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ABSTRACT
Here, we prove some result on FG-coupled fixed point. Our result generalize some coupled fixed point results.
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1. INTRODUCTION

Fixed point has a large application in almost all fields like Biology, Computer science, Physics, Economics and many
branches of engineering. In [1] Lakshmikantham et al. introduce the concept of coupled fixed points and proved some
results satisfying mixed monotone property. Many authors proved many results on coupled fixed points [3-9]. In 2016
[2] Prajisha and Shaini Pulickkunnel introduced the notion of FG-coupled fixed point which is generalized form of
coupled fixed.

2. PRELIMINARIES
In this section we gave some definitions which are very useful in proving the results.

Definition 2.1: Let X be partially ordered metric space. Let F: X xX — X be a mapping. Then an element
(x,y) € X x X is a coupled fixed point of the mapping F if F(x,y)=x, F(y,x)=Vy.

Definition 2.2: Let (X,<) be a partially ordered setand F : X x X — X . Then F has the mixed monotone property
if F(x,y) is monotonically non decreasing in x and is monotonically non increasing in y , that is for any x,y e X
X, X2 € X, X < X € F(x,y) < F(x;,y) and
Yi,¥2 € X, Y1 < Y2 € F(X, 1) 2 F(X, Y2)

Definition 2.3: Let (X,<R) and (Y,<P,) be two partially ordered metric spaces and F: X xY — X and
F:Y xX — X be two functions. An element (x,y) € X xY is called an FG-coupled fixed point if F(x,y)=x and

G(y,x) =Y.

Definition 2.4: Let (X,<R) and (Y,<P,) be two partially ordered setsand F: X xY - X and F:YxX — X .
Then F and G have mixed monotone property if F and G are monotone increasing in first variable and monotone
decreasing in second variable, i.e., if for all (x,y) e X xY,

X, X2 € X, X < BX, = F(X,y) <RF(X,y) and G(y, %) = R.G(Y, %)
and Yi.¥2 € X, Y1 SRy, = € F(X y1) 2 RF(X,y2) and G(yy,x) < P,G(y,,X) .
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Some important Notes:
1. If (x,y) e XxY isan FG- coupled fixed point then the element (y,x) €Y x X is GF- coupled fixed point.

2. The metricdon X xY isdefined as d((x,y),(u,v)) =d, (x,u)+d, (y,v) forall (x,y),(u,v)e X xY .
3. Partial order relation < on X xY is defined as for any (x,y),(u,v) e X xY ;
uv)<(Xy)eox2RBu y<Pyv.
4. F ,(xy)=F(F,(x,¥),G,(y,x))and G,,,(y,x) =G(G,(y,x), F,(x,y)) forevery ne N and (x,y) e X xY .

3. MAIN RESULT

Theorem: Let (X,dy,<,) and (Y,dy,< ) be partially ordered complete metric spaces. Also let F:X xY — X

and G:Y x X —Y be any functions which have mixed monotone property. Assume that there exists non negative reals
A,B,C with 2A+3B+3C <2 such that

dx (F(x,¥),F(u,v)) < ?[dx (x,u) +dy (y,V)]

+§[dx (% F(x,y)) +dx (y, F(u,v)) + dy (y,V)]

@)
+%[dx (%, F(u,v)) +dx (y, F(x,y)) +dvy (y,V)]
for all x> pu, y < pov
and
dy (G(y, x),G(v,u)) < ?[dx (x,u) +dy (y,v)]
+%[dv (v, F(y, X)) +dy (v,G(v,u)) + dx (x, y)] @)

+%[dv (y,G(v,u)) +dy (v,G(y, X)) + dx (u, y)]

forall x < pu, y > p,v

If there is (X;, Y,) € X xY with the condition X, <, F(X;,Y,) and Y, >, G(Y,,%;), then there is an element
(X,y) e X xY suchthat Xx=F(X,y) and y=G(y,X).

i.e. F and G have a unique FG -coupled fixed point.

From the hypothesis there is (X;, Y,) € X xY such that X, <, F(X,,Y,) =X (say) and Y, =, G(Yy, %) =Y,
(say).
Now for n=1,2,3,... we define X, =F(x,,y,) and y,, =G(Y,,X,) thenwe get X, = F"(X,,Y,) and
Yo =G (Y, X,), since
Xoin = F (X ¥r)

= F(F(X 10 Yn1): G (Ypas %00))

= F* (%10 Yos)

= F* (X2 Ya2)

— Fn+1(X0, yo)

Similarly we have Y, ., = G"*(Y,,X,)-

Now, by the principle of mathematical induction and mixed monotone property of F and G we can easily prove that
{x,} isanincreasing sequence in X and {y,} is a decreasing sequence in Y . For this, we have.

X <p % and Y, =) ;.
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We want to show that
Xy <p Xpand Y, 2, Y, forall neN.

Suppose for x=1, X, = F(x;,¥;) = p,F (X, Y1) = P,F (X, ¥,) = X, and
Y, =G(y1,x1) < pze(yvxo) < sz(YO'Xo) =Y.

Assume that the result holds for m=n
Ie Xm+1 > plx and ym+l pzym

Now consider
X 2= F (Xm+l’ ym+1) 2 plF(Xm1 ym+l) 2 plF(Xm1 ym) = Xm+1

Y2 = G(ymw Xm+1) < DZG(ym+l' Xm) < pZG(ym’ ym) = Ymu

Hence the result is true for all X € N .
i.e. {X,} isanincreasing sequence in X and {Y,} is a decreasing sequence in Y .

Now,
dx (Xn7xn+1) = dx (Fn(xo’ yo)’ FnH(Xov yo))
= A [F(F™ (%, ¥0): G" (Yo, %)), F(F" (X1 ¥5), G" (Vg %))]

s?[dx(F“*(xo, Vo) ™ (0, Yo)) + y (G (¥, %) G (Yo, X, )]

F oy (F 06, Yol F(F ™06, ¥0)). 6™ (%, )

+ 0y (F" 0%, Yo)s F(F (0 Yo)) ™ (Y X)) + 0y (6™ (¥ %), G (¥, )]
+Z10 (F 0 Vo) F(F (5, ¥0), 6" (%o )

ey (F" (%, Yo)s F(F™ 0%, Y00, B™ (Y X)) + 0y (6™ (¥ %), B (¥, )]
= 2 6% o1 YT 2 L O 0,0 U (6 %)+ 3, 109,)]

C
+_[dx (Xn—l’ Xn+1)+dx (Xn’ n)+d (yn—l’ yn)]

A B A+B+C
(2 zjd (Xn -11 n) (Tde(ynl'yn)

C
+de(Xn1Xn+l)+de(Xn—l7Xn+l)
A B A+B+C
_(2 sz (Xn -11 n) (Tde(ynl'yn)

F 2 (0 X + o (%) 4 (X %,0)

= (%)dx(xnixnﬂ)s(m—;z—i—cj[dx(x -1 ”)+d (yn_1!yn)]

A+B+C

2—B—Cj[dx(xn 1 “)+d (yn—llyn)]

:>dx(&,mﬂ)s(
Similarly we obtain
A+B+C
dY (yn’ yn+1) < m[dx (X -1 n) + d (yn—l’ ym)]
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Adding (3) and (4), we get

A+B+C
dy (X, Xpu0) +dy (Vo Vo) €2 —j[dx(xn1’Xn)+dY(ynl’yn)]
2_B-C
pssume 2ATBHC) o 1 6 2AL3BL3C <1
(2-B-C)

= O (% X0) + 0y (Vs Vi) < ALy (%10 %) 0y (Yoas Yol
<Ay (X2 %0) + 0y (Yozs Yaod)]

<A™y (X, %) +dy (Yo, Yi)]

Let us consider m>n,as 0< A <1, we get

= dX (Xn’ Xm)+dY (yn’ ym) < dX (Xn'xn+l)+dY (yn’ yn+1)]
+ dx (Xn+l’ Xn+2) + dY (yn+l' yn+2)

+ dx (melv Xm) + dY (ymfl’ ym)]
S A" (dy (X, %) +dy (Yo, Y1)
+ /lnﬂ[dx (XO, X1) + dY (yo’ yl)]
+ A" dy (%, %) + 0y (Yo, ¥1)]

= (A" + 2™+ 2™ D dy (%0, %) + Dy (Yo, 1]

n

T1-21
—>0as n— o, since 1 <1

(dx (X0, %) +dy (Yo, 1))

Thus we get that {X,} and {y,} are Cauchy sequences in X and Y respectively. Since X and Y are complete

metric spaces there exists X € X and y €Y suchthat X, = X and y, >y as N — .
i.e. lim F"(xy,Yp)=x, lim G"(yp,%) =Y.
n—o0 nN—
Now, we prove F(X,Yy) # X and G(y,X) =Y.
If F and G are continuous functions. Then

x=limx,,,=limF(x,,y,)=F(imx,,limy)=F(x,y)

n—oo

and
y=limy,, =limG(y,,x,) =G(limy,,limx) =G(y, x)

Thus (x,y) isan FG -coupled fixed pointof F and G.

If F and G are not continuous mappings then prove that they have a FG -coupled fixed point.

For this suppose F(X,y) # X and G(y,X) =Y.
dy, (F(x,y),x)>0 and d, (G(y,x),y)>0.
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Now,

dX (F(Xv y)v X) - dX (F(X1 y)f Xn+2)+dx (Xn+2’ X)
= lim{d, (F(F" (X5 ¥6).G" (Y, %)), F ™ (%, ¥o)) + Ay (F™ (%, ¥o), F" (%, Yo))}

= lim{d, (F (F" (%, ¥0). 6" (Yo %o): F(F™ (%, ¥0). G (¥, %,))
+dy (F(F™ (X, ¥0), G™ (Yo Xo))s F(F™ (%5, ¥6), " (V1 %))}

< 2L (F 06, Yo), F™ 0, Y0) + 6, (67 (¥or 5, 6™ (Yo, )]

y=limy,,=limG(y,x,)=G(limy,.limx,) = G(y,x)
4 (F™ (%, Yo), F(F" (%, Y0), G™ (¥, %)) + U (G™ (¥, %), G™ (¥, %,))]
A n+ n- n+ n—
#2200 (F™ (6, ¥o). ™0, o))+ 6 (6™ (45, 50), 6™ (¥, 3]

F21 (™ Ot Vo), F(F™ 06 900,67 (Yo X,)
ey (F™ 0, Yoy F(E™ 060 ¥o), G™ (¥, %)) + Uy (G™ (Y1 %), 8™ (Y, X, )]
FZ0 (F™ Ot Y F R 06,567 (9, )
£y (F™ 0%, Yoy F(E™ 0% ¥), 6™ (5, 50)) + dy (B™ (¥ %), G™ (Y X )]

. A B
= !]I_Y)Tol{?[dx (Xn ) Xn+1) + dY (yn' yn+1)] +E[dx (Xn , Xn+l) + dx (Xn+1’ Xn+2) + dY (Yn' Yn+1)]

C
+E[dx (Xn’ Xn+2) + dX (Xn+1’ Xn+1) + dY (yn’ yn+1)]

A B
+ E[dx (Xn+1’ Xn—l) + dY (yn+l' yn—l)] +E[dx (Xn+1’ Xn+2) + dx (Xn—l' Xn) + dY (yn+l’ yn—l)]

C
+E[dx (Xn+l' Xn) + dx (Xn—l’ Xn+2) + dY (yn+1’ yn—l)]
—0asn— oo
= d,(F(x,¥),x)< 0

Hence
dy (F(x,y),x)=0
= F(x,y)=x

Similarly G(y,x) =Y.
Thus we get that (X, y) isa FG -coupled fixed point of the functions F and G.

Now we shall prove the uniqueness part of the theorem.

Let us suppose that there are two FG -coupled fixed points of F and G say (x,y) and (X', y")
ie. F(x,y)=x, G(y,X)=y and F(X,y)=X", G(Y, X)=Y".

Case-1: If (x,y) and (x',y") are comparable.

© 2017, IIMA. All Rights Reserved 139



Hans Raj*, Nawneet Hooda / FG-Coupled Fixed Point Theorems Involving Contractive Type Mappings / IIMA- 8(7), July-2017.

Then
dy (%, x) =dy [F(x,y), F'X,y)]
Sg[dx (%, x)+dy (v, y')] +g[dx (G F (6 y)) +dy (X F () +dy (y, Y]
+%[dx (G FOC YD) +dy (X F (G y)) +dy (Y]
=§[dx (x,x)+dy (v, y)] +g[dx (%, %) +dy (X', x) +dy (y, )]

+%[dx (x,X) + 0y (X, X) +d, (v, )]

d (x,X) s[A+220jdx(x,x')+(L;”cjdy(y, )

Similarly, we have

= dy(y,y)<

A+2C ~ A+B+C ,
dy (y, y)+de (x, X))

Adding (6) and (7) we obtain

, ~ _ A+B+C
dy (x,X)+dy (y,y) <

m[dx (X, x)+dy (y, ¥)]

A+B+C -
2A-2C

which is a contradiction as 1.

Hence,
dy (%, x)+d, (y,y) =0
= dy(x,X)=0and d, (y,y)=0
= x=xandy=Y

Case-II: If (x,y) and (x'y") are not comparable. Then 3 (u,v) € X xY such that (u,v) is comparable to both (x,y)
and (x',y").

We define two sequences {u,} and {v,} suchthat Uy =U, Vo =V and u,, = F(u,,u,), V.., =G(v,,U,)
Since, (uU,V)/ is comparable with (X, Y).

We may choose (X, Y) 2> (u,V) = (U,,U,).

By the Principle of mathematical induction, it is easy to prove that
(x,¥)=(u,,v,)forall n.

Now

dX (X’un+1) = dX (F(X, y)l F(un'vn))

s?[dx<x,un>+dY<y,vn)]+§[dx(x,F(x, V) +dy Uy F (U, v, )+l (9, ,)]

ST (0 F(0,090)) A (0 F (), (3.1,
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=§[dx(x,un>+dy(y,vn>]+§[dx<x, X)+ (U Up.0) + dy (¥,9,)]
ST (0 U) A (U 48, (10,

A+C

= (125 <[22 Ja ) + AE22E

B
dY (y,Vn)'i‘de (un’un+1)

A+C A+B+C B
dx (Xvun+1) Sﬁdx (Xvun) +TdY (y’vn)+5dx (un’un+l)

Similarly, we get

A+C A+B+C

dY (y’Vn+1) < —dY (y,vn) +

B
dy (X,u,)+—d, (v,,v,.
2—C 2—C X( n) 2 Y(n 1)

Adding (8) and (9), we obtain

2A+B+2C
dx (Xv Un+1) + dY (y’ Vn+l) S—

B
Z—C [dx (X,Un) +dY (ylvn)]_l—E[dX (un’un+1)+dY (Vn’vn+1)]

Let h=2A8+2C <7
B
= d,(x,u,,)+d, (y,Y,,,) <hld, (x,u,)+d, (y,vn)]JrE[dX u,,u,.,)+d,(v,,v,..)]

B
S hZ[dx (X’ un—l) + dY (y' Vn—l)] + E[dx (un ! un+1) + dY (Vn ! Vn+1)]

< T 06+, 3, U210 Uy )+ (4,9,

—0asn— oo, since h<1.

= dx (X’ un+1) + dY (vaml) =0
= dX (X’ un+1) = 0 and dY (y’Vn+l) = 0

= X= un+1 and y = Vn+l
Similarly, we can get
’ ’
X = un+1 and y = Vn+1

Hence Xx=X"and y=Y'.
This proves the uniqueness of the result.

Corollary: In the hypothesis of last theorem, if we take F =G and X =Y . Then we have a unique coupled fixed
point of F instead of FG -coupled fixed point.
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