝑎), 𝑓(𝑎)𝛽𝑏]𝛼 ∈ 𝑍(𝑀) 
 [𝑓(𝑎), 𝑓(𝑎)]𝛼𝛽𝑏 + 𝑓(𝑎)𝛽[𝑓(𝑎), 𝑏]𝛼 ∈ 𝑍(𝑀) 
 𝑓(𝑎)𝛽[𝑓(𝑎), 𝑏]𝛼 ∈ 𝑍(𝑀).  If  [𝑓(𝑎), 𝑏]𝛼 = 0. 

Then 𝑓(𝑎) ∈ 𝐶Γ𝑀(𝐽). 
 
The centralizer of 𝐽 in 𝑀 and hence 𝑓(𝑎) ∈ 𝑍(𝑀). Otherwise, if  [𝑓(𝑎), 𝑏]𝛼 ≠ 0, remark 1 follows that 𝑓(𝑎) ∈ 𝑍(𝑀). 
Hence the lemma. 
 
Theorem 1:  Let  𝑀 be a prime  Γ-ring satisfying the assumption (𝐴) and 𝐷 a nonzero derivation on 𝑀. If 𝑓 is a left 
generalized derivation on a left ideal  𝐽 of 𝑀 such that 𝑓 is commuting on 𝐽, then 𝑀 is commutative. 
 
Proof: Since 𝑓  is commuting on 𝐽, we have 

  [𝑓(𝑎), 𝑎]𝛼 = 0, for all 𝑎 ∈ 𝐽 and 𝛼 ∈ Γ. 
 
Replacing  𝑎 by 𝑎 + 𝑏 in above equation, we get 

 [𝑓(𝑎 + 𝑏), 𝑎 + 𝑏]𝛼 = 0 
 [𝑓(𝑎) + 𝑓(𝑏), 𝑎 + 𝑏]𝛼 = 0 
 [𝑓(𝑎), 𝑎]𝛼 +  [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏), 𝑎]𝛼 +  [𝑓(𝑏), 𝑏]𝛼 = 0 
 [𝑓(𝑎), 𝑏]𝛼 +  [𝑓(𝑏), 𝑎]𝛼 = 0                                                                                                                             (2) 

 
Replacing 𝑏 by 𝑎𝛽𝑏 in equation (2), we get 

 [𝑓(𝑎), 𝑎𝛽𝑏]𝛼 +  [𝑓(𝑎𝛽𝑏), 𝑎]𝛼 = 0 
 [𝑓(𝑎), 𝑎]𝛼𝛽𝑏 + 𝑎𝛽 [𝑓(𝑎), 𝑏]𝛼 + [𝑎𝛽𝑓(𝑏) + 𝐷(𝑎)𝛽𝑏, 𝑎]𝛼 = 0 
 [𝑓(𝑎), 𝑎]𝛼𝛽𝑏 + 𝑎𝛽 [𝑓(𝑎), 𝑏]𝛼 +  [𝑎𝛽𝑓(𝑏), 𝑎]𝛼 +  [𝐷(𝑎)𝛽𝑏, 𝑎]𝛼 = 0 
[𝑓(𝑎), 𝑎]𝛼𝛽𝑏 + 𝑎𝛽 [𝑓(𝑎), 𝑏]𝛼 + [𝑎, 𝑎]𝛼𝛽𝑓(𝑏) +  aβ[𝑓(𝑏), 𝑎]𝛼 + [𝐷(𝑎)𝛽𝑏, 𝑎]𝛼 = 0  
 

𝑓 is  centralizer then, [𝑓(𝑎), 𝑎]𝛼𝛽𝑏 = 0,  [𝑎, 𝑎]𝛼𝛽𝑓(𝑏) = 0. 
 𝑎𝛽 [𝑓(𝑎), 𝑏]𝛼 +  aβ[𝑓(𝑏), 𝑎]𝛼 + [𝐷(𝑎)𝛽𝑏, 𝑎]𝛼 = 0 
 𝑎𝛽( [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏), 𝑎]𝛼) +  [𝐷(𝑎)𝛽𝑏, 𝑎]𝛼 = 0 

 
Using equation (2) in above equation, we get 

 [𝐷(𝑎)𝛽𝑏, 𝑎]𝛼 = 0.                                                                                                                                            (3) 
 
Replacing 𝑏 by 𝑎𝛾𝑟 in above equation (3), we get 

 [𝐷(𝑎)𝛽𝑎𝛾𝑟, 𝑎]𝛼 = 0 
 [𝐷(𝑎), 𝑎]𝛼𝛽𝑎𝛾𝑟 + 𝐷(𝑎)𝛽[𝑎𝛾𝑟, 𝑎]𝛼 = 0 
 [𝐷(𝑎), 𝑎]𝛼𝛽𝑎𝛾𝑟 + 𝐷(𝑎)𝛽 [𝑎, 𝑎]𝛼𝛾𝑟 + 𝐷(𝑎)𝛽𝑎𝛾 [𝑟, 𝑎]𝛼 = 0 
 𝐷(𝑎)𝛽𝑎𝛾 [𝑟, 𝑎]𝛼 = 0, for all 𝑎 ∈ 𝐽, 𝑟 ∈ 𝑀 and 𝛼,𝛽, 𝛾,∈ Γ. 

 
Since 𝑀 is prime Γ-ring, thus 𝐷(𝑎) = 0  or [𝑟, 𝑎]𝛼 = 0.  
 
Since  𝐷 is nonzero derivation on 𝑀, then by lemma 2, 𝐷 is nonzero on  𝐽. 
 
Suppose 𝐷(𝑎) ≠ 0 for some 𝑎 ∈ 𝐽, then 𝑎 ∈ 𝑍(𝑀). 
 
Let 𝑐 ∈ 𝐽  with  𝑐 ≠ 𝑍(𝑀). Then 𝐷(𝑐) = 0 and 𝑎 + 𝑐 ∉ 𝑍(𝑀), that is, 𝐷(𝑎 + 𝑐) = 0 and so 𝐷(𝑎) = 0, which is a 
contradiction. Thus 𝑐 ∈ 𝑍(𝑀) for all 𝑐 ∈ 𝐽. Hence 𝐽 is commutative and  hence by lemma 3, 𝑀 is  commutative. Hence 
the theorem. 
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Theorem 2: Let  𝑀 be a prime  Γ-ring satisfying the assumption (𝐴)  and 𝐽 a left ideal of 𝑀 with 𝐽 ∩ 𝑍(𝑀) ≠ 0. If 𝑓 is 
a left generalized derivation on 𝑀  with associated nonzero derivation 𝐷  such that 𝑓  is commuting on 𝐽, then 𝑀  is 
commutative. 
 
Proof: we claim that, 𝑍(𝑀) ≠ 0 because of 𝑓 is commuting on 𝐽 and the proof is complete.  
 
Now from equation (1), we get 

 [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏),𝑎]𝛼 ∈ 𝑍(𝑀) 
 
We replace 𝑎 by 𝑏𝛽𝑐 with 0 ≠ 𝑐 ∈ 𝑍(𝑀), then we get 

[𝑓(𝑏𝛽𝑐), 𝑏]𝛼 + [𝑓(𝑏), 𝑏𝛽𝑐]𝛼 ∈ 𝑍(𝑀) 
[𝑏𝛽𝑓(𝑐) + 𝐷(𝑏)𝛽𝑐, 𝑏]𝛼 +  [𝑓(𝑏), 𝑏]𝛼𝛽𝑐 +  bβ[𝑓(𝑏), 𝑐]𝛼 ∈ 𝑍(𝑀) 
[𝑏𝛽𝑓(𝑐), 𝑏]𝛼 +  [𝐷(𝑏)𝛽𝑐, 𝑏]𝛼 + 𝑏𝛽[𝑓(𝑏), 𝑐]𝛼 ∈ 𝑍(𝑀) 
[𝑏, 𝑏]𝛼𝛽𝑓(𝑐) + 𝑏𝛽 [𝑓(𝑐), 𝑏]𝛼 +  [𝐷(𝑏), 𝑏]𝛼𝛽𝑐 + 𝐷(𝑏)𝛽 [𝑐, 𝑏]𝛼 + [𝑓(𝑏), 𝑏]𝛼𝛽𝑐 + 𝑏𝛽 [𝑓(𝑏), 𝑐]𝛼 ∈ 𝑍(𝑀) 
𝑐 ∈ 𝑍(𝑀) ⟹  [𝑐, 𝑏]𝛼 = 0 for all 𝑏 ∈ 𝐽, [𝑏, 𝑏]𝛼 = 0 

 
Since  𝑐 ∈ 𝑍(𝑀)  ⟹ 𝑓 is a centralizer on  𝐽. 

 𝑓(𝑏) ∈ 𝑍(𝑀) ⟹ [𝑓(𝑏), 𝑐]𝛼 = 0. 
 𝑏𝛽 [𝑓(𝑐), 𝑏]𝛼 +  [𝐷(𝑏), 𝑏]𝛼𝛽𝑐 + [𝑓(𝑏), 𝑏]𝛼𝛽𝑐 ∈ 𝑍(𝑀) 
 

From lemma 1, 𝑓(𝑐) ∈ 𝑍(𝑀) and hence  [𝐷(𝑏), 𝑏]𝛼𝛽𝑐 + [𝑓(𝑏), 𝑏]𝛼𝛽𝑐 ∈ 𝑍(𝑀). Since 𝑓 is a centralizing on  𝐽, we have 
[𝑓(𝑏), 𝑏]𝛼𝛽𝑐  ∈ 𝑍(𝑀)  and consequently  [𝐷(𝑏), 𝑏]𝛼𝛽𝑐 ∈ 𝑍(𝑀) . As 𝑐  is nonzero, remark 1 follows that         
[𝐷(𝑏), 𝑏]𝛼 ∈ 𝑍(𝑀). This implies 𝐷 is centralizing on 𝐽 and hence we conclude that  𝑀 is commutative. 
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