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ABSTRACT 
The aim of this paper is introduce and investigate new class of mappings called Contra Regular Mildly Generalized 
Continuous (briefly contra RMG-continuous) maps, we get several characterizations and some of their properties. Also 
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1. INTRODUCTION 
 
In 1996, Dontchev[4] introduced the notation of contra-continuity. J. Dontchev and T. Noiri[5] introduced and 
investigated contra semi-continuous functions and RC-continuous functions between topological spaces. The purpose 
of this paper is to introduce a new class of functions namely contra RMG-continuous functions in topological spaces. 
 
2. PRELIMINARIES 
 
Throughout this paper (X, τ), (Y, σ) and (Z, η) or simply X, Y and Z will always denote topological spaces on which no 
separation axioms are assumed unless explicitly stated. Int(A), Cl(A), RMG-cl(A), and RMG-int(A) denote the interior 
of A, closure of A, RMG-closure of A and RMG-interior of A respectively. X−A or Ac denotes the complement of A in 
X. We recall the following definitions and results. 
 
Definition 2.1 A subset A of a topological space X is called  

i) Regular open [19], if A = int(cl(A))and regular closed ifcl(int(A)) = A. 
ii) Pre-open [10], if A ⊆ int(cl(A)) and pre-closed if cl(int(A)) ⊆ A. 
iii) Semi open [12], if A ⊆ cl(int(A)) and semi-closed if int(cl(A) ⊆ A. 
iv) α-open [15], if A⊆ int(cl�int(A)�) and α-closed if cl(int(cl(A)) ⊆ A. 
v) Semi pre open [1], if A ⊆ cl(int�cl(A)�) and semi pre closed if int(cl�int(A)�) ⊆ A. 
vi) π-open [6], if A is a finite union of regular open sets. The complement of  π-open set is called the π-closed set. 
vii) A subset A of X is called δ-closed [20] if A = clδ(A), where clδ(A) = {x ∈X : int(cl(U)) ∩ A ≠ ∅, U∈A}.  
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Definition 2.2: A subset of a topological space (X, τ) is called  

1. Generalized closed (briefly g-closed) [13] if cl(A) ⊆U whenever A⊆U and U is open in X. 
2. Generalized α-closed (briefly gα-closed) [11] if α-cl(A) ⊆U whenever A⊆U and U is α-open in X. 
3. Weakly generalized closed (briefly wg-closed) [14] if cl(int(A)) ⊆U whenever A⊆U and U is open in X. 
4. Strongly generalized closed (briefly g*-closed) [18] if cl(A) ⊆U whenever A⊆U and U is g-open in X. 
5. Weakly closed (briefly w-closed) [18] if cl(A) ⊆U whenever A⊆U and U is semi-open in X. 
6. Mildly generalized closed (briefly mildly g-closed) [17] if cl(int(A)) ⊆U whenever A⊆U and U is g-open in X. 
7. Regular weakly generalized closed (briefly rwg-closed) [14] if cl(int(A)) ⊆U whenever A⊆U and U is regular 

open in X. 
8. Regular weakly closed (briefly rw-closed)[21] if cl(A)⊆U whenever A⊆U and U is regular semi open in X. 
9. Regular generalized closed (briefly rg-closed) [16] if cl(A)⊆U whenever A⊆U and U is regular open set in X. 
10. π-generalized closed (briefly πg-closed)[6] if cl(A) ⊆ U whenever A ⊆ U and U is open in X. 
11. Regular Mildly Generalized closed (briefly RMG-closed)[22] if cl(int(A)) ⊆ U whenever A ⊆ U and U is rg-

open in X. 
The complements of the above mentioned closed sets are their respective open sets. 

 
Definition 2.3: A function f: (X, τ)→(Y, σ) is called  

i) RMG-continuous [24] if  f −1(V) is RMG-closed set of (X, τ) for every closed set V of (Y, σ). 
ii) RMG-Irresolute [24] if  f −1(V) is RMG-closed set of (X, τ) for every RMG closed set V of (Y,σ). 
iii) Strongly RMG-continuous [24] if  f −1(V) is open set in (X, τ) for every RMG-open set V in (Y,σ). 
iv) Perfectly RMG-continuous [24] if  f −1(V) is clopen set in (X, τ) for every RMG-open set V in (Y,σ). 

 
Definition 2.4: A function f: (X, τ) → (Y, σ) is called   

i) contra-continuous [4] if  f −1(V) is closed in (X, τ) for every open set V in (Y, σ). 
ii) contra pre-continuous [8] if  f −1(V) is pre-closed in (X, τ) for every open set V in (Y, σ). 
iii) contra gc-continuous [3] if  f −1(V) is gc-closed in (X, τ) for every open set V in (Y, σ). 
iv) contra semi-continuous [5] if  f −1(V) is semi-closed in (X, τ) for every open set V in (Y, σ). 
v) contra semi pre-continuous [2] if  f −1(V) is semi pre-closed in (X, τ) for every open set V in (Y, σ). 
vi) contra πg-continuous [7] if  f −1(V) is πg-closed in (X, τ) for every open set V in (Y, σ). 

 
Definition 2.5: A function f: (X, τ)→(Y, σ) is called   

i) contra w-continuous if  f −1(V) is w-closed in (X, τ) for every open set V in (Y, σ). 
ii) contra gα-continuous if  f −1(V) is gα-closed in (X, τ) for every open set V in (Y, σ). 
iii) contra rg-continuous if  f −1(V) is rg-closed in (X, τ) for every open set V in (Y, σ). 
iv) contra rw-continuous if  f −1(V) is rw-closed in (X, τ) for every open set V in (Y, σ). 
v) contra wg-continuous if  f −1(V) is wg-closed in (X, τ) for every open set V in (Y, σ). 
vi) contra rwg-continuous if  f −1(V) is rwg-closed in (X, τ) for every open set V in (Y, σ). 
vii) contra g*-continuous if  f −1(V) is g* closed in (X, τ) for every open set V in (Y, σ). 
viii) viii)contra mildly g-continuous if  f −1(V) is mildly g-closed in (X, τ) for every open set V in (Y, σ). 

 
Definition 2.6: A function f: (X, τ)→(Y, σ) is called 

i) strongly continuous[21] if f −1(V) is both open and closed set in (X, τ) for each set V of (Y, σ). 
ii) strongly-w-continuous [21] if f −1(V) is open in (X, τ) for every w-open set V in (Y, σ). 
iii) perfectly continuous[18] if  f −1(V) is clopen in (X, τ) for every open set V in (Y, σ). 

 
Lemma 2.7: 

i) Every closed set is RMG-closed.[22] 
ii) Every pre-closed (respectively w-closed, gα-closed) set is RMG-closed set in X.[22] 
iii) Every RMG-closed is Mildly-g-closed set (respectively wg-closed, wπg-closed, rwg-closed) sets in X.[22] 

 
Lemma 2.8: [23] A is RMG-open iff U⊂ int(cl(A)), whenever U is RMG-closed and U⊂A.  
 
Lemma 2.9: [24] A space (X, τ) is called RMG-space if every RMG-closed set is closed. 
 
Lemma 2.10: [9] A space X is locally indiscrete if every open subset of X is closed. 
   
3. CONTRA RMG-CONTINUOUS FUNCTIONS 
 
In this section we introduce the notation of contra RMG-continuous, contra RMG-irresolute and almost contra RMG-
continuous functions in topological space and study some of their properties.  
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Definition3.1: A function f: (X, τ)→(Y, σ) is called Contra Regular Mildly Generalized Continuous (briefly contra 
RMG-continuous) if the inverse image of every open set in Y is RMG-closed set in X. 
 
Example 3.2: Let X= {a, b, c, d}, Y={p, q} with the topology τ ={X, ∅, {a}, {b, c},{a, b, c}} and σ ={Y, ∅, {p}, 
{q}}. Let f: (X, τ)→(Y, σ) be a map defined by f(a) =q, f(b) =p, f(c) =q, f(d) =q. Now f −1(∅) = ∅,f −1(Y) = X, 
 f −1({p}) = {b},  f −1({q}) = {a, c, d} are RMG-closed sets in X. Thus f is contra RMG- continuous. Then inverse 
image of open set in Y is RMG-closed set in X. 
 
Theorem 3.3: Every contra-continuous function is contra RMG-continuous. 
 
Proof: Let f: (X, τ)→(Y, σ) be a contra-continuous map. Let V be an open set in Y. Since f is contra-continuous, 
f −1(V) is closed set in X. By the lemma 2.7(i), every closed set is RMG-closed set in X. f −1(V) is RMG-closed set in 
X. Therefore f is contra RMG-continuous. 
 
The converse of the above Theorem need not be true as seen from the following example. 
 
Example 3.4: Let X={a, b, c, d}, Y={a, b, c} with the topology τ ={X, ∅, {a}, {b, c},{a, b, c}} and σ ={Y, ∅, {a}}. 
Let f: (X, τ)→(Y, σ) be defined by f(a) = d, f(b) = b, f(c) = a, f(d) = c. Then f is contra RMG- continuous but not 
contra-continuous, as inverse image of open set {a} in Y is {c} which is not closed set in X. 
 
Corollary 3.5:  

i) If a function f ∶ (X, τ) → (Y, σ) is contra pre-continuous, then it is contra RMG-continuous. 
ii) If a function f ∶ (X, τ) → (Y, σ) is contra gα-continuous, then it is contra RMG-continuous. 
iii) If a function f ∶ (X, τ) → (Y, σ) is contra w-continuous, then it is contra RMG-continuous. 

 
Proof:  

i) suppose f is contra pre-continuous function. Let V be an open set in Y. Since f is contra pre continuous. 
f −1(V) is pre-closed in X. Since every pre-closed set is RMG closed. By Lemma 2.7[ii], f −1(V) is RMG-
closed in X. Hence f is contra RMG-continuous. 

ii) Let V be open set of Y. Since f is contra gα-continuous, f −1(V) is a gα-closed in X. From lemma 2.7 [ii], 
f −1(V) RMG-closed. Therefore f is Contra RMG-continuous. 

iii) Let V be open set of Y. Since f is contra w-continuous, f −1(V) is a w-closed in X. From lemma 2.7 [ii], 
f −1(V) RMG-closed. Therefore f is Contra RMG-continuous. 

 
Remark 3.6: The converse of Corollary 3.5 need not be true as shown in the following example. 
 
Let X= {a, b, c, d}with topology τ = {X, ∅, {a}, {b, c}, {a, b, c}} and Y= {p, q} with topology σ = {Y, ∅, {p}}. Let 
function f ∶ (X, τ) → (Y, σ) be defined by f(a) = q, f(b) = p, f(c) = q and f(d) = q. Now f −1(∅) = ∅,f −1(Y) = X, 
 f −1({p}) = {b}  are RMG-closed sets in X. Hence, f is contra RMG-continuous function. However, since 

i) {b} is not pre-closed set in X i.e. f is not contra pre-continuous on X. 
ii) {b} is not gα-closed set in X i.e. f is not contra gα-contnuous on X. 
iii) {b} is not w-closed set in X i.e. f is not contra w-continuous on X. 

 
Remark 3.7: The concept of RMG-continuity and contra RMG-continuity is independent as shown in the following 
example. 
 
Example 3.8: Let X= {a, b, c, d} with topology τ = {X, ∅, {a}, {b, c}, {a, b, c}} and Y={p, q} with topology                 
σ = {Y, ∅, {q}}. Let function f ∶ (X, τ) → (Y, σ) be defined by f(a) = q, f(b) = p, f(c) = p and f(d) = q. Clearly f is 
contra RMG-continuous but not RMG-continuous, since   f −1({p}) = {b, c} is not RMG-closed sets in X where {p} is 
closed in Y.  
 
Example 3.9: Let X = {a, b, c, d} with topology τ = {X, ∅, {a}, {b, c}, {a, b, c}} and Y= {a, b, c} with topology            
σ = {Y, ∅, {a, b}}. Let function f ∶ (X, τ) → (Y, σ) be defined by f(a) = b, f(b) = c, f(c) = a and f(d) = a. Clearly f is 
RMG-continuous but not contra RMG-continuous, since f −1({a, b}) = {a, c} is not RMG-closed sets in X where {a, b} 
is open in Y.  
 
Corollary 3.10:  

i) If a function f ∶ (X, τ) → (Y, σ) is contra RMG-continuous, then it is contra mildly g-continuous. 
ii) If a function f ∶ (X, τ) → (Y, σ) is contra RMG-continuous, then it is contra wg-continuous. 
iii) If a function f ∶ (X, τ) → (Y, σ) is contra RMG-continuous, then it is contra rwg-continuous. 
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Proof:  

i) Let V be open set of Y. Since f is contra RMG-continuous, f −1(V) is a RMG-closed in X. From lemma 2.7 
[iii], f −1(V) mildly g-closed. Therefore f is contra mildly g-continuous. 

ii) Let V be open set of Y. Since f is contra RMG-continuous, f −1(V) is a RMG-closed in X. From lemma 2.7 
[iii], f −1(V)  wg-closed. Therefore f is contra wg-continuous. 

iii) Let V be open set of Y. Since f is contra RMG-continuous, f −1(V) is a RMG-closed in X. From lemma 2.7 
[iii], f −1(V) rwg-closed. Therefore f is contra rwg-continuous. 

              The converse of the above corollary need not be true as seen from the following example. 
 
Example 3.11:  

i) Let X=Y={a, b, c, d}with the topology τ ={X, ∅, {a}, {b}, {a, b}, {a, b, c}} and σ ={Y, ∅, {a}, {b, c}, {a, 
b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =c, f(b) =a, f(c) =d, f(d) =b. Then f is contra mildly-g- 
continuous but not contra RMG-continuous. Since f −1({a}) = {b} is not RMG-closed in X, where {b} is open 
in Y. 

ii) Let X=Y={a, b, c, d}with the topology τ ={X, ∅, {a}, {b}, {a, b}, {a, b, c}} and σ ={Y, ∅, {a}, {b, c},       
{a, b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =d, f(b) =c, f(c) =a, f(d) =b. Then f is contra wg- 
continuous but not contra RMG-continuous. Since f −1({b, c}) = {b, d} is not RMG-closed in X, where {b, c} 
is open in Y. 

iii) Let X=Y={a, b, c, d}with the topology τ ={X, ∅, {a}, {b}, {a, b}, {a, b, c}} and σ ={Y, ∅, {a}, {b, c},     
{a, b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =c, f(b) =a, f(c) =b, f(d) =d. Then f is contra rwg- 
continuous but not contra RMG-continuous. Since f −1({a}) = {b} is not RMG-closed in X, where {a} is open 
in Y. 

 
Remark 3.12: The concept of contra RMG-continuous is independent from the concept of contra semi-continuous, 
contra semi-pre-continuous, contra g-continuous, contra g*-continuous, contra πg-continuous, contra rg-continuous and 
contra rw-continuous are independent.  
 
Example 3.13: Let X=Y={a, b, c, d} be with topologies τ ={X, ∅, {a}, {b, c}, {a, b, c}} and σ ={Y, ∅, {a}, {b},    
{a, b}, {a, b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) = d, f(b) = a, f(c) = c, f(d) =b. Clearly f is contra RMG-
continuous, but  f −1({a}) ={b} is not semi-closed, g*-closed, g-closed, πg-closed, rw-closed, rg-closed in X. f is not 
contra semi-continuous, contra g*-continuous, contra g-continuous, contra πg-continuous, contra rw-continuous and 
contra rg-continuous.  . 
 
Example 3.14: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b},{b, c}, {a, b, c}} and Y={a, b, c} be 
with topology σ ={Y, ∅, {a}}. Let f: (X, τ)→(Y, σ) be defined by f(a) = c, f(b) =a, f(c) = b, f(d) = a. Clearly f is 
contra semi-continuous, contra g*-continuous, contra g-continuous, contra πg-continuous, contra rw-continuous and 
contra rg-continuous, but  f −1({a}) ={b, d}is not a RMG-closed in X. Therefore f is not contra RMG continuous. 
 
Example 3.15: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b}{b, c}, {a, b, c}} and Y={p, q, r} be 
with topology σ ={Y, ∅, {p}}. Let f: (X, τ)→(Y, σ) be defined by f(a) = q, f(b) = p, f(c) = q, f(d) = r. Clearly f is 
contra RMG-continuous, but  f −1({p}) ={b}is not a semi-pre closed in X, but  therefore f is not contra semi pre-
continuous. 
 
Example 3.16: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b},{b, c}, {a, b, c}} and Y={a, b, c} be 
with topology σ ={Y, ∅, {a}}. Let f: (X, τ)→(Y, σ) be defined by f(a) = a, f(b) = c, f(c) = b, f(d) = b. Clearly f is 
contra semi pre-continuous, but  f −1({a}) ={a}is not a RMG-closed in X, but  Therefore f is not contra RMG 
continuous. 
 
Remark 3.17: From the above discussion and know results we have the following implications. In the following 
diagram, by 
A B we mean A implies B but not conversely and 
A  B means A and B are independent of each other. 
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Example 3.19: Let X=Y=Z={a, b, c, d}. τ ={X, ∅, {a}, {b, c}, {a, b, c}}, σ ={Y, ∅, {a}, {b}, {a, b}, {b, c}, {a, b, 
c}} and η ={Z, ∅, {a}, {b}, {a, b}, {a, b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) = c, f(b) = d, f(c) = b, f(d) =a 
and g: (Y, σ)→(Z, η) be defined by g(a) =d, f(b) =c, f(c) =a, f(d) =b.  Then f and g are contra RMG-continuous, but 
their composition g∘f : (X, τ)→(Z, η) is not contra RMG-continuous, because F ={a} is open in (Z, η), but                
(g ∘ f)−1(F)= (g ∘ f)−1({a})= f −1(g−1({a})) = f −1({c}) = {a} which is not RMG-closed in (X, τ )  
 
Theorem 3.20: If f: (X, τ)→(Y, σ) is a contra RMG-continuous and g: (X, τ)→(Z, η) is continuous, then their 
composition g∘f : (X, τ)→(Z, η) is contra RMG-continuous. 
 
Proof: Let V be any open set in (Z, η). Since g is continuous, (g)−1(V) is open in (Y, σ). Then f −1�g−1(V)� is closed 
in (X, τ). Since f is contra RMG-continuous, f −1(g−1(V)) = (g ∘ f)−1(V) is a RMG-closed set in (X, τ). Hence g∘f is 
contra RMG-continuous. 
 
Theorem 3.21: Let f: (X, τ)→(Y, σ) be map, then the following are equivalent. 

i) f is contra RMG-continuous. 
ii) The inverse image of each closed set F of Y is RMG-open in X. 
iii) The inverse image of each open set U of Y is RMG-closed in X. 

 
Proof: Suppose i) holds. Let F be an closed set in Y. Then Y-F is open set in Y. By (i) f −1(Y − F) =X-f −1(F) is RMG 
closed in X. Therefore f −1(U) is RMG-open in X. This proves (i)⟹(ii). The implications (ii)⟹(iii) and (iii)⟹(i) 
obviously. 
 
Theorem 3.22: Let f: (X, τ)→(Y, σ) and  g: (Y, τ)→(Z, η) be any two functions. Then  

(i) g ∘ f: (X, τ)→(Z, η) is contra RMG-continuous if g is contra RMG-continuous and f is RMG-irresolute. 
(ii) g ∘ f: (X, τ)→(Z, η) is contra RMG-continuous if g is continuous and f is contra pre-continuous. 
(iii) g ∘ f: (X, τ)→(Z, η) is perfectly RMG-continuous if g is contra RMG-continuous and f is perfectly RMG-

continuous. 
 
Proof:  

(i) Let U be a open set in (Z, η). Since g is contra RMG-continuous, then g−1(U) is RMG-closed set in (Y, σ). 
Since f is RMG-irresolute,  f −1(g−1(U)) is an RMG-closed set in (X, τ). Thus (g ∘ f)−1(U) = f −1(g−1(U)) is 
an RMG-closed set in (X, τ). Therefore g∘f is contra RMG-continuous. 

(ii) Let U be a open set in (Z, η). Since g is continuous, g−1(U) is open set in (Y, σ). Since f is contra pre-
continuous then f −1(g−1(U)) is an pre-closed set in (X, τ). Hence by lemma 2.7[iii], every pre-closed set is 
RMG-closed, (g ∘ f)−1(U) = f −1(g−1(U)) is an RMG-closed set in (X, τ). Therefore g∘f is contra RMG-
continuous.  

(iii) Let U be a open set in (Z, η). By lemma 2.7(iii), every open set is RMG-open which implies U is RMG-open 
in (Z, η). Since g is contra RMG-continuous, then g−1(U) is RMG-closed set in (Y, σ). Since f is perfectly 
RMG-continuous, f −1(g−1(U)) is both open and closed set in (X, τ). Thus (g ∘ f)−1(U) = f −1(g−1(U)) is 
both open and closed set in (X, τ). Therefore gof is perfectly RMG-continuous.  
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Theorem 3.23: Let f: (X, τ)→(Y, σ) be a function and X is a RMG-space. Then the following are equivalent. 

i) f is contra-continuous. 
ii) f is contra RMG-continuous. 

 
Proof:  
(i)⇒(ii): Let U be any open set in (Y, σ). Since f is contra continuous, f −1(U) is closed in (X, τ) and since every closed 
set is RMG-closed, f −1(U) is RMG-closed in (X, τ). Therefore f is contra RMG-continuous. 
 
(ii)⇒(i): Let U be any open set in (Y, σ). Since f is contra RMG-continuous, f −1(U) is RMG-closed in (X, τ) and since 
X is a RMG-space, f −1(U) is closed in (X, τ). Therefore f is contra-continuous. 
 
Definition 3.24: A map f: (X, τ)→(Y, σ) is called contra RMG-irresolute map if the inverse image of every RMG-open 
set in (Y, σ) is RMG-closed in (X, τ). 
 
Definition 3.25: A map f: (X, τ)→(Y, σ) is called perfectly contra RMG-irresolute map if the inverse image of every 
RMG-open set in (Y, σ) is RMG-closed and RMG-open in (X, τ). 
 
Theorem 3.26: A function f: (X, τ)→(Y, σ) is perfectly contra RMG-irresolute if and only if  f is contra RMG-
irresolute and RMG-irresolute. 
 
Proof: It is directly follows from the definitions. 
 
Theorem 3.27: Every contra RMG-irresolute map is contra RMG-continuous map. 
 
Proof: Let U be a open set in Y. Since every open set is RMG-open which implies U is RMG-open in Y. Since 
f: (X, τ)→(Y, σ) is contra RMG-irresolute then  f −1({U}) is RMG-closed in X. Therefore, f is contra RMG-continuous.   
 
The converse of the above theorem need not be true. 
 
Example 3.28: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b}, {a, b, c}} and Y={a, b, c, d} be with 
topology σ ={Y, ∅, {a},{b, c}, {a, b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =b, f(b) =a, f(c) =b, f(d) =c. Then f 
is contra RMG-continuous but not contra RMG-irresolute, as inverse image of RMG –open set {a} in Y is {b} which is 
not a RMG-closed in X. 
 
Remark 3.29: The following examples show that the concept of RMG-irresolute and contra RMG-irresolute are 
independent of each other. 
 
Example 3.30: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b, c}, {a, b, c}} and Y={a, b, c} be with topology 
σ ={Y, ∅, {a}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =b, f(b) =c, f(c) =b, f(d) =a. Clearly f is contra RMG-
irresolute but not RMG-irresolute. Since  f −1({a}) ={d}is not a RMG-open in X, but  Therefore f is not RMG 
irresolute. 
 
Example 3.31: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b}} and Y={p, q} be with topology 
σ ={Y, ∅, {a}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =q, f(b) =q, f(c) =p, f(d) =p. Clearly f is RMG-irresolute but 
not contra RMG-irresolute. Since  f −1({q}) ={a, b}is not a RMG-closed in X, but  Therefore f is not contra RMG 
irresolute. 
 
Theorem 3.32: Every perfectly contra RMG-irresolute function is contra RMG-irresolute and RMG-irresolute. 
 
Proof: The proof directly follows from the definitions. 
 
Remark 3.33: The following two examples shows that a contra RMG-irresolute function may not be perfectly contra 
RMG-irresolute and RMG-irresolute may not be perfectly contra RMG-irresolute. 
 
In example 3.30, f is contra RMG-irresolute but not perfectly contra RMG-irresolute. 
 
In Example 3.31, f is RMG-irresolute but not perfectly contra RMG-irresolute. 
 
Theorem 3.34: Let f: (X, τ)→(Y, σ) and  g: (Y, τ)→(Z, η) be any two functions. Then  

(i) g ∘ f: (X, τ)→(Z, η) is contra RMG-irresolute if g is contra RMG-irresolute and f is RMG-irresolute. 
(ii) g ∘ f: (X, τ)→(Z, η) is contra RMG-continuous if g is RMG-continuous and f is contra RMG-irresolute. 
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Proof:  

(i) Let U be a RMG-open set in (Z, η). Since g is contra RMG-irresolute, g−1(U) is RMG-closed set in (Y, σ). 
Since f is RMG-irresolute then f −1(g−1(U)) is an RMG-closed set in (X, τ). (g ∘ f)−1(U) = f −1(g−1(U)) is an 
RMG-closed set in (X, τ). Therefore gof is contra RMG-irresolute.  

 
(ii) Let U be a open set in (Z, η). Since g is RMG-continuous, then g−1(U) is RMG-open set in (Y, σ). Since f is 

contra RMG-irresolute, f −1(g−1(U)) is an RMG-closed set in (X, τ). Thus (g ∘ f)−1(U) = f −1(g−1(U)) is an 
RMG-closed set in (X, τ). Therefore gof is contra RMG-irresolute 

 
Definition 3.35: A map f: (X, τ)→(Y, σ) is called almost contra RMG-continuous map if the inverse image of every 
regular open set in (Y, σ) is RMG-closed in (X, τ). 
 
Example 3.36: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b}, {a, b, c}} and Y={a, b, c} be with 
topology σ ={Y, ∅, {a}, {b}, {a, b}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =c, f(b) =d, f(c) =a, f(d) =b. Clearly f is 
almost contra RMG-continuous. Since  f −1({a}) ={c}, f −1({b}) ={d} are RMG-closed in X, for every regular open 
sets {a}, {b} in Y.  
 
Theorem 3.37: Every contra RMG-continuous map is almost contra RMG-continuous map. 
 
Proof: Let U be a regular open set in Y. Since every regular open set is open which implies U is open in Y. Since 
f: (X, τ)→(Y, σ) is contra RMG-continuous then  f −1({U}) is RMG-closed in X. Therefore, f is almost contra RMG-
continuous.   
 
The converse of the above theorem need not be true. 
 
Example 3.38: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b}, {a, b, c}} and Y={a, b, c} be with 
topology σ ={Y, ∅, {a},{b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =b, f(b) =a, f(c) =a, f(d) =c. Clearly f is 
RMG-continuous. But  f −1({a}) ={b, c} is not regular open in X. Therefore f is not almost contra RMG-continuous. 
 
Theorem 3.39: Every contra RMG-irresolute map is almost contra RMG-continuous map but not conversely. 
 
Proof: Let U be a regular open set in Y. Since every regular open set is RMG-open which implies U is RMG-open in 
Y. Since f: (X, τ)→(Y, σ) is contra RMG-irresolute then  f −1({U}) is RMG-closed in X. Therefore, f is almost contra 
RMG-continuous.   
 
The converse of the above theorem need not be true. 
 
Example 3.40: Let X={a, b, c, d} be with topology τ ={X, ∅, {a}, {b}, {a, b}, {a, b, c}} and Y={a, b, c, d} be with 
topology σ ={Y, ∅, {a},{b, c}, {a, b, c}}. Let f: (X, τ)→(Y, σ) be defined by f(a) =a, f(b) =d, f(c) =b, f(d) =c. Then f 
is contra RMG-continuous but not contra RMG-irresolute, as inverse image of RMG-open set {a} in Y is {a} which is 
not a RMG-closed in X. 
 
Remark 3.41: From the above discussions and known results we have the following implications. 
A B we mean A implies B but not conversely and 
A B means A and B are independent of each other. 

 
 
Theorem 3.42: Let f: (X, τ)→(Y, σ) be map, then the following are equivalent. 

i) f is almost contra RMG-continuous. 
ii) f −1(F) is RMG-open in X for every regular closed F in Y. 

 
Proof: (i)⇔(ii) Let F be any regular closed set of Y. Then (Y-F) is regular open and therefore 
 f −1(Y-F)=X-f −1(F)∈RMGC(X). Hence f −1(F) is RMG-open in X. The converse part is obvious. 
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Theorem 3.43: Let f: (X, τ)→(Y, σ) and  g: (Y, τ)→(Z, η) be any two functions. Then  

(i) g ∘ f: (X, τ)→(Z, η) is RMG-continuous and contra RMG-continuous if g is perfectly continuous and f is 
almost contra RMG-continuous. 

(ii) g ∘ f: (X, τ)→(Z, η) is almost contra RMG-continuous if g is almost continuous and f is almost contra RMG-
continuous 

 
Proof:  

(i) Let U be a open set in (Z, η). Since g is perfectly continuous, then g−1(U) is clopen  in (Y, σ). Since f is 
almost contra RMG-continuous,  f −1(g−1(U)) is RMG-open and RMG-closed set in (X, τ). Thus (g ∘
f)−1U=f−1(g−1U) is RMG-open and RMG-closed set in (X,τ). Therefore g∘f is RMG-continuous and 
contra RMG-continuous. 

(ii) Let U be a regular open set in (Z, η). Since g is almost continuous, g−1(U) is open set in (Y, σ). Since f is 
contra RMG-continuous then f −1(g−1(U)) is an RMG-closed set in (X, τ). (g ∘ f)−1(U) = f −1(g−1(U)) is an 
RMG-closed set in (X, τ). Therefore gof is almost contra RMG-continuous.  

 
Definition 3.44: A space is said to be locally RMG-indiscrete if every RMG-open set of X is closed in X. 
 
Theorem 3.45: A contra RMG-continuous map f: (X, τ)→(Y, σ) is continuous when X is locally RMG-indiscrete. 
 
Proof: Let O be a open set in Y. Since f is contra RMG-continuous then f −1(O) is RMG-closed in X. Since, X is 
locally RMG-indiscrete which implies f −1(O) is open in X. Therefore, f is continuous. 
 
Theorem 3.46: Let f: (X, τ)→(Y, σ) is RMG-irresolute map with Y as locally RMG-indiscrete space and     
g: (Y, σ)→(Z, 𝜂) is contra RMG-continuous, then gof is RMG-continuous. 
 
Proof: Let F be any closed set in Z. Since g is contra RMG-continuous,  g−1(F) is RMG-open in Y. But Y is locally 
RMG-indiscrete,  g−1(F) is closed in Y. Hence g−1(F) is RMG-closed in Y. Since, f is RMG-irresolute,   
f −1(g−1(F)) = (g ∘ f)−1(F) is RMG-closed in X. Therefore, g∘f is RMG-continuous. 
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