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ABSTRACT 
In this paper, we consider complex valued b-metric spaces which was generalized form of complex valued metric 
spaces. We propose to derive the existence of fixed point theorems in complex valued b-metric spaces. 
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1. INTRODUCTION 
 
One of the most influential spaces is complex valued b-metric spaces, introduced by Rao et.al [10] in 2013, which was 
more general than the complex valued metric spaces [1]. They proved some fixed point results for rational type 
mappings in complex valued b-metric spaces. Since then, this notion has been used by many authors to obtain various 
fixed point theorems (see [2], [3], [4], [5], [6], [7], [8], [9], [11]). 
 
The purpose of this paper is to prove common fixed point theorem for two self-mappings in a complete complex valued 
b-metric spaces. 
 
2. PRELIMINARIES 
 
Let us start by defining some important notations and definitions. 
 
Let ℂ  be the set of complex numbers and 𝑧1, 𝑧2 ∈ ℂ. Define a partial order ≾ on ℂ as follows: 𝑧1 ≾ 𝑧2 if and only if 
𝑅𝑒(𝑧1) ≤ 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) ≤ 𝐼𝑚(𝑧2).  Consequently, one can infer that 𝑧1 ≾ 𝑧2 if one of the following conditions is 
satisfied: 

(1) 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2); 
(2) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2); 
(3) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2); 
(4) 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2). 

 
In particular, we write 𝑧1 ⋨ 𝑧2 if  𝑧1 ≠ 𝑧2 and one of (i), (ii) and (iii) is satisfied, also we write 𝑧1 ≺ 𝑧2 if only (iii) is 
satisfied. Notice that 

(a) if 0 ≾ 𝑧1 ⋨ 𝑧2 then |𝑧1| < |𝑧2|; 
(b) if 𝑧1 ≾ 𝑧2 and 𝑧2 ≺ 𝑧3 then 𝑧1 ≺ 𝑧3; 
(c) if 𝑎, 𝑏 ∈ ℝ and 𝑎 ≤ 𝑏 then 𝑎𝑧 ≾ 𝑏𝑧 for all 𝑧 ∈ ℂ +.  
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The following definition is recently introduced by Rao et.al [10]. 
Definition 2.1[10]: Let 𝑌 be a nonempty set and let 𝑝 ≥ 1 be a given real number. A function 𝑑:𝑌 × 𝑌 → ℂ is called a 
complex valued b-metric on 𝑌 if for all 𝑥,𝑦, 𝑧 ∈ 𝑌 the following conditions are satisfied: 

(i) 0 ≾ 𝑑(𝑥,𝑦) and 𝑑(𝑥,𝑦) = 0 if and only if 𝑥 = 𝑦; 
(ii) 𝑑(𝑥,𝑦) = 𝑑(𝑦, 𝑥); 
(iii) 𝑑(𝑥,𝑦) ≾ 𝑝[𝑑(𝑥, 𝑧) + 𝑑(𝑧,𝑦)]. 

 
The pair (𝑌,𝑑) is called a complex valued b-metric space. 
 
Example 2.2[10]: If  𝑌 = [0,1], define the mapping 𝑑:𝑌 × 𝑌 → ℂ by 𝑑(𝑥,𝑦) = |𝑥 − 𝑦|2 + 𝑖|𝑥 − 𝑦|2 for all 𝑥,𝑦 ∈ 𝑌. 
Then (𝑌,𝑑) is a complex valued b-metric space with 𝑝 = 2. 
 
Definition 2.3[10]: Let (𝑌,𝑑) be a complex valued b-metric space. 

(i) A point 𝑥 ∈ 𝑌 is called interior point of a set 𝐴 ⊆ 𝑌  whenever there exists 0 ≺ 𝑟 ∈ ℂ such that 𝐵(𝑥, 𝑟) =
{𝑦 ∈ 𝑌:𝑑(𝑥,𝑦) ≺ 𝑟} ⊆ 𝐴. 

(ii) A point 𝑥 ∈ 𝑌 is called limit point of a set 𝐴 whenever for every 0 ≺ 𝑟 ∈ ℂ, 𝐵(𝑥, 𝑟) ∩ (𝐴 − {𝑥}) ≠ ∅. 
(iii) A subset 𝐴 ⊆ 𝑌 is called open set whenever each element of 𝐴 is an interior point of 𝐴. 
(iv) A subset 𝐴 ⊆ 𝑌 is called closed set whenever each element of 𝐴 belongs to 𝐴. 
(v) The family 𝐹 = {𝐵(𝑥, 𝑟): 𝑥 ∈ 𝑌 𝑎𝑛𝑑 0 ≺ 𝑟} is a sub-basis for a Hausdorff topology 𝜏 on 𝑌. 

 
Definition 2.4[10]: Let (𝑌,𝑑) be a complex valued b-metric space and let {𝑥𝑛} be a sequence in 𝑌 and 𝑥 ∈ 𝑌. 

(i) If for every 𝑐 ∈ ℂ, with 0 ≺ 𝑐, there is 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁,𝑑(𝑥𝑛 , 𝑥) ≺ 𝑐, then {𝑥𝑛} is said to be 
convergent and converges to 𝑥. We denote this by lim𝑛→∞ 𝑥𝑛 = 𝑥 or {𝑥𝑛} → 𝑥 as 𝑛 → ∞. 

(ii) If for every 𝑐 ∈ ℂ, with 0 ≺ 𝑐, there is 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁,𝑑(𝑥𝑛 , 𝑥𝑛+𝑚) ≺ 𝑐,  where 𝑚 ∈ ℕ, then 
{𝑥𝑛} is said to be Cauchy sequence.  

(iii) If every Cauchy sequence in 𝑌 is convergent in 𝑌, then (𝑌,𝑑) is said to be a complete complex valued b-
metric space. 

 
Lemma 2.5 [10]: Let (𝑌,𝑑) be a complex valued b-metric space and let {𝑥𝑛} be a sequence in 𝑌. Then {𝑥𝑛} converges 
to 𝑥 if and only if |𝑑(𝑥𝑛 , 𝑥)| → 0 as 𝑛 → ∞. 
 
Lemma 2.6 [10]: Let (𝑌,𝑑) be a complex valued b-metric space and let {𝑥𝑛} be a sequence in 𝑌. Then {𝑥𝑛} is Cauchy 
sequence if and only if  |𝑑(𝑥𝑛, 𝑥𝑛+𝑚)| → 0 as 𝑛 → ∞, where 𝑚 ∈ ℕ. 
 
3. MAIN RESULT 
 
Theorem 3.1: Let (𝑌,𝑑) be a complete complex valued b-metric space with the coefficient 𝑝 ≥ 1 and let 𝑃,𝑄:𝑌 → 𝑌 
be a mapping satisfying: 

𝑑(𝑃𝑥,𝑄𝑦) ≾ 𝛼𝑑(𝑥,𝑦) + 𝛽[𝑑(𝑥,𝑃𝑥) + 𝑑(𝑦,𝑄𝑦) � ] +𝛾[𝑑(𝑥,𝑄𝑦) + 𝑑(𝑦,𝑃𝑥)],                                                     (1) 
for all 𝑥,𝑦 ∈ 𝑌, where ∝,𝛽, 𝛾 are nonnegative reals with 𝛼 + 2𝛽 + 2𝑝𝛾 < 1.  
 
Then 𝑃 𝑎𝑛𝑑 𝑄 have a unique common fixed point in 𝑌. 
 
Proof: For any arbitrary point  𝑥𝑜 ∈ 𝑌, define sequence {𝑥𝑛} in 𝑌 such that 

𝑥2𝑛+1 = 𝑃𝑥2𝑛 , 
𝑥2𝑛+2 = 𝑄𝑥2𝑛+1, for  𝑛 = 0,1,2,3 … … ..                                                                                                             (2) 

 
Now, we show that the sequence {𝑥𝑛} is Cauchy. 
Let 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑥2𝑛+1 in (1), we have  

𝑑(P𝑥2𝑛,𝑄𝑥2𝑛+1) = 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) 
≾ 𝛼𝑑(𝑥2𝑛 , 𝑥2𝑛+1) + 𝛽[𝑑(𝑥2𝑛 ,𝑃𝑥2𝑛) + 𝑑(𝑥2𝑛+1,𝑄𝑥2𝑛+1)] 
+𝛾[𝑑(𝑥2𝑛 ,𝑄𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1,𝑃𝑥2𝑛)] 
= 𝛼𝑑(𝑥2𝑛 , 𝑥2𝑛+1) + 𝛽[𝑑(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)] 
+𝛾[𝑑(𝑥2𝑛 , 𝑥2𝑛+2) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+1)] 
≾ 𝛼𝑑(𝑥2𝑛 , 𝑥2𝑛+1) + 𝛽[𝑑(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)] 
+𝑝𝛾[𝑑(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)], 

 
which implies that |𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)| ≤ 𝛿|𝑑(𝑥2𝑛, 𝑥2𝑛+1)|, 

where 𝛿 = 𝛼+𝛽+𝑝𝛾
1−𝛽−𝑝𝛾

< 1. 
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Similarly, we have |𝑑(𝑥2𝑛+2, 𝑥2𝑛+3)| ≤ 𝛿|𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)|, 

where 𝛿 = 𝛼+𝛽+𝑝𝛾
1−𝛽−𝑝𝛾

< 1. 
 
Thus for all 𝑛, |𝑑(𝑥𝑛 , 𝑥𝑛+1)| ≤ 𝛿|𝑑(𝑥𝑛−1, 𝑥𝑛)| 

≤ 𝛿2|𝑑(𝑥𝑛−2, 𝑥𝑛−1)| 
… … … … … … … … … … 
… … … … … … … … … … 
≤ 𝛿𝑛|𝑑(𝑥0, 𝑥1)|.                                                                                                                  (3) 

 
Now for any 𝑚 > 𝑛,𝑚,𝑛 ∈ ℕ, we have 

|𝑑(𝑥𝑛 , 𝑥𝑚)| ≤ 𝑝|𝑑(𝑥𝑛 , 𝑥𝑛+1)| + 𝑝|𝑑(𝑥𝑛+1, 𝑥𝑚)| 
≤ 𝑝|𝑑(𝑥𝑛 , 𝑥𝑛+1)| + 𝑝2|𝑑(𝑥𝑛+1, 𝑥𝑛+2)| + 𝑝2|𝑑(𝑥𝑛+2, 𝑥𝑚)| 
≤ 𝑝|𝑑(𝑥𝑛 , 𝑥𝑛+1)| + 𝑝2|𝑑(𝑥𝑛+1, 𝑥𝑛+2)| + 𝑝3|𝑑(𝑥𝑛+2, 𝑥𝑛+3)| + 𝑝3|𝑑(𝑥𝑛+3, 𝑥𝑚)| 
… … … … … … … … … … … … … … 
≤ 𝑝|𝑑(𝑥𝑛 , 𝑥𝑛+1)| + 𝑝2|𝑑(𝑥𝑛+1, 𝑥𝑛+2)| + 𝑝3|𝑑(𝑥𝑛+2, 𝑥𝑛+3)| + 
… … … + 𝑝𝑚−𝑛−2|𝑑(𝑥𝑚−3, 𝑥𝑚−2)| + 𝑝𝑚−𝑛−1|𝑑(𝑥𝑚−2, 𝑥𝑚−1)| 
+𝑝𝑚−𝑛|𝑑(𝑥𝑚−1,𝑥𝑚)|. 

 
By using (3), we get 

|𝑑(𝑥𝑛 , 𝑥𝑚)| ≤ 𝑝𝛿𝑛|𝑑(𝑥0, 𝑥1)| + 𝑝2𝛿𝑛+1|𝑑(𝑥0, 𝑥1)| + 𝑝3𝛿𝑛+2|𝑑(𝑥0, 𝑥1)| 
+ … … … + 𝑝𝑚−𝑛−2𝛿𝑚−3|𝑑(𝑥0, 𝑥1)| + 𝑝𝑚−𝑛−1𝛿𝑚−2|𝑑(𝑥0, 𝑥1)| 
+𝑝𝑚−𝑛𝛿𝑚−1|𝑑(𝑥0, 𝑥1)| 
= ∑ 𝑝𝑖𝛿𝑖+𝑛−1|𝑑𝑚−𝑛

𝑖=1 (𝑥0, 𝑥1)|.  
 

Therefore, 
|𝑑(𝑥𝑛 , 𝑥𝑚)| ≤ ∑ 𝑝𝑖+𝑛−1𝛿𝑖+𝑛−1|𝑑𝑚−𝑛

𝑖=1 (𝑥0, 𝑥1)|  
= ∑ 𝑝𝑡𝛿𝑡|𝑑𝑚−1

𝑡=𝑛 (𝑥0, 𝑥1)|  
≤ ∑ (𝑝𝛿)𝑡|𝑑∞

𝑡=𝑛 (𝑥0, 𝑥1)|  
= (𝑝𝛿)𝑛

1−𝑝𝛿
|𝑑(𝑥0, 𝑥1)|  

and hence 
|𝑑(𝑥𝑛 , 𝑥𝑚)| ≤ (𝑝𝛿)𝑛

1−𝑝𝛿
|𝑑(𝑥0, 𝑥1)| → 0 𝑎𝑠 𝑚,𝑛 → ∞.                                                                                            (4) 

 
Thus, {𝑥𝑛}  is a Cauchy sequence in 𝑌 . Since 𝑌  is complete, there exists some 𝑤 ∈ 𝑌  such that 𝑥𝑛 → 𝑤  as 𝑛 →
∞. Assume not, then there exists 𝑧 ∈ 𝑌 such that 

|𝑑(𝑤,𝑃𝑤)| = |𝑧| > 0.                                                                                                                                        (5) 
 
So by using the triangular inequality and (1), we get  

𝑧 = 𝑑(𝑤,𝑃𝑤) ≾ 𝑝𝑑(𝑤, 𝑥2𝑛+2) +  𝑝𝑑(𝑥2𝑛+2,𝑃𝑤) = 𝑝𝑑(𝑤, 𝑥2𝑛+2) + 𝑝𝑑(𝑄𝑥2𝑛+1,𝑃𝑤) 
≾ 𝑝𝑑(𝑤,𝑥2𝑛+2) + 𝑝𝛼𝑑(𝑤, 𝑥2𝑛+1) + 𝑝𝛽[𝑑(𝑤,𝑃𝑤) + 𝑑(𝑥2𝑛+1,𝑄𝑥2𝑛+1)] 
+𝑝𝛾[𝑑(𝑤,𝑄𝑥2𝑛+1) + 𝑑�𝑥2𝑛+1,𝑃𝑤�] 
= 𝑝𝑑(𝑤, 𝑥2𝑛+2) + 𝑝𝛼𝑑(𝑤, 𝑥2𝑛+1) + 𝑝𝛽[𝑑(𝑤,𝑃𝑤) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)] + 𝑝𝛾[𝑑(𝑤, 𝑥2𝑛+2) + 𝑑�𝑥2𝑛+1,𝑃𝑤�] 

 
which implies that  

|𝑧| = |𝑑(𝑤,𝑃𝑤)| 
≤ 𝑝|𝑑(𝑤, 𝑥2𝑛+2)| + 𝑝𝛼|𝑑(𝑤, 𝑥2𝑛+1)| + 𝑝𝛽|𝑑(𝑤,𝑃𝑤) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)| 
+𝑝𝛾|𝑑(𝑤, 𝑥2𝑛+2) + 𝑑(𝑥2𝑛+1,𝑃𝑤)|.                                                                                                             (6)       

 
Taking the limit of (6) as𝑛 → ∞, we obtain that|𝑧| = |𝑑(𝑤,𝑃𝑤)| ≤ 0, a contradiction with (5). So |𝑧| = 0. Hence 
𝑃𝑤 = 𝑤. Similarly, we obtain 𝑄𝑤 = 𝑤. 
 
Now, we show that 𝑃 𝑎𝑛𝑑 𝑄 have unique common fixed point of 𝑃 𝑎𝑛𝑑 𝑄. To prove this, assume that 𝑤∗ is another 
common fixed point of  𝑃 𝑎𝑛𝑑 𝑄.Then, 

𝑑(𝑤,𝑤∗) = 𝑑(𝑃𝑤,𝑄𝑤∗) 
≾ 𝛼𝑑(𝑤,𝑤∗) + 𝛽[𝑑(𝑤,𝑃𝑤) + 𝑑(𝑤∗,𝑄𝑤∗)] + 𝛾[𝑑(𝑤,𝑄𝑤∗) + 𝑑(𝑤∗,𝑃𝑤)] 

So that 
|𝑑(𝑤,𝑤∗)| ≤ 𝛼|𝑑(𝑤,𝑤∗)| + 𝛽|𝑑(𝑤,𝑃𝑤) + 𝑑(𝑤∗,𝑄𝑤∗)| +𝛾|𝑑(𝑤,𝑄𝑤∗) + 𝑑(𝑤∗,𝑃𝑤)| 

 ≤ 𝛼|𝑑(𝑤,𝑤∗)| 
 
So that 𝑤 = 𝑤∗, which proves the uniqueness of common fixed point. 
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Corollary 3.2: Let (𝑌,𝑑) be a complete complex valued b-metric space with the coefficient 𝑝 ≥ 1 and let 𝑄:𝑌 → 𝑌 be 
a mapping satisfying:  

𝑑(𝑄𝑥,𝑄𝑦) ≾ 𝛼𝑑(𝑥,𝑦) + 𝛽[𝑑(𝑥,𝑄𝑥) + 𝑑(𝑦,𝑄𝑦)] +𝛾[𝑑(𝑥,𝑄𝑦) + 𝑑(𝑦,𝑄𝑥)] ,                                                                           (7) 
for all 𝑥,𝑦 ∈ 𝑌, where 𝛼,𝛽, 𝛾 are nonnegative reals with 𝛼 + 2𝛽 + 2𝑝𝛾 < 1. Then 𝑄 has a unique fixed point in 𝑌. 
 
Proof: We can prove this result by applying Theorem 3.1 with  𝑃 = 𝑄.   
 
Corollary 3.3: Let (𝑌,𝑑) be a complete complex valued b-metric space with the coefficient 𝑝 ≥ 1 and let 𝑄:𝑌 → 𝑌 be 
a mapping satisfying (for some fixed n): 

𝑑(𝑄𝑛𝑥,𝑄𝑛𝑦) ≾ 𝛼𝑑(𝑥,𝑦) + 𝛽[𝑑(𝑥,𝑄𝑛𝑥) + 𝑑(𝑦,𝑄𝑛𝑦)] + 𝛾[𝑑(𝑥,𝑄𝑛𝑦) + 𝑑(𝑦,𝑄𝑛𝑥)],                                      (8) 
for all 𝑥,𝑦 ∈ 𝑌, where 𝛼,𝛽, 𝛾 are nonnegative reals with 𝛼 + 2𝛽 + 2𝑝𝛾 < 1. Then 𝑄 has a unique fixed point in 𝑌. 
 
Proof: Set 𝑃 = 𝑄𝑛   and 𝑄 = 𝑄𝑛   in inequality (1) and use the Theorem 3.1 and Corollary 3.2. 
 
Following results is obtained from Corollary 3.2. 
 
Corollary 3.4: Let (𝑌,𝑑) be a complete complex valued b-metric space with the coefficient 𝑝 ≥ 1 and let 𝑄:𝑌 → 𝑌 be 
a mapping satisfying:  

𝑑(𝑄𝑥,𝑄𝑦) ≾  𝛼𝑑(𝑥,𝑦),                                                                                                                                      (9) 
for all 𝑥,𝑦 ∈ 𝑌, where 𝑝𝛼 ∈ [0,1). Then 𝑄 has a unique fixed point in 𝑌. 
 
Proof: We can prove this result applying Corollary 3.2 with 𝛽 = 𝛾 = 0. Corollary 3.4 is the Banach type version of a 
fixed point results for contractive mappings in a complex valued b-metric space. 
 
Corollary 3.5: Let (𝑌,𝑑) be a complete complex valued b-metric space with the coefficient 𝑝 ≥ 1 and let 𝑄:𝑌 → 𝑌 be 
a mapping satisfying:  

𝑑(𝑄𝑥,𝑄𝑦) ≾  𝛼𝑑(𝑥,𝑦) + 𝛽[𝑑(𝑥,𝑄𝑥) + 𝑑(𝑦,𝑄𝑦)],                                                                                        (10)                                                                                      
for all 𝑥,𝑦 ∈ 𝑌, where 𝛼,𝛽 are nonnegative reals with 𝑝(𝛼 + 2𝛽) < 1. Then 𝑄 has a unique fixed point in 𝑌. 
 
Proof: We can prove this result by applying Corollary 3.2 with 𝛾 = 0. 
 
Corollary 3.6: Let (𝑌,𝑑) be a complete complex valued b-metric space with the coefficient 𝑝 ≥ 1 and let 𝑄:𝑌 → 𝑌 be 
a mapping satisfying:  

𝑑(𝑄𝑥,𝑄𝑦) ≾  𝛼𝑑(𝑥,𝑦) + 𝛾[𝑑(𝑥,𝑄𝑦) + 𝑑(𝑦,𝑄𝑥)],                                                                                         (11)                                                                                      
for all 𝑥,𝑦 ∈ 𝑌, where 𝛼, 𝛾 are nonnegative reals with 𝛼 + 2𝑝𝛾 < 1. Then 𝑄 has a unique fixed point in 𝑌. 
 
Proof: We can prove this result by applying Corollary 3.2 with 𝛽 = 0. 
 
Corollary 3.7: Let (𝑌,𝑑) be a complete complex valued b-metric space with the coefficient 𝑝 ≥ 1 and let 𝑄:𝑌 → 𝑌 be 
a mapping satisfying:  

𝑑(𝑄𝑥,𝑄𝑦) ≾ 𝛼1𝑑(𝑥,𝑦) + 𝛼2𝑑(𝑥,𝑄𝑥) + 𝛼3𝑑(𝑦,𝑄𝑦) + 𝛼4𝑑(𝑥,𝑄𝑦) + 𝛼5𝑑(𝑦,𝑄𝑥),                                      (12) 
for all 𝑥,𝑦 ∈ 𝑌, where 𝛼𝑖 ≥ 0 for every 𝑖 ∈ {1,2, … … … 5} and 𝛼1 + 𝛼2 + 𝛼3 + 2𝑝𝛼4 + 𝛼5 < 1.  Then 𝑄 has a unique 
fixed point in 𝑌. 
 
Proof: In (12) interchanging the roles of 𝑥 and 𝑦, and adding the new inequality to (12), gives (7) with 

 𝛼 = 𝛼1,𝛽 = 𝛼2+𝛼3
2

 𝑎𝑛𝑑 𝛾 = 𝛼4+𝛼5
2

 . 
 
4. CONCLUSION 
 
In this attempt, we prove some fixed point theorems in complex valued b-metric spaces. These results generalize and 
improve the recent results of [8], [9], [10], [11], which extend the further scope of our results. 
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