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ABSTRACT 
In this paper we take cut−α on the objective function and cutr − on the constraints for solving the problem in 
which objective function is sum of fuzzy linear and linear fractional function and constraint functions are in the form of 
linear inequalities with bounded decision variables.  
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1. INTRODUCTION 

 
The problem of sum of Fuzzy linear and linear fractional arises when a sum of absolute and relative terms is to be 
maximized. A linear program can be regarded as a special case of a linear-fractional program in which the denominator 
is the constant function one. The proposed method is useful for large class of fractional programming models with 
bounded decision variables.  
 
Isbell and Marlow [4] solved Linear Fractional programming problem using a sequence of linear programming 
problems. Zoints [13] solved sum of linear and linear fractional function. Tanaka et al. [12] proposed the general theory 
of fuzzy linear programming. Chadha [2] proposed method of Dual of the sum of a linear and linear fractional program. 
Li and Chen [5] solved fuzzy LFP using a fuzzy programming approach. Hirche [3] also solved problems with linear-
plus-linear-fractional objective functions. Schaible [8] solved sum of linear and linear fractional function. Pramanik, 
Dey and Giri [6] solved Multi-objective linear plus linear fractional programming problem based on Taylor series 
approximation. Sharma and Kumar [9] solved problems based on linear plus linear fractional interval programming 
problem. Singh, Kumar and Singh [10, 11] gave Fuzzy method for multi-objective linear plus linear fractional 
programming problem and Fuzzy multi-objective linear plus linear fractional programming problem: approximation 
and goal programming approach. Sadia, Gupta, Qazi and Bari [7] suggested deriving the optimum solution of Multi-
objective Linear plus Linear Fractional Programming Problem. Ammar and Muamer [1] solved Fuzzy Rough linear 
fractional programming problem by reducing it to the multi objective fuzzy linear fractional programming problem. 
 
To formulate the problem that should be close to real world decision situations where the parameters of objective and 
constraints are not fixed, we have used fuzzy parameters and fuzzy decision variables. Firstly, the given problem with 
bounded decision variable is converted to the problem of non-negativity.  Then, we obtain an (α, r) optimal value for 
the given problem where the objective and decision variables are triangular fuzzy numbers. To obtain the (α, r) optimal 
value, we take an α-cut on the triangular fuzzy objective function and r-cut on the triangular fuzzy constraints, hence 
we obtain the upper and lower bounds of the problem which can be solved numerically. 
 
The given problem with bounded decision variable is converted to the problem of non-negativity and then converted to 
a linear programming problem which can be solved using Simplex or any other technique.  
 
2. THE PROBLEM 
 
In this section firstly we describe the general form of linear plus linear fractional programming problem with bounded 
decision variable: 
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Let us consider the problem 
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This primal problem with bounded decision variable can be converted to the problem of non-negativity with the help of 
the transformation 

0≥−= lxw  
 
As given below 
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The linear transformation of the given problem will be 
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Problem (2.3) is a linear programming problem of fractional programming problem (2.2) and can be solved by 
traditional Simplex Method and hence from the solution of problem (2.2) we get the solution of given fractional 
programming problem (2.1). 
 
Now, we consider the following problem, where the cost of objective function, coefficients and decision variables are 
fuzzy triangular numbers: 
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,,,,,,,, γβα  are fuzzy triangular numbers. This primal problem with bounded decision 
variable can be converted to the problem of non-negativity with the help of the transformation 
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1X  is a convex polyhedral set. 
If x be the feasible solution of fractional programming problem (2.1), then there exist a feasible solution w (x = w + l) 
of fractional programming problem (2.4) because w satisfies both constraints and non negative constraints. 
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THEOREMS 

 
Theorem 3.1: If x* be the optimal solution of fractional programming problem (2.1) then there exist an optimal 
solution w* (x* = w* + l) of fractional programming problem (2.4).  
 
Theorem 3.2: If w* be the optimal solution of fractional programming problem (2.4) then there exist x* = w* + l which 
satisfy the fractional programming problem (2.1) and the extreme values of the two objective functions are equal. 
 
4. ALGORITHM 
 
The fuzzy triangular numbers are: 
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The above problem can be written as: 
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Step-3: To determine the ( )r,α  optimal value, we take cut−α of the objective function and cutr − to the 
constraints. Then the problem becomes: 
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The above problem is equivalent to 
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For specific values of α and r the above two problems can be solved as discussed in Section 2. 
 
5. CONCLUSION 
 
In the present paper ( )r,α  optimal value has computed for a sum of fuzzy linear plus linear fractional programming 
problem having bounded decision variables, which has converted to the problem of non-negativity. With certain 
assumptions, linear programming problem has been obtained, which can be solved using Simplex or any other 
technique. 
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