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ABSTRACT 
The development of the general structure theory for near-field spaces and sub near-field spaces over a near-field, a 
great deal of work was done that showed under certain types of hypothesis, near-field spaces had to be commutative or 
almost commutative. For a good cross section of the kind of result that was obtained, one can look and in the 
bibliographies given in these. 
 
Of these type of questions studied, one outstanding one remained open, It asked Suppose N is a near-field space in 
which, for any a, b ∈ N, there are integers m = m(a, b) ≥ 1, n = n(a, b) ≥ 1 such that ambn = bnam. must the 
Commutator sub near-field space over a near-field N then be a nil sub near-field space? Equivalently, if N is as above 
and has no non zero nil sub near-field spaces, must N be commutative? 
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INTRODUCTION  
 
Some in depth study and generalization, main results cum progress on this was made. In a fairly recent articles Dr. N. 
V. Nagendram showed. Let N be a near-field space, M be a commutative sub near-field space over a near-field N  and 
suppose that given s ∈ N, sn ∈ M for some n = n(s) ≥ 1. Then the commutative sub near-field space is nil sub near-field 
space over a near-field N.  Dr. N. V. Nagendram’s situation is a very special case of the question asked at the 
beginning, for, if an ∈ M and bm ∈ M, then anbm = bman, since M is commutative sub near-field space over a near-field 
N. 
 
In a recent article, Dr. N. V. Nagendram introduced the concept of the Hypercenter of a near-field space over a near-
field. The Hypercenter, S, of the near-field space over a near-field N is defined by S = {s ∈ N / sxn = xns, n = n(x,s) ≥ 1, 
for all x ∈ N}. Dr. N V Nagendram showed that if N has no non-zero nil sub near-field spaces, then S = Z, the center of 
N. 
 
As pointed out, Dr. N.V. Nagendram’s result followed from this theorem that identifies the center and Hypercenter. We 
cite the result here because we make much use of it in this paper. 
 
The result we prove here settles the open question, mentioned at the outset, in the affirmative. We prove the  
 
Theorem: Let N be a near-field space in which, given a, b ∈ N, there exist integers m = m(a, b) ≥ 1, n = n(a, b) ≥ 1 
such that am bn = bn am. Then, the Commutator sub near-field space N of a near-field is nil sub near-field space. In 
particular, if N has no non-zero sub near-field spaces, then N must be commutative near-field space over a near-field N.   
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Proof: This theorem will be proved as a consequence of a series of lemmas, and reductions we shall make. Note that in 
the hypothesis of the theorem we may assume without any loss of generality that m = n, for, if ambn = bnam then   amn 

bmn = bmn amn. 
 
In all that follows N will be a near-field space in which, for any pair a, b ∈ N, there is an integer n = n(a, b) ≥ 1 such 
that an bn = bn an. we begin with a result that is known, we include it and its proof for the sake of completeness. 
 
Lemma 1: If N is a division near-field space, then N is commutative. 
 
Proof: we prove this lemma negation method. For that suppose the result is false. By result on the Hypercenter quoted 
earlier, there must be elements a and b in N such that commutes with na positive power of b. Let                                  
Cm = {x ∈ N / x bm! = bm! x} and let B = 

 1≥m mC . Clearly, B is a subdivision near-field space of N and, since             

a bm! ≠ bm! a for all m ≥ 1, a∉ B. Thus B ≠ N. However, given x ∈ N, xm bm! = bm! xm for some appropriate m ≥ 1, and 
so xm bm! = bm! xm. therefore,  xm ∈ B ∀ x ∈ N. Hence N must be a near-field space. But N is not a division near-field 
space. With this contradiction, the lemma is proved. 
 
Lemma 2: If N is semi-simple near-field space then N is commutative near-field space. 
 
Proof: To settle the semi-simple near-field space case, it is enough to handle the situation in which N is primitive near-
field space. Suppose then N is primitive near-field space. If N is a division n ear-field space it must be commutative by 
lemma 1. If N is not a division near-field space by the density theorem of the near-field of 2 x 2 matrices, D2 over a 
division near-field space is a homomorphic image of a sub near-field space of N. But, then, D2 inherits the hypothesis 
an bn = bn an. This however, is patently false for a = e11 and b = e11 + e12. Thus, N is a division near-field space and so is 
commutative near-field space. 
 
To prove the theorem it is enough to prove that if N has no nonzero nil sub near-field spaces, then N must be 
commutative near-field space. We proceed by assuming this to be false. We now make a series of reductions, based on 
the falsity of the theorem, then will eventually lead us to a contradiction. 
 
Since N has no nil sub near-field spaces, N is a sub direct product of prime near-field spaces of Nx, having no nonzero 
nil sub near-field spaces, in which there is a non nilpotent element cα with the following property; given a nonzero sub 
near-field space Vx of Nx, then aα

t(V
α

) ∈ Vx for some integer t(Vα) ≥ 1. Since each Nα  inherits the hypothesis               
an bn = bn an, it is enough to prove each Nα is commutative. 
 
Thus, we may assume, henceforth, that N is a prime near-field space, having no nonzero nil sub near-fields and 
containing a nilpotent element c such that ct(V) ∈ V for any nonzero sub near-field V of N, where t(V) ≥ 1. Here we 
assume that J(N) ≠ 0, where J(N) is the Jacobson radical sub near-field space of N. 
 
Now Jacobson radical near-field space (N) is itself a prime near-field space, and, of course, an bn = bn an for all             
a, b ∈ J(N). Also since J(N) ≠ 0  is a sub near-field space of N, d = ci ∈ (N), some  i, if U ≠ 0 is a sub near-field space 
of J(N), then U ⊃ V= J(N) U J(N) ≠ 0 is a sub near-field space of N. Hence, ck ∈ V for some k, where cki = di is in V 
and so, is in U. In short, (N) has all the properties of N. If J(N) is commutative near-field space, then N is commutative 
near-field space. Thus, from now on, we may assume without loss of generality that N = J(N), that is, N is its own 
radical sub near-field space and near-field space. 
 
Since N = J(N), given x ∈ N  ∃ x’ ∈ N ∋ x +x ‘ + xx’ = x + x’ +x’x = 0. The mapping ϕ : N → N given by ϕ(y) = (1 + x) 
y (1+ x’) = y + xy +y’x + yx’ + xyx’  is an automorphism of N. we write it formally as ϕ(y) = (1 + x) y ( 1+ x)-1. This 
completes the proof of the lemma. 

 
Lemma 3: If N = J(N) has no zero-divisors, then N must be commutative near-field space. 
 
Proof: Let Z be the center of near-field space N and suppose that x ∉ Z. Since the Hypercenter of N coincides with Z 
in our situation, x is not in the Hypercenter of N. Thus, there is an element a ∈ N such that xam ≠ amx for all m > 0. By 
our basic hypothesis on N, we can find an integer n such that both [(1 + x)a(1 + x)-1]n and [(1 + ax)a(1 + ax)-1]n 
commute with an. Thus, both a1 = [(1 + x)an(1 + x)-1] and a2 = [(1 + ax)an (1 + xa)-1] commute with an. 
 
Now (1+x)an = a1(1 + x) , (1 + ax)an  = a2(1 + ax)                                                                                                             (1) 
 
Multiply the first equation from the left by a and subtract the second equation from this, we get  
an( a – 1 ) = aa1 – a2 + ( aa1 – a2a)x                                                                                                                                    (2)  
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Since the left side of (2) commutes with an and a, a1 and a2 commute with an, we get from (2), on commuting it with an, 
that  
(aa1 – a2a)(xan – anx) = 0                                                                                                                                                   (3) 
 
Since N has no zero divisors and since xan ≠ anx, we must have, from (3), that aa1 = a2a. 
 
Since aa1 = a2a, (2) reduces to an(a – 1) = aa1 – a1 = a2a – a2 = a2(a – 1) and since a is the radical, a – 1 is formally 
invertible, hence, an = a2. But then aa1 = a2a = ana = an+1, which gives us a1 = an. Using a1 = an we get from (1) the 
contradiction that xan = anx. This completes the proof of the lemma. 
 
Note: Thus we may assume that N has zero-divisor sub near-field spaces. But a prime near-field space that has 
nontrivial zero-devisors must have nonzero nil potent elements. Thus, we have an element a ≠ 0 in N such that a2 = 0. 
 
Lemma 4: If a2= 0, a ≠ 0 then aNa is a nil right sub near-field space of N. 
 
Proof: By our basic hypothesis on N, there exists an integer n≥1 such that [(1 + a)(ax)n(1 + a)-1] = [(1 + a)(ax)(1 + a)-1]n 
and (ax)n commute. Since a2 = 0, (1 + a)-1 = 1 – a thus [(1+a)(ax)n(1 - a ) (ax)n] = (ax)n [(1 - a)(ax)n(1 - a)]. Using a2 = 0 
this reduces to (ax)2n = (ax)2n(1 – a), hence (ax)2na = 0, and so (ax)2n+1 = 0. Thus indeed, aN is nil sub near-field space 
of N. A near-field space has a nonzero nil right sub near-field space, it have a nonzero nil two sided sub near-field 
space. This completes the proof of the lemma. 
 
Lemma 5: Every zero-divisor near-field space in N is nilpotent sub near-field space. 
 
Proof: First, we recall exactly what hypothesis N carries, in addition to the basic one that anbn = bnan. we have that N is 
prime near-field space, N = J(N), and that there is an element c ∈ N, which is not nilpotent, such that ct(V) ∈ V for any 
sub near-field space V ≠ 0 of N so N has no nil sub near-field spaces. In addition, N has zero-divisors. 
 
Suppose that ab = 0 where a ≠ 0, b ≠ 0. Let λ = {x ∈ N / xbm = 0 for some integer m}, and let ρ = { x ∈ N / bmx = 0 for 
some integer m}. Clearly, ρ is a right sub near-field space and λ is a left sub near-field space, of N. we claim that ρ = λ. 
For if r ∈ λ, then rbm = 0 for some m. If r′ is the quasi-inverse of r, that is, if r + r’ + r’r = 0, then r’bm = 0. Now for 
some integer n, (1 + r)bmn(1 + r’)bmn = bmn(1 + r)bmn(1 + r’). 
 
Using rbm = r’bm = 0, we get from this last relation that that b2mn = b2mn (1+r’), hence, b2mnr’ = 0. But then, b2mnr = 0 and 
so r ∈ ρ. Hence, λ ⊂ ρ. Similarly, ρ ⊂ λ ; hence, ρ = λ is a two sided sub near-field space of N. 
 
Since ab = 0, a ≠ 0, we have that ρ = λ ≠ 0. Thus ck ∈ λ for some k. Hence, ckbt = 0 for some t. Let V = {x ∈N / cmx = 0 
for some m}. As we did for λ and ρ  above, we have that V is a sub near-field space of N. If V ≠ 0 we would have that 
cr ∈ V for some r, giving us the contradiction 0 = cmcr = cm+r, since c is not nilpotent. Thus, V = 0. But bt ∈ V. Hence, 
bt = 0. In other words, we have shown that every zero-divisor in N is nilpotent. This completes the proof of the lemma. 
 
Lemma 6: If N is not commutative near-field space then N must be torsion-free near-field space. 
 
Proof: If N is not commutative it must have an element a ≠ 0 such that a2 = 0. If x ∈ N, there is an integer                     
n ∋ (1 + a)(x)n(1 + a)-1xn = xn(1 + a)xn(1 + a)-1 since (1+a)-1 = 1 – a, we get from this relation that 
ax2n – 2xnaxn + x2na = axnaxn – xnaxna                                                                                                                               (4) 
 
If char N ≠ 2, we can find an integer n so that both (4) holds and (1 - a)(x)n(1 - a )-1 x)n = xn (1 - a)xn(1 - a)-1. This gives 
us , as above, that  
ax2n – 2xnaxn + x2na = xnaxna – axnaxn                                                                                                                               (4) 
 
Adding (4), (5) and using that char N ≠ 2 gives us that  
ax2n – 2xnaxn + x2na = 0, that is, that (axn - xna)an = xn(axn – xna).  If N is not torsion free sub near-field space, then char 
N = ρ ≠ 0 and from (axn – xna) xn = xn(axn - xna) we get that axpn – xpna = pxn(p-1)(axn – xna) = 0. This says that a 
commutes with some power of every element; hence, a must be in the Hypercenter of N. Since N has no nil sub near-
field spaces, its Hypercenter is its center. Thus, a ∈ Z, the center of N. But the center of a prime near-field space has no 
nilpotent elements, hence this is not possible. To show that N is torsion free sub near – field space, therefore, we must 
merely rule out the possibility that char N = 2. 
 
If char N = 2, then (4) reduces to ax2n + x2na = (axn)2 + (xna)2. Let y = xn. Hence, ay2 + y2a = (ay)2 + (ya)2, whence, 
multiplying by a, ay2a = ayaya. 
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Now, the relation ay2 + y2a = (ay)2 + (ya)2 comes from the fact that (1+a)y(1+a)-1 commutes with y. But (1+ a)y’(1+a)-1 

then also commutes with y; hence, ay2r +y2ra = (ayr)2 +(yra)2 for all r. Thus, ay2ra = ayrayra. 
 
aN is nil sub near-field space, hence, (ay)2m =0 for some m. But then ay2ma = ay2m-1a = .... = (ay)2ma = 0. Since         
ay2(m+1) + y2(m+1)a = 0, we get that ay2m+1 = y2m+1a. Recalling that y = xn, we have that a commutes with a power of x for 
every x∈N. Thus again, a is in the Hypercenter of N, hence, in the center of N. This can not be, since a is nilpotent. 
Thus, char N = 2 is not possible. In short, the only way out is that N is torsion free sub-near-field space. 
 
Note: N is torsion-free sub near-field space, we also have that if a2 = 0 and x ∈ N, then (axn - xna)xn = xn(axn - xna) for 
some integer n ≥ 1. 
 
Lemma 7: If a ≠ 0, a2 = 0 and if x ∈ N, then for some integer n ≥ 1, (axn – xna)xn = xn( axn – xna). 
  
Lemma 8: Let N be a 2- torsion free near-field space and let a, b∈N. Suppose that an = 0 and that   
(ab – ba)b = b(ab – ba) . Then, for any n ≥ 3,  

.
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+−

−
++=+ Also ababi = biaba for any i ≥ 1. 

 
Proof: Since (ab – ba)b = b(ab – ba), ab2 + b2a = 2bab. Multiplying from the left by a yields ab2a = 2abab and 
multiplying from the right by a yields aba2 = 2baba. Since N is 2-torsion free sub near-field space, we get that          
abab = baba. Because aba commutes with b it commutes with all bi. The proof is a straightforward method of induction. 
We can now finish the proof of the theorem. 
 
Proof of the theorem: Assuming that the theorem was false, we have reduced down to the following situation. N is 
prime near-field space, torsion free without nil sub near-field spaces, has zero divisors, and all its zero divisors are 
nilpotent. Furthermore, if a ≠ 0, a2 = 0, then for any x ∈ N, there is an integer n such that (axn - xna)xn = xn(axn - xna). 
we show that there lead us to a contradiction. 
 
We claim that, given x ∈ N and a2 = 0, then axr = xra for some r ≥ 1, depending on x and a. If x is a zero divisor, then it 
is certainly correct, for x must be nilpotent, hence, xr = 0 for some r. Thus, we may assume that x is regular that is non 
zero divisor. Then for some n ≥ 1, (axn - xna)xn = xn(axn - xna). Let b = xn. by our basic assumption on N, there is an 
integer m ≥ 1 such that (a+b)n bm = bm(a + b)m. Clearly, we can pick m ≥ 3 then 

 .
6

)2)(1()(
2
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+−

−
++=+ . 

 
On the right-hand side, bm, bm-2(ab - ba), and bm-3aba all commute with b, hence with bm, since the left hand-side 
commutes with bm, we end up with mbm-1abm = bm(mbm-1a). This gives us that mbm-1(abm - bma) = 0, since N is torsion 
free near-field space, we have that bm-1(abm - bma). But b = xn  and since x is regular, b, and so bm-1, must be regular. The 
upshot of this is that abm = bma, which is to say that axmn = xmna. 
 
Thus, a commutes with some power of every element in N and so a is in the Hypercenter of N. Since N has no nil sub 
near-field spaces, the Hypercenter of N is merely the center of N. Hence, the element a ≠ 0, which is nilpotent, is in the 
center of the prime near-field space N. This is a contradiction ⊗. This completes the proof of the theorem. 
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