
International Journal of Mathematical Archive-8(7), 2017, 121-128 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 8(7), July – 2017                                                                                                               121 

 
On b*ĝ - continuous functions and b*ĝ - open maps in Topological Spaces 

 
K. BALA DEEPA ARASI*1, M. MARI VIDHYA2 

 
1Assistant Professor of Mathematics,  

A. P. C. Mahalaxmi College for Women, Thoothukudi, (T.N.), India. 
 

2PG Student, A.P.C. Mahalaxmi College for Women, Thoothukudi, (T.N.), India. 
 

(Received On: 24-06-17; Revised & Accepted On: 18-07-17) 
 
 

ABSTRACT 
In this paper, we define new class of functions namely b*ĝ-continuous functions and b*ĝ-open maps and we prove 
some of their basic properties. Also, we introduce a new class of b*ĝ-homeomorphisms and we prove some of their 
relationship among other homeomorphisms. Throughout this paper f: (X, τ) → (Y, σ) is a function from a topological 
space (X, τ) to a topological space (Y, σ). 
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1. INTRODUCTION 
 
In 1996, D. Andrijevic[2] introduced b-open sets in topology and studied its properties. In 1970, N.Levine[9] 
introduced generalized closed sets and studied their basic properties. In 2003, M.K.R.S.Veerakumar[16] defined          
ĝ-closed sets in topological spaces and studied their properties. b*-closed sets have been introduced and investigated by 
Muthuvel[11] in 2012. In 2016, K.Bala Deepa Arasi and G.Subasini[4] introduced b*ĝ -closed sets and studied its 
properties. K.Balachandran et al introduced the concept of generalized continuous maps in Topological spaces. 
 
These concepts motivate us to define a new version of maps b*ĝ-continuous, b*ĝ-irresolute and b*ĝ-open maps. Also, 
we prove some properties of these functions and establish the relationships between b*ĝ-continuous and other 
continuous functions. 
 
2. PRELIMINARIES 
 
Throughout this paper (𝑋, 𝜏) (or simply X) represents topological spaces on which no separation axioms are assumed 
unless otherwise mentioned. For a subset A of (𝑋, 𝜏), Cl(A), Int(A) and Ac denote the closure of A, interior of A and 
the complement of A respectively. We are giving some basic definitions. 
 
Definition: 2.1 A subset A of a topological space (𝑋, 𝜏) is called  

1. a semi-open set[10] if A⊆Cl(Int (A)). 
2. an 𝛼-open set[5] if A⊆Int(Cl(Int(A))). 
3. a b-open set [2] if A⊆Cl(Int(A)) ∪ Int(Cl(A)). 
4. a regular open set[14] if A=Int(Cl(A)). 

 
The complement of semi-open (resp. 𝛼-open, regular open) set is called semi-closed (resp. 𝛼-closed, regular closed) set. 
The intersection of all semi-closed (resp. 𝛼-closed, regular closed) sets of X containing A is called  the semi-closure 
(resp. 𝛼-closure, regular closure) of A and is denoted by sCl(A) (resp. 𝛼Cl(A), rCl(A)). The family of all b*ĝ-open 
(resp. 𝛼-open, semi-open, b-open, regular open) subsets of a space X is denoted by b*ĝO(X) (resp. 𝛼O(X), sO(X), 
bO(X), rO(X)). 
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Definition 2.2: A subset A of a topological space (𝑋, 𝜏) is called 

1. a generalized closed set (briefly g-closed) [11] if Cl(A) ⊆U whenever A⊆U and U is open in X. 
2. a gs-closed set[3] if sCl(A) ⊆ U whenever A⊆U and U is open in X. 
3. a gb-closed set[1] if bCl(A) ⊆ U whenever A⊆U and U is open in X. 
4. a ĝ-closed set[17] if Cl(A) ⊆ U whenever A⊆U and U is semi-open in X. 
5. a bĝ-closed set[16] if bCl(A) ⊆ U whenever A⊆U and U is ĝ–open in X. 
6. a gr*-closed set[9] if rCl(A) ⊆ U whenever A⊆U and U is g-open in X. 
7. a g*s-closed set[15] if sCl(A) ⊆ U whenever A⊆U and U is gs-open in X. 
8. a (gs)*-closed set[7] if Cl(A) ⊆ U whenever A⊆U and U is gs-open in X. 
9. a b*ĝ-closed set[4] if b*Cl(A) ⊆ U whenever A⊆U and U is ĝ–open in X. 

 
Definition 2.3: A function 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) is called a 

1. continuous [18] if 𝑓−1(𝑉) is closed in X for every closed set V in Y. 
2. semi-continuous [8] if 𝑓−1(𝑉) is semi-closed in X for every closed set V in 𝑌. 
3. 𝛼-continuous [5] if 𝑓−1(𝑉) is 𝛼-closed in X for every closed set V in Y. 
4. regular continuous[13] if 𝑓−1(𝑉) is regular closed in X for every closed set V in Y. 
5. gs-continuous [6] if 𝑓−1(𝑉) is gs-closed in X for every closed set V in Y. 
6. gb-continuous [19] if 𝑓−1(𝑉) is gb-closed in X for every closed set V in Y. 
7. bĝ-continuous [17] if 𝑓−1(𝑉) is bĝ -closed in X for every closed set V in Y.   
8. g*s-continuous[15] if 𝑓−1(𝑉) is g*s-closed in X for every closed set V in Y. 
9. gr*-continuous [9] if  𝑓−1(𝑉) is gr*-closed in X for every closed set V in Y. 
10. (gs)*-continuous [7] if  𝑓−1(𝑉) (gs)*-closed in X for every closed set V in Y. 

 
Definition 2.4: A function 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) is called a 

1. open map[18] if  𝑓(𝑉) is open in Y for every open set V in X. 
2. semi-open map[8] if  𝑓(𝑉) is semi-open in Y for every open set V in X. 
3. 𝛼-open map[5] if  𝑓(𝑉) is 𝛼-open in Y for every open set V in X. 
4. regular open map[13] if 𝑓(𝑉) is regular open in Y for every open set V in X. 
5. gs-open map[6] if  𝑓(𝑉) is gs-open in Y for every open set V in X. 
6. gb-open map[19] if  𝑓(𝑉) is gb-open in Y for every open set V in X. 
7. bĝ-open map[17] if  𝑓(𝑉) is bĝ-open in Y for every open set V in X. 
8. g*s-open map[15] if  𝑓(𝑉) is g*s-open in Y for every open set V in X. 
9. gr*-open map[9] if  𝑓(𝑉) is gr*-open in Y for every open set V in X. 
10. (gs)*-open map[7] if  𝑓(𝑉) is (gs)*-open in Y for every open set V in X. 

 
Definition 2.5: A space (𝑋, 𝜏) is called a 

1. Tb-space [3], if every gs-closed set in it is closed. 
2. Tgs-space [1], if every gb-closed set in it is b-closed. 
3. Tbĝ-space [16], if every bĝ-closed set in it is b-closed. 
4. T  bĝ

∗ -space [16], if every bĝ-closed set in it is closed.  
5. Tb*ĝ-space [4], if every b*ĝ-closed set in it is closed. 

 
Remark 2.6: The family of all b*ĝ-closed (resp.𝛼-closed, semi-closed, b-closed, regular closed) subsets of a space 𝑋 is 
denoted by b*ĝC(𝑋) (resp. 𝛼C(𝑋), sC(𝑋), bC(𝑋), rC(𝑋)).   
 
3. b*ĝ-CONTINUOUS AND b*ĝ-IRRESOLUTE  FUNCTIONS 
 
We introduce the following definitions. 
 
Definition 3.1: A map 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) is said to be b*ĝ-continuous map if the inverse image of every closed set in 
(𝑌,𝜎) is b*ĝ-closed in (𝑋, 𝜏).  
 
That is, 𝑓−1(𝑉) is b*ĝ-closed of (𝑋, 𝜏) for every closed set V of (𝑌,𝜎). 
 
Example 3.2: Let 𝑋 = 𝑌 = {a,b,c} with topologies 𝜏 = {𝑋,𝜙,{a},{b},{a, b}} and 𝜎 = {𝑌,𝜙,{a},{b, c}}. Define a map 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑐. Here, 𝑓 is b*ĝ-continuous, since the inverse images of C(𝑌) {b, c} 
and {a} are {a,c} and {b} respectively which are b*ĝC(𝑋). 
 
Definition 3.3: A map 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) is said to be b*ĝ-irresolute map if  the inverse image of every b*ĝ -closed set 
in (𝑌,𝜎) is b*ĝ-closed in (𝑋, 𝜏).  
 
That is, 𝑓−1(𝑉) is b*ĝ-closed of (𝑋, 𝜏) for every b*ĝ-closed set V of (𝑌,𝜎). 
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Example 3.4: Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {b}, {c}, {b, c}} and 𝜎 = {𝑌, 𝜙, {a, c}}. Define a map 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑎,𝑓(𝑐) = 𝑏. Here, 𝑓 is b*ĝ-continuous, since the inverse images of b*ĝC(𝑌)   
{b, c}, {a, b} and {b} are {a, b},{a, c} and {a} respectively which are b*ĝC(𝑋). 
 
Proposition 3.5: 

a) Every continuous map is b*ĝ-continuous. 
b) Every 𝛼-continuous map is b*ĝ-continuous. 
c) Every semi-continuous map is b*ĝ-continuous. 
d) Every regular-continuous map is b*ĝ-continuous. 
e) Every gr*-continuous map is b*ĝ-continuous. 
f) Every g*s-continuous map is b*ĝ-continuous. 
g) Every (gs)*-continuous map is b*ĝ-continuous. 

 
Proof: 

a) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is continuous, 𝑓−1(𝑉) is closed 
set in (𝑋, 𝜏). By proposition 3.4 in [4], 𝑓−1(𝑉) is b*ĝ-closed in (𝑋, 𝜏). Hence 𝑓 is b*ĝ-continuous. 

b) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be 𝛼-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is 𝛼-continuous, 𝑓−1(𝑉) is 𝛼-
closed set in (𝑋, 𝜏). By proposition 3.6 in [4], 𝑓−1(𝑉) is b*ĝ-closed in (𝑋, 𝜏). Hence 𝑓 is b*ĝ-continuous. 

c) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be semi-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is semi-continuous, 𝑓−1(𝑉) 
is semi-closed set in(𝑋, 𝜏). By proposition 3.6 in [4], 𝑓−1(𝑉) is b*ĝ-closed in (𝑋, 𝜏). Hence 𝑓 is b*ĝ-
continuous. 

d) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be regular-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is regular-continuous, 
𝑓−1(𝑉) is regular-closed set in (𝑋, 𝜏). By proposition 3.6 in [4], 𝑓−1(𝑉) is b*ĝ -closed in (𝑋, 𝜏). Hence 𝑓 is 
b*ĝ-continuous. 

e) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be gr*-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is gr*-continuous, 𝑓−1(𝑉) is 
gr*-closed set in (𝑋, 𝜏). By proposition 3.16 in [4], 𝑓−1(𝑉) is b*ĝ-closed in (𝑋, 𝜏). Hence 𝑓 is b*ĝ-continuous. 

f) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be g*s-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is g*s-continuous, 𝑓−1(𝑉) is 
g*s-closed set in (𝑋, 𝜏). By proposition 3.18 in [4], 𝑓−1(𝑉) is b*ĝ-closed in (𝑋, 𝜏). Hence 𝑓 is b*ĝ-
continuous. 

g) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be (gs)*-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is (gs)*-continuous, 
𝑓−1(𝑉) is (gs)*-closed set in (𝑋, 𝜏). By proposition 3.20 in [4], 𝑓−1(𝑉) is b*ĝ-closed in (𝑋, 𝜏). Hence 𝑓 is 
b*ĝ-continuous. 

  
The following examples show that the converse of the above proposition need not be true. 
 
Example 3.6: 

a) Let 𝑋 = 𝑌 = {a, b, c} with topologies = {𝑋, {a}} and 𝜎 = {𝑌, 𝜙, {a}, {a, b},{a, c}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏. Here, 𝑓 is b*ĝ-continuous but not continuous, since the 
inverse image of C(𝑌) {b, c},{c} and {b} are {b, c},{b} and {c} which are b*ĝC(𝑋)  but not C(𝑋). 

b) Let 𝑋=𝑌={a, b, c} with topologies 𝜏={𝑋,𝜙,{a},{c},{a, c},{b, c}} and 𝜎 = {𝑌, 𝜙,{a},{b, c}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑏. 𝛼C(𝑋) = {𝑋,𝜙, {a},{a, b},{b, c}}. Here, 𝑓 is              
b*ĝ-continuous but not 𝛼-continuous, since the inverse image of C(𝑌) {b, c} and {a} are {a, b} and {b} which 
are  b*ĝC(𝑋)  but not 𝛼C(𝑋). 

c) Let 𝑋=𝑌={a, b, c} with topologies 𝜏 = {𝑋,𝜙,{a, c}} and 𝜎 = {𝑌,𝜙,{a}}. Define a function 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) 
by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑏. sC(𝑋)={𝑋, 𝜙,{b}}. Here, 𝑓 is b*ĝ -continuous but not semi-continuous, 
since the inverse image of C(𝑌) {b,c} is {a,b} which is b*ĝC(𝑋)  but not sC(𝑋). 

d) Let 𝑋=𝑌={a, b, c} with topologies 𝜏 ={𝑋, 𝜙,{a},{b},{a, b}} and 𝜎 ={𝑌,𝜙, {a},{a, b},{a, c}}. Define a 
function 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏,𝑓(𝑏) = 𝑐,𝑓(𝑐) = 𝑎. rC(𝑋) = {𝑋,𝜙, {a, c},{b, c}}. Here, 𝑓 is         
b*ĝ-continuous but not regular continuous, since the inverse  image of C(𝑌) {b, c}, {c} and {b} are {a, c}, {a} 
and {c} which are b*ĝC(𝑋)  but not rC(𝑋). 

e) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {b}} and 𝜎 = {𝑌, 𝜙, {c}, {a, b}}. Define a function      
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by (𝑎) = 𝑐 , 𝑓(𝑏) = 𝑏, 𝑓(𝑐) = 𝑎. gr*C(𝑋) = {𝑋,𝜙,{a, c}}. Here, 𝑓 is b*ĝ -continuous but 
not gr*-continuous, since the inverse image of C(𝑌) {a, b} and {c} are {b, c} and {a} which are b*ĝC(𝑋)  but 
not gr*C(𝑋). 

f) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {b}} and 𝜎 = {𝑌, 𝜙, {c}, {a, b}}. Define a function        
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by (𝑎) = 𝑐 , 𝑓(𝑏) = 𝑏, 𝑓(𝑐) = 𝑎. g*sC(𝑋) = {𝑋,𝜙,{a, c}}. Here, 𝑓 is b*ĝ -continuous but 
not g*s-continuous, since the inverse image of C(𝑌) {a,b} and {c} are {b, c} and {a} which are b*ĝ C(𝑋) but 
not g*sC(𝑋). 

g) Let 𝑋 = 𝑌 = {a, b, c} with topologies = {𝑋, {b}, {c}, {b, c}} and 𝜎 = {𝑌, 𝜙, {a, c}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑎. (gs)*C(𝑋)= {𝑋,𝜙, {a},{a, b},{a, c}}. Here, 𝑓 is b*ĝ -
continuous but not (gs)*-continuous, since the inverse image of C(𝑌) {b} is {c} which is b*ĝC(𝑋) but not 
(gs)*C(𝑋). 
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Proposition: 3.7 

a) Every b*ĝ-continuous is gb-continuous.  
b) Every b*ĝ-continuous is gs-continuous. 
c) Every b*ĝ-continuous is bĝ-continuous. 

 
Proof: 

a) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous,𝑓−1(𝑉) is 
b*ĝ-closed set in (𝑋, 𝜏). By proposition 3.12 in [4], 𝑓−1(𝑉) is gb-closed in (𝑋, 𝜏). Hence 𝑓 is gb-continuous. 

b) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous, 𝑓−1(𝑉) is 
b*ĝ-closed set in(𝑋, 𝜏). By proposition 3.8 in [4], 𝑓−1(𝑉) is gs-closed in (𝑋, 𝜏). Hence 𝑓 is gs-continuous. 

c) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous,𝑓−1(𝑉) is 
b*ĝ-closed set in (𝑋, 𝜏). By proposition 3.10 in [4], 𝑓−1(𝑉) is bĝ-closed in (𝑋, 𝜏). Hence 𝑓 is bĝ-continuous. 

 
The following examples show that the converse of the above proposition need not be true. 
 
Example: 3.8 

a) Let 𝑋 = 𝑌 = {a, b,  c} with topologies 𝜏 = {𝑋,𝜙,{a, c}} and 𝜎 = {𝑌,𝜙,{a},{b}, {a, b},{a, c}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑏. b*ĝC(X)= {𝑋,𝜙, {b},{a, b},{b, c}} and gbC(𝑋)={𝑋, 
𝜙,{a}, {b},{c },{a, b},{b, c}}. Here, 𝑓 is gb-continuous but not b*ĝ -continuous, since the inverse image of 
C(𝑌) {b, c},{a, c},{c} and {b} are {a, b},{b, c},{b} and {a} which are gbC(𝑋) but not b*ĝC(𝑋).  

b) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {a}, {b, c}} and 𝜎 = {𝑌, 𝜙, {a}}. Define a function 𝑓: (𝑋, 𝜏) →
(𝑌,𝜎) by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑏. b*ĝC(𝑋)={𝑋,𝜙,{a},{b, c}} and gsC(𝑋)={𝑋,𝜙,{a},{b}, {c},{a, b}, 
{b, c},{a, c} }. Here, 𝑓 is gs-continuous but not b*ĝ -continuous, since the inverse image of C(𝑌) {b, c} is     
{a, b} which is gsC(𝑋) but not b*ĝC(𝑋).  

c) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋,,{c},{a, b}} and 𝜎 = {𝑌,𝜙,{a}}. Define a function           
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑐. b*ĝC(𝑋)={𝑋,𝜙,{c},{a, b}} and bĝC(𝑋)={𝑋,𝜙,{a}, 
{b},{c}, {a, b},{b, c},{a, c} }. Then 𝑓 is bĝ-continuous but not b*ĝ -continuous, since the inverse image of 
C(𝑌) {b, c} is {a, c} which is bĝC(𝑋) but not b*ĝC(𝑋). 

 
Remark: 3.9 The following diagram shows the relationships of b*ĝ-continuous functions with other known existing 
functions. A→B represents A implies B but not conversely. 
 

 
 
Proposition 3.10: Every b*ĝ-irresolute is b*ĝ-continuous. 
 
Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-irresolute. Let V be closed in (𝑌,𝜎). By proposition 3.4 in [4], V is b*ĝ-closed in 
(𝑌,𝜎). Since 𝑓 is b*ĝ-irresolute, 𝑓−1(𝑉) is a b*ĝ-closed set in (𝑋, 𝜏). Hence 𝑓 is b*ĝ-continuous. 
 
The following example shows that the converse of the above proposition need not be true. 
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Example 3.11: Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {a, c}} and 𝜎 = {𝑌, 𝜙,  {b}}. Define a function   
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑐. b*ĝC(𝑋)= {𝑋,𝜙, {b},{a, b},{b, c}} and b*ĝC(𝑌)={𝑌,𝜙,{a},  
{c},{a, b},{b, c},{a, c}}. Here, 𝑓 is b*ĝ-continuous but not b*ĝ -irresolute, since the inverse image of C(𝑌) {a,c} is    
{b, c} which is b*ĝC( 𝑋) but the inverse image of b*ĝC( 𝑌) {a},{c}, {a, b},{b, c} and {a, c} are {b},{c},{a, b},{a, c} 
and {b, c} which are not b*ĝC(𝑋).  
 
Proposition 3.12: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ-continuous map. If (𝑋, 𝜏) is Tb*ĝ -space then  𝑓 is continuous. 
 
Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous, 𝑓−1(𝑉) is  
b*ĝ-closed set in (𝑋, 𝜏). Since (𝑋, 𝜏) is Tb*ĝ -space, 𝑓−1(𝑉) is closed set in (𝑋, 𝜏). Hence 𝑓 is continuous. 
 
Proposition 3.13: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ-continuous map. If (𝑋, 𝜏) is Tbĝ-space then 𝑓 is b-continuous. 
 
Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous, 𝑓−1(𝑉) is 
b*ĝ-closed set in (𝑋, 𝜏). By proposition 3.10 in [4], 𝑓−1(𝑉) is bĝ-closed set in (𝑋, 𝜏). Since (𝑋, 𝜏) is Tbĝ-space, 𝑓−1(𝑉) 
is b-closed set in (𝑋, 𝜏). Hence 𝑓 is b-continuous. 
 
Proposition 3.14: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ-continuous map. If (𝑋, 𝜏) is Tgs-space then 𝑓 is b-continuous. 
 
Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous, 𝑓−1(𝑉) is 
b*ĝ-closed set in (𝑋, 𝜏). By proposition 3.12 in [4], 𝑓−1(𝑉) is gb-closed set in (𝑋, 𝜏). Since (𝑋, 𝜏) is Tgs-space, 𝑓−1(𝑉) 
is b-closed set in (𝑋, 𝜏). Hence 𝑓 is b-continuous. 
 
Proposition 3.15: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ-continuous map. If (𝑋, 𝜏) is Tb-space  then  𝑓 is continuous. 
 
Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous, 𝑓−1(𝑉) is 
b*ĝ-closed set in (𝑋, 𝜏). By proposition 3.8 in [4], 𝑓−1(𝑉) is gs-closed set in (𝑋, 𝜏). Since (𝑋, 𝜏) is Tb-space, 𝑓−1(𝑉) is 
closed set in (𝑋, 𝜏). Hence 𝑓 is continuous. 
 
Proposition 3.16: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ-continuous map. If (𝑋, 𝜏) is T*

bĝ -space  then  𝑓 is continuous. 
 
Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be b*ĝ-continuous. Let V be a closed set in (𝑌,𝜎). Since 𝑓 is b*ĝ-continuous, 𝑓−1(𝑉) is 
b*ĝ-closed set in (𝑋, 𝜏). By proposition 3.10 in [4], 𝑓−1(𝑉) is bĝ-closed set in (𝑋, 𝜏). Since (𝑋, 𝜏) is T*

bĝ-space, 
𝑓−1(𝑉) is closed set in (𝑋, 𝜏). Hence 𝑓 is continuous. 
 
4. b*ĝ-OPEN MAPS and b*ĝ-CLOSED MAPS 
 
We introduce the following definitions. 
 
Definition 4.1: Let 𝑋 and 𝑌 be two topological spaces. A map 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) is called b*ĝ -open map if for each 
open set V of 𝑋, 𝑓(𝑉) is b*ĝ-open set in 𝑌. 
 
That is, image of every open set in (𝑋, 𝜏) is b*ĝ-open in (𝑌,𝜎). 
 
Definition 4.2: Let 𝑋 and 𝑌 be two topological spaces. A map 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) is called b*ĝ -closed map if for each 
closed set V of 𝑋, 𝑓(𝑉) is b*ĝ-closed set in 𝑌. 
 
That is, image of every closed set in (𝑋, 𝜏) is b*ĝ-closed in (𝑌,𝜎). 
 
Example 4.3: Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {a},{b, c}} and  𝜎 ={𝑌, 𝜙,{a}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎,  𝑓(𝑐) = 𝑐. Then 𝑓 is b*ĝ-open map, since the image of O(𝑋) {a},{b, c} are 
{b},{a, c} which are b*ĝO(𝑌). Also, 𝑓 is  b*ĝ-closed map. 
 
Proposition 4.4: 

a) Every open map is b*ĝ-open map. 
b) Every 𝛼-open map is b*ĝ-open map. 
c) Every semi-open map is b*ĝ-open map. 
d) Every regular open map is b*ĝ-open map.  
e) Every gr*-open map is b*ĝ-open map. 
f) Every g*s-open map is b*ĝ-open map. 
g) Every (gs)*-open map is b*ĝ-open map. 
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Proof: 

a) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be an open map and V be an open set in (𝑋, 𝜏). Since 𝑓 is an open map, 𝑓(𝑉) is an open 
set in (𝑌,𝜎). By proposition 3.4 in [4], 𝑓(𝑉) is an b*ĝ-open set in (𝑌,𝜎). Hence 𝑓 is b*ĝ-open map. 

b) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be an 𝛼-open map and V be an open set in (𝑋, 𝜏). Since 𝑓 is an 𝛼-open map, 𝑓(𝑉) is an 
𝛼-open set in (𝑌,𝜎). By proposition 3.6 in [4], 𝑓(𝑉) is an b*ĝ-open set in (𝑌,𝜎). Hence 𝑓 is b*ĝ-open map. 

c) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be an semi-open map and V be an open set in (𝑋, 𝜏). Since 𝑓 is an semi-open map, 𝑓(𝑉) 
is an semi-open set in (𝑌,𝜎). By proposition 3.6 in [4], 𝑓(𝑉) is an b*ĝ -open set in (𝑌,𝜎). Hence 𝑓 is   b*ĝ-
open map. 

d) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be an regular open map and V be an open set in (𝑋, 𝜏). Since 𝑓 is an regular open map, 
𝑓(𝑉) is an regular open set in(𝑌,𝜎). By proposition 3.6 in [4], 𝑓(𝑉) is an b*ĝ -open set in (𝑌,𝜎). Hence 𝑓 is 
b*ĝ-open map. 

e) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be an gr*-open map and V be an open set in (𝑋, 𝜏). Since 𝑓 is an gr*-open map, 𝑓(𝑉) is 
an gr*-open set in (𝑌,𝜎). By proposition 3.16 in [4], 𝑓(𝑉) is an b*ĝ -open set in (𝑌,𝜎). Hence 𝑓 is b*ĝ-open 
map. 

f) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be an g*s-open map and V be an open set in (𝑋, 𝜏). Since 𝑓 is an g*s-open map, 𝑓(𝑉) is 
an g*s-open set in (𝑌,𝜎). By proposition 3.18 in [4], 𝑓(𝑉) is an b*ĝ -open set in (𝑌,𝜎). Hence 𝑓 is b*ĝ-open 
map. 

g) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be an (gs)*-open map and V be an open set in (𝑋, 𝜏). Since 𝑓 is an (gs)*-open            
map, 𝑓(𝑉) is an (gs)*-open set in (𝑌,𝜎). By proposition 3.20 in [4], 𝑓(𝑉) is an b*ĝ-open set in (𝑌,𝜎). Hence 
𝑓 is b*ĝ-open map. 

 
The following example shows that the converse of the above proposition need not be true. 
 
Example 4.5: 

a) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {a}, {b}, {a, b}, {a, c}} and    = {𝑌, 𝜙,{a}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏. b*ĝO(𝑌)= {𝑌,𝜙, {a},{b},{c},{a, b},{a, c}}. Here, 𝑓 is 
b*ĝ-open map but not open map, since the image of O(𝑋) {a},{b},{a, b} and {a, c} are {a},{c},{a, c} and 
{a,b} which are b*ĝO(𝑌) but not O(𝑌).   

b) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, 𝜙,{a},{b},{a, b}} and  𝜎 = {𝑌,𝜙,{a, b}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑐. b*ĝO(𝑌)= {𝑌,𝜙, {a},{b},{a, b}} and 𝛼O(𝑌) ={𝑌,𝜙,{a, 
b}}. Here, 𝑓 is b*ĝ-open map but not 𝛼-open map, since the image of O(𝑋) {a},{b} and {a, b} are {b},{a} and 
{a, b} which are b*ĝO(𝑌) but not 𝛼O(𝑌).   

c) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, 𝜙, {a},{b},{a, b}} and  𝜎 = {𝑌, 𝜙,{a}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑏. b*ĝO(𝑌)= {𝑌,𝜙,{a}, {b},{c},{a, b},{a, c}} and       
sO(𝑌) = {𝑌,𝜙,{a},{a, b},{a, c}}. Here, 𝑓 is b*ĝ -open map but not semi-open map, since the image of O(𝑋) 
{a},{b} and {a, b} are {c},{a} and {a, c} which are b*ĝO(𝑌) but not sO(𝑌) .  

d) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, {a},{b, c}} and 𝜎 = {𝑌,𝜙, {a},{b},{a, b}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑐. b*ĝ O(𝑌)={𝑌,𝜙,{a},{b},{a, b},{b, c},{a, c}} and 
rO(𝑌)={𝑌, 𝜙,{a },{b}}. Here, 𝑓 is b*ĝ-open map but not regular open map, since the image of O(𝑋) {a} and 
{b,c} are {b} and {a, c} which are b*ĝO(Y) but not rO(𝑌). 

e) Let 𝑋=𝑌={a, b, c} with topologies 𝜏={𝑋,𝜙,{a},{b},{a, b},{a, c}} and 𝜎={𝑌, 𝜙,{a}, {b},{a, b}}. Define a 
function 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑏, 𝑓(𝑐) = 𝑐. b*ĝO( 𝑌)={𝑌,𝜙,{a},{b},{b, c},{a, b},{a, c}} 
and gr*O(𝑌)={𝑌, 𝜙,{a},{b},{a, b}}. Here, 𝑓 is b*ĝ-open map but not gr*-open map, since the image of O(𝑋) 
{a},{b},{a, b} and {a, c} are {a},{b},{a, b} and {a, c} which are b*ĝO(𝑌) but not gr*O(𝑌).   

f) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, 𝜙,{a},{b},{a, b}} and  𝜎 = {𝑌, 𝜙,{b}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑏, 𝑓(𝑐) = 𝑎. b*ĝO(𝑌)={𝑌,𝜙, {a}, {b},{c},{a, b},{b, c}} and      
g*sO(𝑌) ={𝑌,𝜙, {b},{a, b}, { b, c}}. Here, 𝑓 is b*ĝ -open map but not g*s-open map, since the image of    
O(𝑋) {a},{b} and {a, b} are {c},{b} and {b, c} which are b*ĝO(𝑌)  but not g*sO(𝑌). 

g) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, 𝜙,{c},{a, b}} and  𝜎 = {𝑌,𝜙,{b },{c},{b, c}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏. b*ĝO(𝑌)={𝑌,𝜙,{b},{c},{a, b},{b, c},{a, c}} and 
(gs)*O(𝑌)= {𝑌, 𝜙,{b}, {c},{b, c}}. Here, 𝑓 is b*ĝ -open map but not (gs)*-open map, since the image of    
O(𝑋) {c} and {a, b} are {b} and {a,c} which are b*ĝO(𝑌)  but not (gs)*O(𝑌).    

 
Proposition 4.6: 

a) Every b*ĝ-open map is gs-open map. 
b) Every b*ĝ-open map is gb-open map. 
c) Every b*ĝ-open map is bĝ-open map. 

 
Proof: 

a) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ -open map and V be an open set in 𝑋. Since 𝑓 is b*ĝ-open map, 𝑓(𝑉)  is b*ĝ-
open set in 𝑌. By proposition 3.8 in [4], 𝑓(𝑉) is gs-open set in 𝑌. Hence 𝑓 is gs-open map. 
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b) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ -open map and V be an open set in 𝑋. Since 𝑓 is b*ĝ-open map, 𝑓(𝑉)  is b*ĝ-

open set in 𝑌. By proposition 3.12 in [4], 𝑓(𝑉) is gb-open set in 𝑌. Hence 𝑓 is gb-open map. 
c) Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a b*ĝ -open map and V be an open set in 𝑋. Since 𝑓 is b*ĝ-open map, 𝑓(𝑉)  is b*ĝ-

open set in 𝑌. By proposition 3.10 in [4], 𝑓(𝑉) is bĝ-open set in 𝑌. Hence 𝑓 is bĝ-open map. 
 
The following example shows that the converse of the above proposition need not be true. 
 
Example 4.7: 

a) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, 𝜙, {a}, {b},{a, b}} and  𝜎 = {𝑌,𝜙, {a},{b, c}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑏. b*ĝO(𝑌)={𝑌,𝜙, {a},{b,c}} and gsO(𝑌)={𝑌,𝜙,{a}, 
{b},{c},{a, b},{b, c},{a, c}}. Here, 𝑓 is gs-open map but not b*ĝ-open map, since the image of O(𝑋) {a},{b} 
and {a, b} are {c},{a} and {a,c} which are gsO(𝑌)  but not b*ĝO(𝑌).    

b) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, 𝜙,{b},{c},{b, c}} and  𝜎 = {𝑌,𝜙, {a},{b, c}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑎, 𝑓(𝑐) = 𝑏. b*ĝ O(𝑌)={𝑌,𝜙, {a},{b, c}} and gbO(𝑌)={𝑌,𝜙,{a}, 
{b},{c},{a, b},{b, c},{a, c}}. Here, 𝑓 is gb-open map but not b*ĝ -open map, since the image of O(𝑋) {b},{c} 
and {b, c} are {a},{b} and {a, b} which are gbO(𝑌)  but not b*ĝO(𝑌).    

c) Let 𝑋 = 𝑌 = {a, b, c} with topologies 𝜏 = {𝑋, 𝜙,{a},{b},{a, b}} and  𝜎 = {𝑌,𝜙, {c},{a, b}}. Define a function 
𝑓: (𝑋, 𝜏) → (𝑌,𝜎) by 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑎. b*ĝ O(𝑌)={𝑌,𝜙, {a, b},{c}} and bĝO(𝑌)={𝑌,𝜙,{a}, 
{b},{c},{a, b}, {b, c},{a, c}}. Here, 𝑓 is bĝ-open map but not b*ĝ-open map, since the image of O(𝑋) {a},{b} 
and {a, b} are {b},{c} and {b, c} which are bĝO(𝑌)  but not b*ĝO(𝑌). 

  
Remark 4.8: The following diagram shows the relationships of b*ĝ-open map with other known existing open maps. 
A→B represents A implies B but not conversely. 
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