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ABSTRACT 

This paper discusses about the application of Singular Value Decomposition (SVD) i.e. in Image processing. We use 
singular Value decomposition to decompose large data into smaller size. In this paper we discuss the mathematics 
behind SVD. By using Matlab we can find the singular value decomposition and the application of SVD to image 
compression without data loss. In Linear Algebra, SVD are the most useful tools to reduce any matrix into smaller 
matrices. 
 
 
1.  INTRODUCTION 
 
Every 𝑚 × 𝑛matrix A can be representing an image. In the m x n matrix we have the elements mn. Each element 
represents a color block in the image. Now we have to reconstruct the image by using SVD. In the process for getting 
the original image, we need some iteration. The number of iterations depends upon the rank of “A”. This process can be 
done easily by using singular value decomposition and the rank of A is number of nonzero singular values of A. If large 
data is given, we compress data without loss of data, and then we get the data by SVD. 
 
2. MATHEMATICAL DISCUSSION ABOUT SVD 
 
Let A be a 𝑚 × 𝑛 matrix with rank ‘r’, can be decomposed into the form = 𝑈𝐷𝑉𝑇; where D is a diagonal 𝑚 × 𝑛 matrix 
with real entries  

𝜎1 ≥  𝜎2 ≥  𝜎3 ≥ ⋯  𝜎𝑟 ≥ 0; 
𝑟 ≤ min(𝑚,𝑛) 

 
And U and 𝑉  are orthogonal matrices such that 𝑈  is 𝑚 × 𝑚 and 𝑉  is 𝑛 × 𝑛  matrix. The diagonal matrix of D are 
𝜎1,𝜎2,𝜎3, … 𝜎𝑟 are called the singular value of A and the square root of positive eigen values of 𝐴𝐴𝑇 and 𝐴𝑇𝐴 . 
 
The column of the matrix 𝑈 are called the left singular vector of the matrix A and the column of the matrix V are called 
the right singular vectors of the matrix A. the matrix A can be approximated as 𝐴𝑖 = 𝑈𝑖DVi

T where 𝑖  corresponds to 
the first 𝑖 rows and 𝑖 column of each individual matrix 𝐴,𝑈,𝑉. 
 
3. LINEAR TRANSFORMATION 
 
Let 𝑥̅ be vector, 𝐴𝑥̅ is known as performing a linear transforming of𝑥̅. This maps any vectors 𝑥̅ onto the vector 𝐴𝑥̅ and 
it is denoted by 𝑥̅ → 𝐴𝑥̅. 
 
Invertible Square matrix  
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Let 𝑆 = 𝐴𝑇𝐴 such that S is 𝑛 × 𝑛  invertible square matrix in the form 𝑆 = [𝑆1� 𝑆2� … 𝑆𝚤� … 𝑆𝑛���] 

Where                  𝑆𝚤� = �
𝑆𝑖1
𝑆𝑖2…
𝑆𝑖𝑛
� 𝑆 = �

𝑆11 𝑆12 … 𝑆1𝑛
𝑆21 𝑆22 … 𝑆2𝑛 
… … … …
𝑆𝑛1 𝑆𝑛2 … 𝑆𝑛𝑛

� 

 
Let ‖𝑆𝑥̅‖ is maximized for 𝑥̅ = 𝑉1� , where 𝑉1�  is the eigen vector of S corresponding to the strictly dominant eigenvalue. 
Since {𝑉1� 𝑉2� 𝑉3�  …𝑉𝑛� } is a orthogonal set of the unit eigenvector of S, then the matrix V is a 𝑛 × 𝑛 orthogonal matrix. 
 
For any 𝑚 × 𝑛 matrix A there exists a factorization  𝐴 = 𝑈D𝑉𝑇 
 
If we know that matrix D,𝑉 and 𝐴, so a matrix 𝑈 can be obtained in terms of the remaining three matrices 

𝐴 = 𝑈D𝑉𝑇 
𝐴𝑉 = (𝑈D)(𝑉𝑇𝑉) 
𝐴𝑉 = 𝑈D𝐼 
𝐴𝑉 = 𝑈D 
𝐴𝑉D−1 = 𝑈 

 
We can consider the matrix 𝐷 as an 𝑚 × 𝑛 matrix in the form  

𝐷 =

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜎1 0 0 … 0 0 0 0
0 𝜎2 0 … 0 0 0 0
0 0 𝜎3 … 0 0 0 0
… … … … . … … 0 0
0 0 0 … 𝜎𝑟 0 0 0
0 0 0 0 0 … 0 0
0 0 0 … 0 0 … 0
0 … … … . … . 0 0 0⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Definition: The rank of a matrix is the number of linearly independent vectors in the column space of the matrix. 
 
4. IMAGE PROCESSING BY USING SVD WITH THE HELP OF MAT LAB  
 
Example 1:  To create a matrix A of order 4×4 with a rank of 4 and integer values ranging -60 to +60 using Matlab’s 
SVD command find the matrices U, D and V corresponding to A. Using the Matlab command to discuss about the 
construction of image from matrix A and also discuss the reconstruction of the image of matrix A. 
 
To create a matrix of random integersthe easiest way is to use the randint command. The command with this 
parameter reads  

>> A = randint(4, 4, 60, 4); 
  

A =�

26 50 28 34
49 56 0 8
39 24 53 7
38 49 15 32

� 

 
>>image(A); 

 

 
Original image 

 
Then, all that is required is ability to type the next line into the command  

>> [U, D, V] = svd(A); 
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U =�

−0.5170 −0.0452 0.6316 0.5760
−0.5128 0.5343 −0.6193 0.2607
−0.4407 −0.8178 −0.3654 −0.0591
−0.5249 0.2091 0.2899 −0.7725

� 

 

V =�

−0.5674 0.0233 −0.5897 −0.5743
−0.6810    0.4019 0.0800  0.6069
−0.3426 −0.9117  0.0916 0.2074
−0.3115  0.0815 0.7984 −0.5088

� 

 

D =�

133.4309 0  0 0
   0  45.4848 0 0
0 0  29.1036 0
0 0 0 6.8052

� 

 
If you wish it is possible to confirm the rank of the matrix A by typing the command: 

>> Rank (A) 
 
Seeing that all the singular values of A are non-zero then the rank of A is 4 confirmed. 
With this mind entering a 4X4 matrix random integer should give a picture of 16 square blocks compressing one large 
block. The rank of A is 4 then we get the original image in 4 iterations 

>>C=D;   
for N=[1 2 3 4];  
C(N+1:end,:)=0;   
C(:,N+1:end)=0;   
K=U*C*V'; 
figure; 
image(K);   
error=C-K; 
end 

 

 
                     Figure-1: First Iteration              Figure-2: Second Iteration                   Figure-3: Third Iteration 
 

 
Figure-4: Fourth Iteration                                        Figure-4: Original image 

 
Example 2: using Mat lab construct A to be 20X15 matrix of random integer from -78 to +78 with rank 15. An exact 
representation of the original image should be obtained 15th iteration  

>>A=randint(20,15,78,15); 
>>image (A); 
>>[U,D,V]=svd(A); 
>> SVD image(A,U,D,V): 
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Figure-5: First Iteration                                       Figure-6: Fourth Iteration 

 

 
Figure-7: Eighth Iteration                                     Figure-8: Twelve Iterations 

                                                                    

 
Figure-9: Fifteenth Iteration                                       Figure-10: Original image 

 
Notice that our good enough matrix A12 is a matrix of 144 entries is approximately equal to original image. 
 
Example 3: The following image is 256X256 matrix or pixels 
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                                   Figure-11: Original image                                       Figure-12: First Iteration 
 

 
Figure-13: 10th Iteration                                                     Figure-14: 25th Iteration 

 
As you can see, after only ten iterations you can obtain the rough image.   
 

 
Figure-15: 40th Iteration                                                            Figure-16: 65th Iteration 

 
By 25th iteration the picture is clearly evident. By 65th iterations we have essentially the original iterations. A 65X65 
matrix with 4225 entries is significantly is reduced compare to a 256X256 matrix with 65536 entries. 
 
5. CONCLUSION 
 
It is known that Singular value decomposition is very much useful in linear algebra. This paper shows this the 
application of SVD in image processing. The paper demonstrates how an image represented by a matrix can be 
compressed into a smaller sized matrix without data loss. It is demonstrated that SVD is useful in image compression 
and hence in image processing . 
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