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ABSTRACT 
Let P be a finite poset. For a subset A of P, the upper cover set of A is defined as U(A) = {x∈P|x covers an a∈A}. The 
upper closed neighbours of A is defined as U[A]=U(A) ∪ A and A is called an U – covering set of  P  if  U[A] = P.  The 
U – covering number ⋁(P) is the minimum cardinality of a U-covering set. Let  𝑈𝑛𝑖  be the family of all U-covering sets 
of a chain Pn with cardinality i.  Similarly we can define L – covering and N-covering sets of Pn with cordinality i.  
𝓊(Pn,i) = |𝑈𝑛𝑖 |, ℓ(Pn, i) = |𝐿𝑛𝑖 |, 𝓃(Pn, i) = |𝑁𝑛𝑖 |.  In this paper, we construct 𝑈𝑛𝑖 , and obtain a recursive formula for 
U(Pn,i).  Using this recursive  formula   we  construct  the   polynomial  U(Pn,x) = ∑ 𝓊𝑛

𝑖=𝑛 2�  (Pn,i)xi   called  U-covering 
polynomial of Pn .  
 
Keywords: Poset, U-Covering set, U-Covering Polynomial. 
 
 
1. INTRODUCTION 
 
A poset P is finite if it has finite number of elements.  Let P be a finite poset.  The open upper cover set of A is the set 
U(A) = {x∈P |x covers an a∈A}.  The closed upper cover set of A is the set U[A] = U(A) ∪ A. We denote U({x}) as 
U(x).  A set A⊆ P is a U-covering set of P if U[A] = P. The U-covering number ⋁(P) is the minimum cardinality of a 
U-covering set of P. A poset P is a chain if every pair of elements is comparable.  Let Pn be the n element chain           
x1 < x2 < …. < xn. Let Un

i  be the family of U-covering sets of Pn with cardinality i and let 𝓊(Pn,i)= |Un
i |. The polynomial 

U(Pn, x) = ∑ 𝓊n
i=⋁(Pn) (Pn, i)xi is called the U-covering polynomial of Pn. 

 
2. U-COVERING SETS OF CHAINS 
 
In this section we construct the family of U-covering sets of chains by a recursive method. We use  x, for the smallest 
integer greater than or equal to x. Let Un

i  be the family of U-covering sets of Pn with cardinality i. The following lemma 
follows from observation. 
 
Lemma 2.1: ⋁(Pn) =  n

2
 . 

 
By the definition of U-covering set and by lemma 2.1, we have the following lemma  
 
Lemma 2.2: Uj

i = ϕ if and only if i > j or i <  j
2
  . 

 
A chain connecting a and b where a < b is a simple chain if every element other than a and b in the chain has exactly 
one upper cover and lower cover. 
 
The following lemma follows from observation. 
 
Lemma 2.3: If a poset P contains a simple chain of length 2k-1, then every U-covering set of P must contain atleast k 
elements of the chain. 
 

Corresponding Author: K. M. Thirunavukkarasu*2, 2Head, Department of Mathematics,  
Sivanthi Aditanar College, Pillayarpuram, Nagercoil, India.   

http://www.ijma.info/�


A. Vethamanickam1, K. M. Thirunavukkarasu*2 / U-Covering Sets and U-covering Polynomials… / IJMA- 8(8), August-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                         42  

 
To  find  a U-covering  set  of  Pn  with  cardinality  i, we  do  not  need  to consider U-covering sets of Pn-3 with 
cardinality i-1.  We show this in lemma 2.4.  So, we only need to consider Un−1

i−1  and Un−2
i−1 . 

 
Lemma 2.4: If D ∈  Un−3

i−1  and if there exist x∈ Pn such that DU{x}∈ Un
i  then D ∈ Un−2

i−1 . 
 
Proof: Suppose that D ∉ Un−2

i−1 .  Since D∈Un−3
i−1  , D contains xn-4 or xn-3.  If xn-3∈D, then D∈Un−2

i−1  , a contradiction.   
 
Hence xn-4 ∈ D.  But in this case, D U {x} ∉ Un

i  for any x∈Pn, a contradiction. 
 
Lemma 2.5: 

(i) If Un−1
i−1  = Un−3

i−1  = φ then Un−2
i−1  = φ. 

(ii) If Un−1
i−1  ≠ φ and Un−3

i−1  ≠ φ then Un−2
i−1  ≠ φ. 

(iii) If Un−1
i−1  =  Un−2

i−1  = φ then Un
i  = φ. 

 
Proof: 

(i) Since Un−1
i−1  = Un−3

i−1  = φ by lemma 2.2, i-1 > n-1 or i-1 <  (n−3)
2

 . 

∴ i-1 > n-2 or i-1 <  (n−2)
2

  and hence ⋃  i−1
n−2 = ϕ 

(ii) Suppose that ⋃  i−1
n−2 = ϕ, then by lemma 2.2 i-1 > n-2 then i-1 <  (n−2)

2
 . 

If  i-1 > n-2 or i-1 > n-3 and hence ⋃  i−1
n−3 = ϕ, a contradiction. 

  Hence i-1 <  (n−2)
2

  <  (n−1)
2

  and hence ⋃  i−1
n−1 = ϕ, a contradiction. 

(iii) Suppose that ⋃  i
n ≠ ϕ.  Let D∈⋃  i

n .  Then xn or xn-1 is in D.  If xn∈D, then by lemma 2.3, atleast one of xn-1 or  
xn-2 is in D.    If xn-1∈D or  xn-2 ∈ D   then  D-{xn} ∈⋃  i−1

n−1 , a contradiction.  If xn-1∈D, then by lemma 2.3 
atleast one of xn-2 or xn-3∈D.  If xn-2∈D or xn-3∈D then D-{xn-1} ∈ ⋃  i−1

n−2 , a contradiction. 
 
Lemma 2.6: If Un

i  ≠ ϕ, then 
(i) ⋃  i−1

n−1 = ϕ and ⋃  i−1
n−2 ≠ ϕ if and only if n=2k and i=k for some k∈ ℕ.  

(ii) ⋃  i−1
n−1 ≠ ϕ and ⋃  i−1

n−2 = ϕ if and only if  i=n. 
(iii) ⋃  i−1

n−1 ≠ ϕ, and ⋃  i−1
n−2 ≠ ϕ if and only if   (n−1)

2
  + 1 ≤ i ≤ n-1. 

 
Proof: 

 (i)  (⟹) since ⋃  i−1
n−1 ≠ φ , by lemma 2.2, i-1>n-1 or i-1 <  (n−1)

2
 .  If  i-1 > n-1, then i>n and hence by lemma 2.2 

Un
i = φ, a contradiction.  Therefore, i-1 < (n−1)

2
 and since Un

i ≠φ  n
2
 ≤ i < (n−1)

2
+1. This gives us n=2k and 

i=k for some k∈ℕ. 
(⇐) If n=2k and i=k for some k∈ℕ, then i < (n−1)

2
 +1 and hence i-1 < (n−1)

2
. Therefore by lemma 2.2, 

⋃  i−1
n−1 =φ 

 (ii)  (⟹) since ⋃  i−1
n−2 = φ, by lemma 2.2, i-1> n-2 or i-1 <  (n−2)

2
 .  If  i-1 < (n−2)

2
 then i-1 <  (n−1)

2
 and hence 

⋃  i−1
n−1 = φ, a contradiction.  Therefore, i-1 > n-2 and so i>n-1. Also, since ⋃  i

n ≠ φ, i ≤ n and hence i = n. 
  (⇐)  If i=n, then by lemma 2.2, ⋃  i−1

n−1 ≠ φ, and ⋃  i−1
n−2 = φ 

(iii) (⟹) since ⋃  i−1
n−1 ≠ φ and ⋃  i−1

n−2 ≠ φ,  (n−1)
2

  ≤ i -1 ≤ n – 2 and hence  (n−1)
2

 +1 ≤ i ≤ n – 1. 

 (⇐) If  (n−1)
2

 +1 ≤ i ≤ n – 1, then the result follows from lemma 2.2 
 
Theorem 2.7: For every n ≥ 3 and i ≥  n

2
 

(i) If  ⋃  i−1
n−1 = φ and ⋃  i−1

n−2 ≠ φ, then Un
i  = {{x1, x3, x5, …, xn-1}} 

(ii) If  ⋃  i−1
n−1 ≠ φ and ⋃  i−1

n−2 = φ, then Un
i  = {{x1, x2, x3, …, xn}} 

(iii) If ⋃  i−1
n−1 ≠ φ and ⋃  i−1

n−2 ≠ φ, then  
Un
i  = {{xn}∪X|X∈⋃  i−1

n−1 }∪{{xn-1}∪X|X∈⋃  i−1
n−2 \ ⋃  i−1

n−1 }∪{{xn-1}∪X| X ∈⋃  i−1
n−2 ∩ ⋃  i−1

n−1 } 
 
Proof: 

(i) ⋃  i−1
n−1 = φ and ⋃  i−1

n−2 ≠ φ.  So, by lemma 2.6 (i), n=2k and i=k for some k∈N.   

  Therefore, Un
i   = Un

n
2  = {{x1, x3, x5, …, xn-3, xn-1}} 

(ii) ⋃  i−1
n−1 ≠ φ and ⋃  i−1

n−2 = φ.  So, by lemma 2.6 (ii),  i=n.  
  Therefore, Un

i   = Un
n  = {{x1, x2, x3, …, xn-1, xn}} 

(iii) ⋃  i−1
n−1 ≠ φ and ⋃  i−1

n−2 ≠ φ.  Let X1∈⋃  i−1
n−1 . Then xn-2∈X1 or xn-1 ∈ X1.  In both cases, X1 ∪{xn} ∈ Un

i .   
  Let X2∈⋃  i−1

n−2 \ ⋃  i−1
n−1 . Then X2∈⋃  i−1

n−2 but X2 ∉ ⋃  i−1
n−1 . X2∈⋃  i−1

n−1 implies  that xn-2 or xn-3 is in X2.   
Since X2∉ ⋃  i−1

n−1 , xn-2∉ X2 and hence xn-3∈X2.  Therefore, {xn-1}∪X2 ∈ Un
i .  Let X3∈⋃  i−1

n−2 ∩ ⋃  i−1
n−1 .   
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  Then X3 ∈⋃  i−1

n−2 and X3∈⋃  i−1
n−1 . X3∈⋃  i−1

n−2 implies that xn-3∈X3 or xn-2∈ X3 .  
Since X3∈⋃  i−1

n−1 , xn-2 ∈ X3. Therefore, {xn-1}∪X3∈ ⋃  i
n . Hence, we have   

 {{xn}∪X|X∈⋃  i−1
n−1 }∪{{xn-1}∪X|X∈⋃  i−1

n−2 \⋃  i−1
n−1 }∪  {{xn-1}∪X|X∈⋃  i−1

n−2 ∩⋃  i−1
n−1 } ⊆ ⋃  i

n    (1) 
 
Conversely, let Y∈⋃  i

n .  Then xn ∈Y or xn-1 ∈ Y. If xn∈ Y, then by lemma 2.3, atleast one of  xn-1  or xn-2 ∈ Y.   
 
Therefore, Y=X ∪ {xn} for some  X ∈ ⋃  i−1

n−1 .  If xn-1 ∈ Y and xn ∉Y, then By lemma 2.3, atleast one of xn-2 or xn-3 ∈Y.  
 
If xn-2 ∉Y and xn-3 ∈Y then Y = X ∪{xn-1} for some X ∈ ⋃  i−1

n−2 | ⋃  i−1
n−1 . If xn-2 ∈Y, then Y=X ∪{xn-1} where  

X ∈ ⋃  i−1
n−2 ∩ ⋃  i−1

n−2 .   
 
Therefore  ⋃  i

n ⊆ {{xn}∪X|X∈⋃  i−1
n−1 }∪{{xn-1}∪X|X∈⋃  i−1

n−2 \⋃  i−1
n−1 } ∪ {{xn-1}∪X|X∈⋃  i−1

n−2 ∩⋃  i−1
n−1 }  (2) 

 
From (1) and (2), we get (iii). 
 
 Table-1: 𝓊(Pn,j) the number of U-Covering sets of Pn with cardinality j. 
 

j 1 2 3 4 5 6 7 8 9 10 
n           
1 1          
2 1 1         
3 0 2 1        
4 0 1 3 1       
5 0 0 3 4 1      
6 0 0 1 6 5 1     
7 0 0 0 4 10 6 1    
8 0 0 0 1 10 15 7 1   
9 0 0 0 0 5 20 21 8 1  
10 0 0 0 0 1 15 35 28 9 1 

 
3. U-COVERING POLYNOMIAL OF A CHAIN 
 
Let U(Pn ,x) = ∑ 𝓊n

i= n2
(Pn,i) xi be the U-covering polynomial of a chain Pn. In this section we study this polynomial. 

 
Theorem 3.1: 

(i) If ⋃  i
n is the family of U-covering sets with cardinality I of Pn, then |⋃  i

n | = |⋃  i−1
n−1 | + |⋃  i−1

n−2 | 
(ii) For every n ≥ 3, U(Pn, x) = x [U(Pn-1, x) + U(Pn-2, x)] with initial values U(P1,x)=x and U(P2, x)=x2+x. 

 
Proof: 

(i) It follows from Theorem 2.7 
(ii) It follows from part (i) and the definition of the U-Covering Polynomial. 
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