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ABSTRACT 
In this article we have introduced new polynomial Independent Majority Neighborhood polynomial of a graph G is 
defined as 𝑁𝑖𝑀(𝐺, 𝑥) =  ∑ 𝑛𝑖𝑀(𝐺, 𝑖)𝑥𝑖𝑝

𝑖=𝑛𝑖𝑀(𝐺) , where 𝑛𝑖𝑀(𝐺, 𝑖) is the number of independent majority neighborhood 
sets of size 𝑖 and 𝑛𝑖𝑀(𝐺) is the Independent majority neighborhood number of a graph. Also we have determined this 
new polynomial structure for some classes of graphs. 
 
Key words: Independent Majority neighborhood number, Independent Majority neighborhood polynomial.   
 
 
1. INTRODUCTION 
 
Let G = (V, E) be a simple graph with p vertices and q edges for any vertex v V∈ , the open neighborhood of v is the 
set of { }( ) VN v u uv E= ∈ ∈ and the closed neighborhood of v  is the set [ ] ( ) { }N v N v v= 

. For a set 

,S V⊆ the open neighborhood of S is ( ) ( )
v S

N S N v
∈

=


and the closed neighborhood of S is [ ] ( )N S N S S= 
 

[8]. A set of points S in a graph G is a neighborhood set of G if 𝐺 = ⋃ 〈𝑁[𝑣]〉𝑣∈𝑆  where 〈𝑁[𝑣]〉 is the sub graph of G 
induced by 𝑣 and all points adjacent to 𝑣 minimum cardinality of neighborhood set of G is the neighborhood number of 
a graph G [8]. A neighborhood set S of G is an independent neighborhood set if no two vertices in S are adjacent [7]. 
Let ( , )G V E= be a graph. A set ( )S V G⊆  is called a majority neighborhood set if [ ]M

v S
G N v

∈
=


 contains at 

least 
2
p 

  
 vertices and at least 

2
q 
  

edges. [5] A majority neighborhood set S is called a minimal majority 

neighborhood set if no proper subset of S is a majority neighborhood set. The minimum cardinality of a minimal 
majority neighborhood set is called the majority neighborhood number of G and is denoted by ( )Mn G . This 
parameter has been studied by Swaminathan.V and Joseline Manora. J [4]. Neighborhood polynomial 𝑁(𝐺, 𝑥) of a 
graph G has been introduced by J. Josline Manora and I. Paulraj Jayasimmman [6]. 

 
2. INDEPENDENT MAJORITY NEIGHBORHOOD POLYNOMIAL OF A GRAPH 
 
Definition 2.1: Let 𝐺 = (𝑉,𝐸) be a graph of order p with the independent majority neighborhood number 𝑛𝑖𝑀(𝐺). 
Then the independent majority neighborhood polynomial of G is defined as 𝑁𝑖𝑀(𝐺, 𝑥) =  ∑ 𝑛𝑖𝑀(𝐺, 𝑖)𝑥𝑖𝑝

𝑖=𝑛𝑖𝑀(𝐺) , where 
𝑛𝑖𝑀(𝐺, 𝑖) is the number of independent majority neighborhood sets of size 𝑖.  
 
The following example illustrates the new definition. 
 
Let 𝐺 = 𝑃7 be a path of length 7 with,𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} and 𝑞 = 6 then 𝑛𝑖𝑀(𝐺) = 2. Therefore, the 
independent majority neighborhood sets of size 2, 3 and 4 are the following, 

2 2 2( , 2) ( , 2) 14iM iMn G x N G x x= = , 3 3( ,3) ( ,3) 10iM iMn G x N G x= = .Then exists no other 

independent majority neighborhood sets of sizes i=4, 5, 6 and 7.Hence, 𝑁𝑖𝑀(𝑃7, 𝑥) = 14𝑥2 + 10𝑥3. 
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Proposition 2.2: Let𝐺 = 𝐾𝑝���� be the totally disconnected graph with order 𝑝 ≥ 2. Then the independent majority 

neighborhood polynomial of G is ( )

2

,
p

i
iM

pi

p
N G x x

i =  

 
=  

 
∑ . 

Proof: Since 𝑛𝑖𝑀(𝐺) = �𝑝
2
�, then the independent majority neighborhood sets are 

 𝑛𝑖𝑀 �𝐺, �𝑝
2
�� = �

𝑝
�𝑝
2
��, 𝑛𝑖𝑀 �𝐺, �𝑝

2
� + 1� = �

𝑝
�𝑝
2
� + 1�, 𝑛𝑖𝑀 �𝐺, �𝑝

2
� + 2� = �

𝑝
�𝑝
2
� + 2�,…. 𝑛𝑖𝑀(𝐺, 𝑝) = �

𝑝
𝑝�. 

Therefore the independent majority neighborhood polynomial is ( )

2

,
p

i
iM

pi

p
N G x x

i =  

 
=  

 
∑  . 

 
Proposition 2.3: Let 𝐺 = 𝐾1,𝑝 be a star graph of order 𝑝 ≥ 2. Then the independent majority neighborhood polynomial 

of G is ( )

2

,
p

i
iM

pi

p
N G x x x

i =  

 
= +  

 
∑ .  

 
Proposition 2.4: For a complete graph 𝐺 = 𝐾𝑝 with ≥ 3 . Then the independent majority neighborhood polynomial of 
G is 𝑁𝑖𝑀(𝐺, 𝑥) = 𝑝𝑥.  
 
Theorem 2.5: Let 𝐺 = 𝐷𝑟,𝑠  be the double star with 𝑟, 𝑠 ≥ 2 Then the independent majority neighborhood polynomial 
of G is  

𝑁𝑖𝑀(𝐺,𝑥) = �
2𝑥 + �((1 + 𝑥)𝑟 − 1) + ((1 + 𝑥)𝑠 − 1)�𝑥𝑖+1 + ∑ �𝑟 + 𝑠

𝑖 � 𝑥𝑖 𝑟+𝑠
𝑖=�𝑞2�

, 𝑖𝑓 𝑟 < 𝑠

2𝑥�1 + ((1 + 𝑥)2𝑟 − 1)� + ∑ �2𝑟
𝑖 � 𝑥

𝑖  2𝑟
𝑖=�𝑞2�

,                                                𝑖𝑓 𝑟 = 𝑠
�  

 
Proof: Let 𝑉(𝐺) = {𝑢, 𝑣,𝑢1,𝑢2, … ,𝑢𝑟 , 𝑣1, 𝑣2, … , 𝑣𝑠} with 𝑝 = 𝑟 + 𝑠 + 2. Let 𝑋 = {𝑢, 𝑣} be the centre vertex set of G, 
𝑟 = 𝑋1 = 𝑁[𝑢] = {𝑢1,𝑢2,𝑢3, … ,𝑢𝑟} with |𝑋1| = 𝑟 and 𝑋2 = 𝑁[𝑣] = {𝑣1, 𝑣2, 𝑣3, … , 𝑣5} with |𝑋2| = 𝑠. Since     
𝑛𝑖𝑀(𝐺) = 1.  
 
Case-(i): When 𝑟 < 𝑠. Without loss of generality let 𝑟 < 𝑠. Then independent majority neighborhood set of G of the 
size i =1 𝑛𝑖𝑀(𝐺) = 1 are 𝑁𝑖𝑀(𝐺, 1) = �{𝑢}, {𝑣}�, |𝑁𝑖𝑀(𝐺, 1)| = 𝑛𝑖𝑀(𝐺, 1) = 2. This gives 𝑁𝑖𝑀(𝐺, 1)𝑥 = 2𝑥. Choose 

the independent majority neighborhood set with cardinality 𝑖 = 2 then 𝑁𝑖𝑀(𝐺, 2) = �
�{𝑢} ∪ {𝑣𝑖}/ 𝑢 ∈ 𝑋, 𝑣𝑖 ∈ 𝑋2�,
�{𝑣} ∪ {𝑢𝑖}/ 𝑣 ∈ 𝑋,𝑢𝑖 ∈ 𝑋1�

� 

⇒  |𝑁𝑖𝑀(𝐺, 2)| = 𝑛𝑖𝑀(𝐺, 2) = �𝑟1� + �𝑠1� = 𝑟 + 𝑠.  𝑛𝑖𝑀(𝐺, 2) = ��𝑟1� + �𝑠1�� 𝑥
2. Next choose the independent 

majority neighborhood set of size 𝑖 = 3 is 𝑁𝑖𝑀(𝐺, 2) = �
�{𝑢} ∪ �𝑣𝑖𝑣𝑗�/ 𝑖 ≠ 𝑗 ,𝑢 ∈ 𝑋, 𝑣𝑖𝑣𝑗 ∈ 𝑋2� ,

�{𝑣} ∪ �𝑢𝑖𝑢𝑗�/ 𝑖 ≠ 𝑗, 𝑣 ∈ 𝑋,𝑢𝑖𝑢𝑗 ∈ 𝑋1�
�. Therefore, 

𝑛𝑖𝑀(𝐺, 3) = ��𝑟2� + �𝑠2�� 𝑥
3. The independent majority neighborhood set of the size is  𝑖 = �𝑞

2
� then the independent 

majority neighborhood sets are 𝑁𝑖𝑀 �𝐺, �𝑞
2
�� = �

{𝑢1,𝑢2,𝑢3, … ,𝑢𝑖} ∪ �𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑗�𝑢𝑖 ∈ 𝑋1, 𝑣𝑗 ∈ 𝑋2,

|𝑋1 + 𝑋2| = �𝑞
2
�                                                                  

�    

⇒ �𝑁𝑖𝑀 �𝐺, �𝑞
2
��� = 𝑛𝑖𝑀 �𝐺, �𝑞

2
�� = �

𝑟 + 𝑠
�𝑞
2
� �, this gives 𝑁𝑖𝑀 �𝐺, �𝑞

2
��  𝑥�

𝑞
2� = �

𝑟 + 𝑠
�𝑞
2
� �  𝑥�

𝑞
2�. 

Hence, 

𝑁𝑖𝑀(𝐺,𝑥) =

⎩
⎨

⎧2𝑥 + ��𝑟1� + �𝑠1�� 𝑥
2 + ��𝑟2� + �𝑠2��  𝑥3 + ⋯+ �𝑟𝑟� 𝑥

𝑟 + �𝑠2� 𝑥
𝑠

+ �
𝑟 + 𝑠
�𝑞
2
� � 𝑥

�𝑞2� + �
𝑟 + 𝑠
�𝑞
2
� + 1� 𝑥

�𝑞2�+1 + ⋯+ �𝑟 + 𝑠
𝑟 + 𝑠� 𝑥

𝑟+𝑠 , 𝑟 < 𝑠
⎭
⎬

⎫
  

  = 2𝑥 + ∑ �𝑟𝑖� 𝑥
𝑖+1 +𝑟

𝑖=1 ∑ �𝑠𝑖� 𝑥
𝑖+1 + ∑ �𝑟 + 𝑠

𝑖 � 𝑥𝑖𝑟+𝑠
𝑖=�𝑞2�

𝑠
𝑖=1   

Hence, 
𝑁𝑖𝑀(𝐺,𝑥) = 2𝑥 + �((1 + 𝑥)𝑟 − 1) + ((1 + 𝑥)𝑠 − 1)� + ∑ �𝑟 + 𝑠

𝑖 � 𝑥𝑖𝑟+𝑠
𝑖=�𝑞2�

  , 𝑖𝑓 𝑟 < 𝑠  
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Case-(ii): If 𝑟 = 𝑠 then the independent majority neighborhood sets of the size 𝑛𝑖𝑀(𝐺) = 1 are                     
𝑁𝑖𝑀(𝐺, 1) = �{𝑢}, {𝑣}/𝑢, 𝑣 ∈ 𝑋�⇒ |𝑁𝑖𝑀(𝐺, 1)| = 𝑛𝑖𝑀(𝐺, 1) = 2. This gives 𝑁𝑖𝑀(𝐺, 1)𝑥 = 2𝑥.  
 

Next independent majority neighborhood sets of the size of 𝑖 = 2 is|𝑁𝑖𝑀(𝐺, 2)| = 𝑛𝑖𝑀(𝐺, 2) = ��𝑟1� + �𝑠1�� =

��𝑟1� + �𝑟1�� = 2 �𝑟1�. Therefore 𝑁𝑖𝑀(𝐺, 2)𝑥2 = 2 �𝑟2�. For the size 𝑖 = 3 is 2 �𝑟3� 𝑥
3.  Hence 𝑁𝑖𝑀(𝐺, 𝑖)𝑥𝑖 = 2 �𝑟𝑖� 𝑥

𝑖. 

The independent majority neighborhood sets of the size �𝑞
2
� is 𝑁𝑖𝑀 �𝐺, �𝑞

2
�� 𝑥�

𝑞
2� = �

𝑟 + 𝑠
�𝑞
2
� � 𝑥

�𝑞2� = �
2𝑟
�𝑞
2
�� 𝑥

�𝑞2�. Thus,  

𝑁𝑖𝑀(𝐺,𝑥) = 2𝑥 + �2 �𝑟1� 𝑥
2 + 2 �𝑟2� 𝑥

3 + ⋯+ 2 �𝑟𝑟� 𝑥
𝑖� + �

2𝑟
�𝑞
2
�� 𝑥

�𝑞2� + �
2𝑟

�𝑞
2
� + 1� 𝑥

�𝑞2�+1 + ⋯+ �2𝑟
2𝑟� 𝑥

2𝑟.   

𝑁𝑖𝑀(𝐺,𝑥) =  �2 �𝑥 + ∑ �2𝑟
𝑖 � 𝑥

𝑖+12𝑟
𝑖=1 � + ∑ �2𝑟

𝑖 � 𝑥
𝑖2𝑟

𝑖=�𝑞2�
�  

Hence,  

𝑁𝑖𝑀(𝐺,𝑥) =  �2𝑥�1 + ((1 + 𝑥)2𝑟 − 1)� + ∑ �2𝑟
𝑖 � 𝑥

𝑖 , 𝑖𝑓 𝑟 = 𝑠2𝑟
𝑖=�𝑞2�

�  

 
From the above two cases,  

𝑁𝑖𝑀(𝐺,𝑥) = �
2𝑥 + �((1 + 𝑥)𝑟 − 1) + ((1 + 𝑥)𝑠 − 1)� + ∑ �𝑟 + 𝑠

𝑖 � 𝑥𝑖𝑟+𝑠
𝑖=�𝑞2�

  , 𝑖𝑓 𝑟 < 𝑠

 2𝑥�1 + ((1 + 𝑥)2𝑟 − 1)� + ∑ �2𝑟
𝑖 � 𝑥

𝑖     , 𝑖𝑓 𝑟 = 𝑠2𝑟
𝑖=�𝑞2�

                                   
�  

 
 
Theorem 2.6: For 𝐺 = 𝐾𝑚,𝑛 be a complete bipartite graph with then independent majority neighborhood polynomial of 
G is  

𝑁𝑖𝑀(𝐺,𝑥) = �
∑ �𝑚𝑖 � 𝑥

𝑖𝑚
𝑖=�𝑚2 �

+ ∑ �𝑛𝑖 � 𝑥
𝑖𝑛

𝑖=�𝑛2�
,   𝑖𝑓 𝑚 < 𝑛

    2∑ �𝑚𝑖 � 𝑥
𝑖𝑚

𝑖=�𝑚2 �
 ,               𝑖𝑓 𝑚 = 𝑛               

�   

 
Proof: Let  𝐺 = 𝐾𝑚,𝑛 be a complete bipartite graph 𝑚,𝑛 ≥ 2 with the partition 𝑉1(𝐺) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚} and 
𝑉2(𝐺) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} 
 
Case-(i): If 𝑚 < 𝑛  then  𝑛𝑖𝑀(𝐺) = �𝑚

2
�. Since 𝑉1(𝐺) and 𝑉2(𝐺) are the independent set and �𝑉1(𝐺)� = 𝑉2(𝐺) 

𝑁�𝑉2(𝐺)� = 𝑉1(𝐺). Therefore combination of vertices of 𝑉1(𝐺)  with  𝑉2(𝐺)   are not an independent set. Then the 
independent majority neighborhood sets are the combination of vertices of 𝑉1(𝐺) with the size 𝑛𝑖𝑀(𝐺) = �𝑚

2
� , �𝑚

2
� +

1, �𝑚
2
� + 2, … ,𝑚 are �

𝑚
�𝑚
2
�� ,�

𝑚
�𝑚
2
� + 1� ,�

𝑚
�𝑚
2
� + 2� ,�

𝑚
�𝑚
2
� + 3� , … , �𝑚𝑚� respectively and independent majority 

neighborhood sets with the combinations of vertices of 𝑉2(𝐺) with the size 𝑖 = �𝑛
2
� , �𝑛

2
� + 1, �𝑛

2
� + 2, … ,𝑛 are 

�
𝑛
�𝑛
2
�� ,�

𝑛
�𝑛
2
� + 1� ,�

𝑛
�𝑛
2
� + 2� , , … , �𝑛𝑛� respectively.  

Hence,   𝑁𝑖𝑀(𝐺, 𝑥) =

⎩
⎪
⎨

⎪
⎧ �

𝑚
�𝑚
2
�� 𝑥

�𝑚2 � + �
𝑚

�𝑚
2
� + 1� 𝑥

�𝑚2 �+1 + �
𝑚

�𝑚
2
� + 2� 𝑥

�𝑚2 �+2 + �
𝑚

�𝑚
2
� + 3� 𝑥

�𝑚2 �+3

+. . + �𝑚𝑚� 𝑥
𝑚 +  �

𝑛
�𝑛
2
�� 𝑥

�𝑛2� + �
𝑛

�𝑛
2
� + 1� 𝑥

�𝑛2�+1 + �
𝑛

�𝑛
2
� + 2� 𝑥

�𝑛2�+2+. , + �𝑛𝑛� 𝑥
𝑛

                                                                                                             if m < 𝑛  

�       

𝑁𝑖𝑀(𝐺,𝑥) = �∑ �𝑚𝑖 �
𝑚
𝑖=�𝑚2 �

� 𝑥𝑖 + ∑ �𝑛𝑖 �
𝑛
𝑖=�𝑛2�

𝑥𝑖 ,    𝑖𝑓 𝑚 < 𝑛  

 
Case-(ii): Let 𝑚 = 𝑛. Then 𝑉1(𝐺) = 𝑉2(𝐺).. Therefore 𝑛𝑖𝑀(𝐺) - sets are the combination of vertices of   
𝑉1(𝐺) and𝑉2(𝐺) with the size the size 𝑛𝑖𝑀(𝐺) = �𝑚

2
� , �𝑚

2
� + 1, �𝑚

2
� + 2, … ,𝑚 are 

 2��
𝑚
�𝑚
2
�� ,�

𝑚
�𝑚
2
� + 1� ,�

𝑚
�𝑚
2
� + 2� , … , �𝑚𝑚�� respectively.  

Therefore,   

𝑁𝑖𝑀(𝐺,𝑥) =  �∑ 2�𝑚𝑖 �
𝑚
𝑖=�𝑚2 �

� 𝑥𝑖 , 𝑖𝑓 𝑚 = 𝑛  
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Hence from the two cases, 

𝑁𝑖𝑀(𝐺,𝑥) = �
∑ �𝑚𝑖 � 𝑥

𝑖𝑚
𝑖=�𝑚2 �

+ ∑ �𝑛𝑖 � 𝑥
𝑖𝑛

𝑖=�𝑛2�
,   𝑖𝑓 𝑚 < 𝑛

    2∑ �𝑚𝑖 � 𝑥
𝑖𝑚

𝑖=�𝑚2 �
,               𝑖𝑓 𝑚 = 𝑛               

�  
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