
International Journal of Mathematical Archive-8(7), 2017, 253-261 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 8(7), July – 2017                                                                                                               253 

 
STABILITY OF PICARD ITERATION PROCEDURE  

USING CIRIC MULTI-VALUED CONTRACTION CONDITION 
 

ANIL RAJPUT1 
Professor and HOD, Department of Mathematics 

Chandra Shekhar Azad Govt. P. G. College, Sehore, (M.P.), India. 
   

ABHA TENGURIA2 

Professor and HOD, Department of Mathematics, 
Govt. M. L. B. Girls College, Bhopal, (M.P.), India. 

 
ANJALI OJHA3* 

Research Scholar, Department of Mathematics, 
Chandra Shekhar Azad Govt. P. G. College, Sehore, (M.P.), India. 

 
(Received On: 18-06-17; Revised & Accepted On: 27-07-17) 

 

 
ABSTRACT 

Stability of iterative procedure plays very important role in various fields like computer programming. game theory 
etc. The aim of this paper is to establish the stability results using Ciric multi-valued contraction for iterative 
procedure on a metric space. 
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1. INTRODUCTION 

 
According to Rhoades [21] the concept of stability of a fixed point iteration procedure was  due to Ostrowski, It has 
been systematically studied by Harder in her thesis and published in the papers of Harder and Hicks ([6] and [7]). Let 
𝑇: 𝑋 →  𝑋 be a mapping on complete metric space (𝑋, 𝑑). Let 𝑇 has atleast one fixed point and there exists a sequence 
{𝑥𝑛} which converges to a fixed point q ∈ X. Let {𝑦𝑛} be an arbitrary sequence in 𝑋 and  𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) be an 
iteration procedure, now set ∈𝑛= 𝑑(𝑦𝑛+1, 𝑓(𝑇, 𝑦𝑛)) .The iteration procedure 𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) is called T-stable if 
lim𝑛→∞ ∈𝑛= 0 implies that lim𝑛→∞ 𝑦𝑛 = 𝑞 and, is said to be almost T-stable, if the convergence of the series  
∑ ∈𝑖

∞
𝑖=1 < ∞  implies that lim𝑛→∞ 𝑦𝑛 = 𝑞. 

 
First time Harder and Hicks [6, 7] defined the concept of the stability of general iterative procedures, after that many 
authors have studied various special cases of the general iterative procedure. Some of them are Berinde [2], Imoru and 
Olatinwo [9], Jachymski [10, 11], Matkowski and Singh [13], Osilike [18] and Rhoades [21]. In the year 2005, Singh et 
al [25] introduced the stability of Jungck and Jungck-Mann iterative procedures for a pair of Jungck-Osilike-type maps 
on an arbitrary set with values in a metric space. 
 
Non linear equation and approximating fixed points of a corresponding contractive type operator have very close 
relationship between them. There are so many methods for approximating fixed points .It is very interesting to know 
whether these methods are numerically stable or not. Many authors done remarkable work on the role of stability of 
iterative procedure , some of them are czerwik et al [4,5], Harder and Hicks [7,8], Lim [12], Matkowski and Singh 
[13], Ortega and Rheinboldt [16], Osilike [17,19], Ostrowski [20], Rhoades [22,23], Rus et al [24] and Singh et al [26]. 
 
All these papers applied the concept of stability which was introduced by Harder [8] and some of them used the 
concept of almost stability introduced by Osilike [18]. 
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2. PRELIMINARIES 

 
Here we defined various definitions which are used in this paper. 
 
Let (𝑋, 𝑑) be a metric space and 
 
CB(X) = {A: A is a nonempty closed bounded subset of X}, 
 
CL(X) = {A: A is a nonempty closed subset of X}. 
 
For A, B ∈ CL(X) and ε >0, 
 
N(ε, A) = {x ∈ X : d(x, a) < ε for some a ∈ A}, 
 
𝐸𝐴,𝐵= {ε > 0: A ⊆ N(ε, B), B ⊆ N(ε, A)}, 
 
𝐻(𝐴, 𝐵) = {inf 𝐸𝐴,𝐵  𝑖𝑓 𝐸𝐴,𝐵 ≠ ∅,  +∞  𝑖𝑓 𝐸𝐴,𝐵 = ∅}  
 
H is called the generalized Hausdorff metric (resp. Hausdorff metric) for CL(X) induced by d. For any nonempty 
subsets A, B of X, d(A, B) will denote the distance between the subsets A and B, while we write d(a, B) for d(A, B) 
when A = {a}. 
 
Definition 2.1[14, 15]: Let 𝑇: 𝑋 →  𝐶𝐿(𝑋) be a mapping on a complete metric space. If there exist a constant 𝑞 such 
that 0 ≤  𝑞 < 1 and H (Tx, Ty) ≤ q d(x, y) for all 𝑥, 𝑦 ∈  𝑋,   then the map 𝑇: 𝑋 →  𝐶𝐿(𝑋) is called a Nadler multi-
valued contraction. 
    
Definition 2.2 [30]: If there exist real numbers 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 such that 0 ≤ 𝛼 < 1, 0 ≤ 𝛽 < 1

2
  and 0 ≤ 𝛾 < 1

2
 and atleast 

one of the following condition holds: 
(i) 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑑(𝑥, 𝑦), 
(ii) 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛽[ 𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)], 
(iii) 𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝛾[ 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)]   where 𝑥, 𝑦 𝜖 𝑋 

Then the map 𝑇: 𝑋 →  𝐶𝐿(𝑋) is called a Zamfirescu multi-valued contraction.   
 
Definition 2.3 [3]: If there exists a nonnegative number 𝑞  such that 

     𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞 max � 𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), �1
2
� �𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)�� 

for all 𝑥, 𝑦 ∈ 𝑋  then the map 𝑇: 𝑋 →  𝐶𝐿(𝑋) is called a Ciric generalized multi-valued contraction. 
   
The inequality given by Timis [29] in his paper is as follows: 

𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞 max � 𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), �
1
2

� �𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)�� 

Where 𝑞 is any nonnegative number. 
  
Definition 2.4: Definition of Stability  
 
Let 𝑇: 𝑋 →  𝐶𝐿(𝑋) be a mapping on a metric space 𝑋. Let the sequence {𝑥𝑛 } converges to a fixed point 𝑝 of 𝑇 and the 
iteration procedure is 𝑥𝑛+1  ∈ 𝑓(𝑇, 𝑥𝑛) 
 
Let {𝑦𝑛 } be any arbitrary sequence in 𝑋 and set 

𝜖𝑛 = H (𝑦𝑛+1, f (T,𝑦𝑛)),   n = 0, 1, 2... 
 
Then the iteration procedure 𝑥𝑛+1 ∈ 𝑓(𝑇, 𝑥𝑛) is called T-stable if lim𝑛→∞ ∈𝑛= 0 implies that lim𝑛→∞ 𝑦𝑛 = 𝑝. 
 
Ostrowski [20] proved that the picard iterative procedure is stable for single valued Banach contraction. While Singh 
and chadha [27] extended this theorem for multivalued contraction which is as follows 
 
Theorem 2.1 [27]: Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 →  𝐶𝐿(𝑋) a multi-valued contraction with 
constant 𝑞 defined as 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞𝑑(𝑥, 𝑦) 
for all 𝑥, 𝑦 ∈  𝑋 where 0 ≤ 𝑞 < 1 
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Let 𝑝 be the fixed point of 𝑇. Let 𝑥0 ∈ 𝑋 and  𝑥𝑛+1 ∈ 𝑇𝑥𝑛 , 𝑛 = 0,1,2 … Suppose that  {𝑦𝑛}𝑛=1

∞   be a sequence in 𝑋 and 
∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛),        𝑛 = 0,1,2 … 

Then 
𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑 (𝑝, 𝑥𝑛+1) + 𝑞𝑛+1𝑑(𝑥0, 𝑦0) + ∑ 𝑞𝑛−𝑗𝑛

𝑗=0 ∈𝑗  
 
Further, if 𝑇𝑝 is singleton then 

lim𝑛 𝑦𝑛 = 𝑝  if and only if   lim𝑛 ∈𝑛 = 0 
 
After this Singh, Jain and Mishra [28] extended this theorem for Zamfirescu multi-valued contraction which is given as   
 
Theorem 2.2 [28]: Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 →  𝐶𝐿(𝑋) a multi-valued contraction which is 
defined in definition (2.2). 
 
Let 𝑝 be the fixed point of T. Let 𝑥0 ∈ 𝑋 and  𝑥𝑛+1 ∈ 𝑇𝑥𝑛,   𝑛 = 0,1,2 … Suppose that  {𝑦𝑛}𝑛=1

∞   be a sequence in X and 
∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛) 

Then, 
𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑 (𝑝, 𝑥𝑛+1) + ∑ 2𝛿𝑛+1−𝑘𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +𝑛

𝑘=0 𝛿𝑛+1𝑑(𝑥0, 𝑦0) + ∑ 𝛿𝑛−𝑘𝑛
𝑘=0 ∈𝑘  

Where    𝛿 = max �𝛼, 𝛽
1−𝛽

, 𝛾
1−𝛾

� 𝑎𝑛𝑑  𝑛 = 0,1,2 … 
 
Further, if 𝑇𝑝 is singleton then, 

lim
𝑛→∞

𝑦𝑛 = 𝑝 ifand only if lim
𝑛→∞

∈𝑛= 0 
 
We will use the following lemma 
 
Lemma 2.1 [7]: If 𝑐 is a real number such that 0 <  | 𝑐 |  < 1 and  {𝑏𝑘}𝑘=0

∞  is a sequence of real numbers such that 
lim𝑘→∞ 𝑏𝑘 = 0 , then lim𝑛→∞( ∑ 𝑐𝑛−𝑘𝑏𝑘)𝑛

𝑘=0 = 0 
 
3. MAIN RESULT 
 
Theorem 3.1: Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 →  𝐶𝐿(𝑋) a multi-valued contraction with constant  𝑞 
defined as   

   𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 max {𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), �1
2
� �𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)�}  

for all 𝑥, 𝑦 ∈  𝑋 where 0 ≤ 𝑞 < 1. 
 
Let 𝑝 be the fixed point of 𝑇. Let 𝑥0 ∈ 𝑋 and  𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝑛 = 0,1,2 … Suppose that  {𝑦𝑛}𝑛=1

∞   be a sequence in 𝑋 and 
∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛)                                                                            (A) 

Then, 
𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1)+∑ 𝛿𝑛+1−𝑘𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +𝑛

𝑘=0  𝛿𝑛+1𝑑(𝑥𝑜 , 𝑦0) + ∑ 𝛿𝑛−𝑘𝜖𝑘
𝑛
𝑘=0                               (I)  

  
Where  𝛿 = max � 𝑞

1−𝑞
, 𝑞

2−𝑞
, 2𝑞

2−𝑞
�and  𝑛 = 0,1,2 … 

 
 Further, if 𝑇𝑝 is singleton then 

lim𝑛→∞ 𝑦𝑛 = 𝑝 if and only if lim𝑛→∞ ∈𝑛= 0                                                             (II) 
 
Proof: Let  𝑥, 𝑦 ∈ 𝑋. Since 𝑇 is a ciric generalised multi-valued contraction then, 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 max {𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), �
1
2

� �𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)�} 

≤ 𝑞 max {𝐻(𝑥, 𝑦), 𝐻(𝑥, 𝑇𝑥), 𝐻(𝑦, 𝑇𝑦), �
1
2

� �𝐻(𝑥, 𝑇𝑦) + 𝐻(𝑦, 𝑇𝑥)�} 

≤ 𝑞 max �𝐻(𝑥, 𝑦), 𝐻(𝑥, 𝑇𝑥), 𝐻(𝑦, 𝑥) + 𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦), �1
2
� �𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦) + 𝐻(𝑦, 𝑥)

+𝐻(𝑥, 𝑇𝑥) �� (1) 

≤ 𝑞 max �𝐻(𝑥, 𝑦), 𝐻(𝑥, 𝑇𝑥), 𝐻(𝑦, 𝑥) + 𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦), �1
2
� �2𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦) + 𝐻(𝑥, 𝑦)��

          
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞𝐻(𝑥, 𝑦) 
 
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞𝐻(𝑥, 𝑇𝑥) 
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Now, 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞𝐻(𝑦, 𝑇𝑦)  
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 max {𝐻(𝑦, 𝑥) + 𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦)}  
(1 − 𝑞)𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 max {𝐻(𝑥, 𝑦) + 𝑞𝐻(𝑥, 𝑇𝑥)}  
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞

1−𝑞
 𝐻(𝑥, 𝑦) + � 𝑞

1−𝑞
� 𝐻(𝑥, 𝑇𝑥)                                                (2)  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 ��1
2
� �2𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦) + 𝐻(𝑥, 𝑦)��  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 ��𝐻(𝑥, 𝑇𝑥) + �1
2
� 𝐻(𝑇𝑥, 𝑇𝑦) + �1

2
� 𝐻(𝑥, 𝑦)��  

�1 − 𝑞
2
� 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 ��𝐻(𝑥, 𝑇𝑥) + �1

2
� 𝐻(𝑥, 𝑦)��  

�2−𝑞
2

� 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 ��𝐻(𝑥, 𝑇𝑥) + �1
2
� 𝐻(𝑥, 𝑦)��  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ � 2𝑞
(2−𝑞)

� 𝐻(𝑥, 𝑇𝑥) + � 𝑞
2−𝑞

� 𝐻(𝑥, 𝑦)                                                                          (3) 
 
This yields, 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿𝐻(𝑥, 𝑇𝑥) + 𝛿𝐻(𝑥, 𝑦) 
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿𝐻(𝑥, 𝑇𝑥) + 𝛿𝑑(𝑥, 𝑦)                                                             (B) 

Where   𝛿 = max � 𝑞
1−𝑞

, 𝑞
2−𝑞

, 2𝑞
2−𝑞

� 
 
Since, 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑦𝑛+1)                                                                            (4) 
 
We have, 

𝑑(𝑥𝑛+1, 𝑦𝑛+1) ≤ 𝐻(𝑇𝑥𝑛 , 𝑦𝑛+1) 
                        ≤ 𝐻(𝑇𝑥𝑛 , 𝑇𝑦𝑛) + 𝐻(𝑇𝑦𝑛, 𝑦𝑛+1)   

                                      ≤ 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿𝑑(𝑥𝑛 , 𝑦𝑛) + 𝜖𝑛  (From (A) and (B),)                                            (5) 
 
Consequently, 

𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝛿𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿𝑑(𝑥𝑛−1, 𝑦𝑛−1) + 𝜖𝑛−1                                                                          (6) 
 
Using (5) and (6) in (4) we get, 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝜖𝑛 + 𝛿[𝛿𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿𝑑(𝑥𝑛−1, 𝑦𝑛−1) + 𝜖𝑛−1] 
               ≤ [𝑑(𝑝, 𝑥𝑛+1) + 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿2𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿2𝑑(𝑥𝑛−1, 𝑦𝑛−1) +(𝜖𝑛 +  𝛿𝜖𝑛−1)] 

 
On repeating this process (n − 1) times, we get, 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1)+∑ 𝛿𝑛+1−𝑘𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +𝑛
𝑘=0  𝛿𝑛+1𝑑(𝑥𝑜 , 𝑦0) +  ∑ 𝛿𝑛−𝑘𝜖𝑘

𝑛
𝑘=0  

 
This proves (𝐼).   
 
From (A) we have 

∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛) 
     ≤ 𝑑(𝑦𝑛+1, 𝑝) + 𝐻(𝑝, 𝑇𝑝) + 𝐻(𝑇𝑝, 𝑇𝑦𝑛) 

                   ≤ 𝑑�𝑦𝑛+1, 𝑝) + 𝐻(𝑝, 𝑇𝑝) + 𝛿𝐻(𝑝, 𝑇𝑝) + 𝛿𝑑(𝑝, 𝑦𝑛)�    (From (B)) 
 
This concludes that  ∈𝑛→ 0 as 𝑛 → ∞ because 𝑇𝑝 = {𝑝} by hypothesis. 
 
Conversly, suppose that  ∈𝑛→ 0 as 𝑛 → ∞ 
 
First we assume that lim𝑘→∞ 𝐻�𝑥𝑘,𝑇𝑥𝑘� = 0, if  𝑇𝑝 = {𝑝} 
 
For, 

𝐻�𝑥𝑘,𝑇𝑥𝑘� ≤ 𝐻�𝑥𝑘,𝑇𝑝� + 𝐻(𝑇𝑝, 𝑇𝑥𝑘) 
                   ≤ 𝑑�𝑥𝑘,{𝑝}� + 𝐻(𝑇𝑝, 𝑇𝑥𝑘)                                                                           (7) 

 
As we know that 𝑇 is a ciric multivalued contraction and {𝑇𝑥𝑘} is a Cauchy sequence. Also  𝑇𝑥𝑘 → 𝑇𝑝 as  𝑘 → ∞. So 
putting 𝑘 → ∞ in (7) we get the required result. 
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Now  0 ≤ 𝛿 < 1,   If 𝛿 = 0  then (𝐼) gives, 

lim
𝑛→∞

𝑦𝑛 = 𝑝 
 
So we consider that 0 ≤ 𝛿 < 1,  Then, 

𝛿𝑛+1𝑑�𝑥0,𝑦0� → 0 𝑎𝑠 𝑛 → ∞ 
 
Since,  lim𝑘→∞ 𝐻�𝑥𝑘,𝑇𝑥𝑘� = 0, lim𝑘→∞𝜖𝑘 = 0,  therefore by lemma 2.1, 

∑ 2𝛿𝑛+1−𝑘𝐻(𝑥𝑘 , 𝑇𝑥𝑘) → 0 𝑎𝑛𝑑  ∑ 𝛿𝑛−𝑘𝜖𝑘
𝑛
𝑘=0 → 0𝑛

𝑘=0  𝑎𝑠 𝑛 → ∞  
 
Hence from (𝐼)                                            

lim𝑛→∞𝑦𝑛 = 𝑝. 
 
Corollary 3.1: Let (𝑋, 𝑑)be a complete metric space and 𝑇: 𝑋 → 𝑋  be a Ciric contraction with constant 𝑞 defined as 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 max �𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), �1
2
� �𝑑(𝑥, 𝑇𝑦) +  𝑑(𝑦, 𝑇𝑥)�� for all  𝑥, 𝑦 ∈ 𝑋 where 0 ≤ 𝑞 < 1. 

 
Let 𝑝 be the fixed point of  𝑇. Let 𝑥0 ∈ 𝑋 and  𝑥𝑛+1 = 𝑇𝑥𝑛 , 𝑛 = 0,1,2 … Suppose that  {𝑦𝑛}𝑛=1

∞   be a sequence in 𝑋 and 
∈𝑛= 𝑑(𝑦𝑛+1, 𝑇𝑦𝑛) 

 
Then, 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1)+∑ 𝛿𝑛+1−𝑘𝑑(𝑥𝑘 , 𝑥𝑘+1) +𝑛
𝑘=0  𝛿𝑛+1𝑑(𝑥𝑜 , 𝑦0) + ∑ 𝛿𝑛−𝑘𝜖𝑘

𝑛
𝑘=0  

 where  𝛿 = max � 𝑞
1−𝑞

, 𝑞
2−𝑞

, 2𝑞
2−𝑞

� and  𝑛 = 0,1,2 … 
 
Further, if 𝑇𝑝 is singleton then,    

lim
𝑛→∞

𝑦𝑛 = 𝑝 if and only if lim
𝑛→∞

∈𝑛= 0 
 
Proof: We know that if 𝑇 is single valued mapping then ∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛) becomes  ∈𝑛= 𝑑(𝑦𝑛+1, 𝑇𝑦𝑛) and 
𝐻(𝑥𝑛 , 𝑇𝑥𝑛) becomes 𝑑(𝑥𝑛 , 𝑥𝑛+1). 
 
As we know that 𝑝 ∈ 𝑋 in second part of Theorem 3.1, is not necessarily a unique fixed point of  𝑇. This shows that 𝑇𝑝 
contains just one point. 
 
Theorem 3.2: In case of theorem 3.1, if we replace ∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛)  by  ∈𝑛= 𝑑(𝑦𝑛+1, 𝑝𝑛),  𝑝𝑛 ∈ 𝑇𝑦𝑛 ,  𝑛 = 0,1,2 …  
Then, 𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + ∑  𝛿(𝑛+1−𝑘)𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +  𝛿(𝑛+1)𝑑(𝑥𝑜 , 𝑦0) + ∑ 𝛿𝑛−𝑘(𝐻𝑘 + 𝜖𝑘)𝑛

𝑘=0
𝑛
𝑘=0  

Where  
𝐻𝑘 = 𝐻(𝑥𝑘+1, 𝑇𝑥𝑘)                                                                                        (III) 

  
Further, if 𝑇𝑝 is singleton then 

lim𝑛→∞ 𝑦𝑛 = 𝑝 ifand only if lim𝑛→∞ ∈𝑛= 0                                                                        (IV) 
 

If 𝑇 is continuous and lim
𝑛→∞

∈𝑛= 0  then lim
𝑛→∞

𝑦𝑛 = 𝑝 
 
Proof: Let 𝑇 be a Ciric multi-valued contraction, from (B) we have,   

𝐻(𝑇𝑥𝑛 , 𝑇𝑦𝑛) ≤ 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿𝑑(𝑥𝑛 , 𝑦𝑛) for any 𝑥𝑛 , 𝑦𝑛𝜖 𝑋. Thus, if n is any non negative integer then, 
 
𝑑(𝑥𝑛+1, 𝑦𝑛+1) ≤ 𝑑(𝑥𝑛+1, 𝑝𝑛) + 𝑑(𝑝𝑛 , 𝑦𝑛+1) 

 ≤ 𝐻(𝑥𝑛+1, 𝑇𝑦𝑛) +∈𝑛 
 ≤ 𝐻(𝑥𝑛+1, 𝑇𝑥𝑛) + 𝐻(𝑇𝑥𝑛 , 𝑇𝑦𝑛) +∈𝑛 
 ≤ 𝐻𝑛 + 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿𝑑(𝑥𝑛 , 𝑦𝑛) +∈𝑛 
 ≤ 𝐻𝑛 + 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿{𝐻𝑛−1 + 𝛿𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿𝑑(𝑥𝑛−1, 𝑦𝑛−1) +∈𝑛−1} +  ∈𝑛 
 ≤ 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿2𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿2𝑑(𝑥𝑛−1, 𝑦𝑛−1) + 𝛿(𝐻𝑛−1 +∈𝑛−1) + (𝐻𝑛 +∈𝑛) 

 
Respectively, 

𝑑(𝑥𝑛+1, 𝑦𝑛+1) ≤  ∑  𝛿(𝑛+1−𝑘)𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +  𝛿(𝑛+1)𝑑(𝑥𝑜 , 𝑦0) + ∑ 𝛿𝑛−𝑘(𝐻𝑘 + 𝜖𝑘)𝑛
𝑘=0

𝑛
𝑘=0  (8)    

     
Thus, 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑦𝑛+1) 
 
From (8), 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + ∑  𝛿(𝑛+1−𝑘)𝐻(𝑥𝑘 , 𝑇𝑥𝑘) + 𝛿(𝑛+1)𝑑(𝑥𝑜, 𝑦0) + ∑ 𝛿𝑛−𝑘(𝐻𝑘 + 𝜖𝑘)𝑛
𝑘=0

𝑛
𝑘=0   
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Now if we assume that  𝑦𝑛 → 𝑝 𝑎𝑠 𝑛 → ∞ 
 
Then, 

∈𝑛= 𝑑(𝑦𝑛+1, 𝑝𝑛) ≤ 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛) 
 
Thus, theorem 3.1 shows that lim𝑛→∞ ∈𝑛= 0 
 
Now if we consider that 𝑇 is continuous and lim𝑛→∞ ∈𝑛= 0 then from (III) 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + ∑  𝛿(𝑛+1−𝑘)𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +  𝛿(𝑛+1)𝑑(𝑥𝑜 , 𝑦0) + ∑ 𝛿𝑛−𝑘𝑛
𝑘=0 𝑡𝑘,𝑛

𝑘=0   
 
where  𝑡𝑘 = (𝐻𝑘 + 𝜖𝑘). According to the proof of theorem 3.1 we need to show that the sequence {𝑡𝑘} is convergent to 
0.As we assumed that, the sequence {𝜖𝑘} is convergent to 0, it is sufficient to show that {𝐻𝑛 } is also convergent to 0. 
Since T is continuous,    

lim
𝑛→∞

𝐻𝑛 =  lim
𝑛→∞

 𝐻( 𝑥𝑛+1 ,𝑇𝑥𝑛) = 𝐻(𝑝, 𝑇𝑝) = 0 
  
Thus the proof is complete. 
 
Theorem 3.3: Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝐶𝐿(𝑋) a multi-valued contraction with constant 𝑞 
defined as  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞 max � 𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), �1
2
� �𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)��. 

 
For all x, y∈ X where 0 ≤ 𝑞 < 1 
 
Let 𝑝 be the fixed point of 𝑇. Let 𝑥0 ∈ 𝑋 and  𝑥𝑛+1 ∈ 𝑇𝑥𝑛 , 𝑛 = 0,1,2 … Suppose that  {𝑦𝑛}𝑛=1

∞   be a sequence in 𝑋 and 
∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛)                                                                                                       (C) 

Then, 
𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1)+∑ 𝛿𝑛+1−𝑘𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +𝑛

𝑘=0  𝛿 𝑛+1𝑑(𝑥𝑜, 𝑦0) + ∑ 𝛿𝑛−𝑘𝜖𝑘
𝑛
𝑘=0                               (V) 

Where  𝛿 = max �𝑞, 𝑞
1−𝑞

, 𝑞
2−𝑞

, 2𝑞
2−𝑞

� 
 
Further, if 𝑇𝑝 is singleton then 

lim𝑛→∞ 𝑦𝑛 = 𝑝 ifand only if lim𝑛→∞ ∈𝑛= 0                                                                                      (VI) 
 
Proof: Let  𝑥, 𝑦 ∈ 𝑋. Since 𝑇 is a generalised multi-valued contraction given by Timis [29] then, 

𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞 max � 𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), �1
2
� �𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)��  

𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞 𝐻(𝑥, 𝑦)                                                                              (9) 
 
𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞 𝐻(𝑥, 𝑇𝑦)  
                  ≤  𝑞 [𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦)]  
(1 − 𝑞)𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞 [𝐻(𝑥, 𝑇𝑥)]  
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞

1−𝑞
𝐻(𝑥, 𝑇𝑥)                                                                                        (10)   

 
𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞 𝐻(𝑦, 𝑇𝑥)  
𝐻(𝑇𝑥, 𝑇𝑦) ≤  𝑞[ 𝐻(𝑦, 𝑥) + 𝐻(𝑥, 𝑇𝑥)]                                                                                      (11)  
 
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞

2
[𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑦, 𝑇𝑦)  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞
2

[𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑦, 𝑥) + 𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑇𝑥, 𝑇𝑦)]  
(1 − 𝑞

2
)𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞

2
[2𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑦, 𝑥)]  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑞
2−𝑞

[2𝐻(𝑥, 𝑇𝑥) + 𝐻(𝑦, 𝑥)]                                                                                                   (12) 
 
This yields, 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿𝐻(𝑥, 𝑇𝑥) + 𝛿𝐻(𝑥, 𝑦) 
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿𝐻(𝑥, 𝑇𝑥) + 𝛿𝑑(𝑥, 𝑦)                                                                                        (D) 

Where,                  
𝛿 = max �𝑞, 𝑞

1−𝑞
, 𝑞

2−𝑞
, 2𝑞

2−𝑞
�  

Since, 
𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑦𝑛+1)                                                                                                   (13) 
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We have, 

𝑑(𝑥𝑛+1, 𝑦𝑛+1) ≤ 𝐻(𝑇𝑥𝑛 , 𝑦𝑛+1) 
                       ≤ 𝐻(𝑇𝑥𝑛 , 𝑇𝑦𝑛) + 𝐻(𝑇𝑦𝑛, 𝑦𝑛+1) 

 
From (C) and (D), we have,   

                       ≤ 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿𝑑(𝑥𝑛, 𝑦𝑛) + 𝜖𝑛                                                                                     (14) 
 
Consequently, 

𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝛿𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿𝑑(𝑥𝑛−1, 𝑦𝑛−1) + 𝜖𝑛−1                                                                       (15) 
 
Using (14) and (15) in (13) we get, 

 𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝜖𝑛 + 𝛿[𝛿𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿𝑑(𝑥𝑛−1, 𝑦𝑛−1) + 𝜖𝑛−1] 
                   ≤ [𝑑(𝑝, 𝑥𝑛+1) + 𝛿𝐻(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛿2𝐻(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝛿2𝑑(𝑥𝑛−1, 𝑦𝑛−1) (𝜖𝑛 +  𝛿𝜖𝑛−1)] 

 
On repeating this process (n − 1 )times, we get, 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1)+∑ 𝛿𝑛+1−𝑘𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +𝑛
𝑘=0  𝛿𝑛+1𝑑(𝑥𝑜 , 𝑦0) + ∑ 𝛿𝑛−𝑘𝜖𝑘

𝑛
𝑘=0  

 
This proves (𝑉) 
 
By (C) 

∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛) 
    ≤ 𝑑(𝑦𝑛+1, 𝑝) + 𝐻(𝑝, 𝑇𝑝) + 𝐻(𝑇𝑝, 𝑇𝑦𝑛) 

 
From (B), 
                 ≤ 𝑑�𝑦𝑛+1, 𝑝) + 𝐻(𝑝, 𝑇𝑝) + 𝛿𝐻(𝑝, 𝑇𝑝) + 𝛿𝑑(𝑝, 𝑦𝑛)� 
 
This concludes that  ∈𝑛→ 0 𝑎𝑠 𝑛 → ∞ because 𝑇𝑝 = {𝑝} by hypothesis.  
 
Conversely, suppose that  ∈𝑛→ 0 𝑎𝑠 𝑛 → ∞ 
 
First we assume that lim𝑘→∞ 𝐻�𝑥𝑘,𝑇𝑥𝑘� = 0, 𝑖𝑓  𝑇𝑝 = {𝑝} 
 
For, 

𝐻�𝑥𝑘,𝑇𝑥𝑘� ≤ 𝐻�𝑥𝑘,𝑇𝑝� + 𝐻(𝑇𝑝, 𝑇𝑥𝑘) 
                   ≤ 𝑑�𝑥𝑘,{𝑝}� + 𝐻(𝑇𝑝, 𝑇𝑥𝑘)                                                                         (16) 

 
As we know that T is a multi-valued contraction and {𝑇𝑥𝑘} is a Cauchy sequence. Also 𝑇𝑥𝑘 → 𝑇𝑝 as 𝑘 → ∞. So putting 
𝑘 → ∞ in (16) we get the required result. 
 
Now 0 ≤ 𝛿 < 1,   If 𝛿 = 0  then (V) gives, 

lim
𝑛→∞

𝑦𝑛 = 𝑝 
 
So we consider that 0 ≤ 𝛿 < 1,    
 
Then, 

𝛿𝑛+1𝑑�𝑥0,𝑦0� → 0 𝑎𝑠 𝑛 → ∞ 
 
Since lim𝑘→∞ 𝐻�𝑥𝑘,𝑇𝑥𝑘� = 0, lim𝑘→∞𝜖𝑘 = 0, therefore by lemma 2.1, ∑ 2𝛿𝑛+1−𝑘𝐻(𝑥𝑘 , 𝑇𝑥𝑘) → 0 𝑎𝑛𝑑  ∑ 𝛿𝑛−𝑘𝜖𝑘

𝑛
𝑘=0 → 0𝑛

𝑘=0  𝑎𝑠 𝑛 → ∞  
 
Hence from (V),   

lim
𝑛→∞

𝑦𝑛 = 𝑝. 
 
Corollary 3.2: Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝑋 is a single valued mapping with constant 𝑞 defined 
as  

𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝑞 max � 𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), �1
2
� �𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)��. 

For all x, y∈ X where 0 ≤ 𝑞 < 1 
 
Let 𝑝 be the fixed point of 𝑇. Let 𝑥0 ∈ 𝑋 and  𝑥𝑛+1 = 𝑇𝑥𝑛 , 𝑛 = 0,1,2 … Suppose that  {𝑦𝑛}𝑛=1

∞   be a sequence in 𝑋 and 
∈𝑛= 𝑑(𝑦𝑛+1, 𝑇𝑦𝑛) 
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Then, 

𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1)+∑ 𝛿𝑛+1−𝑘𝑑(𝑥𝑘 , 𝑇𝑥𝑘) +𝑛
𝑘=0  𝛿 𝑛+1𝑑(𝑥𝑜, 𝑦0) + ∑ 𝛿𝑛−𝑘𝜖𝑘

𝑛
𝑘=0  

 Where  𝛿 = max �𝑞, 𝑞
1−𝑞

, 𝑞
2−𝑞

, 2𝑞
2−𝑞

� 
 
Further, if 𝑇𝑝 is singleton then 

lim
𝑛→∞

𝑦𝑛 = 𝑝 ifand only if lim
𝑛→∞

∈𝑛= 0 
 
Proof: We know that if 𝑇 is single valued mapping then ∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛) becomes  ∈𝑛= 𝑑(𝑦𝑛+1, 𝑇𝑦𝑛) and 
𝐻(𝑥𝑛 , 𝑇𝑥𝑛) becomes 𝑑(𝑥𝑛 , 𝑥𝑛+1). 
 
As we know that 𝑝 ∈ 𝑋 in second part of Theorem 3.3, is not necessarily a unique fixed point of 𝑇. This shows that 𝑇𝑝 
contains just one point. 
 
Theorem 3.4: In case of theorem 3.3, if we replace ∈𝑛= 𝐻(𝑦𝑛+1, 𝑇𝑦𝑛)  by  ∈𝑛= 𝑑(𝑦𝑛+1, 𝑝𝑛),  𝑝𝑛 ∈ 𝑇𝑦𝑛 ,  𝑛 = 0,1,2 …  
Then, 

 𝑑(𝑝, 𝑦𝑛+1) ≤ 𝑑(𝑝, 𝑥𝑛+1) + ∑  𝛿(𝑛+1−𝑘)𝐻(𝑥𝑘 , 𝑇𝑥𝑘) +  𝛿(𝑛+1)𝑑(𝑥𝑜 , 𝑦0) + ∑ 𝛿𝑛−𝑘(𝐻𝑘 + 𝜖𝑘)𝑛
𝑘=0

𝑛
𝑘=0  

Where  
𝐻𝑘 = 𝐻(𝑥𝑘+1, 𝑇𝑥𝑘) 

 
 Further, if 𝑇𝑝 is singleton then 

lim
𝑛→∞

𝑦𝑛 = 𝑝 if and only if lim
𝑛→∞

∈𝑛= 0 
 
If 𝑇 is continuous and lim𝑛→∞ ∈𝑛= 0  then lim𝑛→∞ 𝑦𝑛 = 𝑝. 
 
Proof: Proof directly follows from theorem 3.2 
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