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ABSTRACT 
In this paper, we introduce and study a new class of closed sets called minimal 𝜓g#-closed, maximal 𝜓g#-closed sets 
and their properties.  Also we introduce new types of continuous functions called minimal 𝜓g#-continuous and maximal 
𝜓g#-continuous functions. Finally, we study some properties of these types of continuous functions. 
 
Keywords: minimal 𝜓g#-closed, maximal 𝜓g#-closed, minimal 𝜓g#-continuous, maximal 𝜓g#- continuous, minimal 𝜓g#-
irresolute, maximal 𝜓g#-irresolute. 
 
 
1. INTRODUCTION 
 
In 2006, F.Nakaoka and N. Oda introduced the concepts of minimal and maximal closed sets, which plays the 
significant role in general topology. In 2015, N.Sowmya, M.Elakkiya, N.Balamani introduced the concepts of           
𝜓g#-closed sets in topological spaces. In this paper, we introduce and study a new class of closed sets called minimal 
𝜓g#-closed, maximal 𝜓g#-closed sets and their properties. Also we introduce a new class of continuous functions called 
minimal 𝜓g#-continuous and maximal 𝜓g#-continuous functions and investigate some of their fundamental properties. 
Also we define minimal 𝜓g#-irresolute and maximal 𝜓g#-irresolute functions in topological spaces. 
 
Throughout this paper, the spaces X, Y and Z always mean topological spaces (X, τ), (Y, σ) and (Z, η) respectively.  
 
2. PRELIMINARIES 
 
Definition 2.1: A subset A of a topological space (X, τ) is called  

(i) Semi-closed [2] if int(cl(A)) ⊆ A. 
(ii) α-closed [9]  if  cl(int(cl(A))) ⊆ A. 
(iii) semi-generalized closed [1] (briefly, sg-closed) if scl(A) ⊆ U whenever A ⊆ U and U is semi-open  in X. 
(iv) α-generalized closed [4] (briefly, αg-closed) if αcl(A) ⊆ U whenever A ⊆ U and U is an open set in X. 
(v) 𝜓-closed [11] if scl(A) ⊆ U whenever A ⊆ U and U is  sg-open  in X. 
(vi) g#-closed [12] if cl(A) ⊆ U whenever A ⊆ U and U is  αg-open  in X. 

 
Definition 2.2: Let X be a topological space. A nonempty proper closed subset U of X is said to be 

 
(i)  minimal closed [6] if any closed set which is contained in U is φ or U. 
(ii)  maximal closed [6] if any closed set which is contains U is X or U. 

 
Definition 2.3: Let X and Y be topological spaces. A map f: X→Y is called  

(i) minimal continuous if f -1(A) is open in X for every minimal open set A in Y. 
(ii) maximal continuous if f -1(A) is open in X for every maximal open set A in Y. 

 
Definition 2.4: A topological space X is said to be Tmin(resp. Tmax) space if every nonempty proper open subset of X is 
a minimal open set(resp. maximal open). 
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Lemma 2.5: Let Y be a Tmin space. Then f: X → Y is min-continuous if and only if f is max-continuous. 
 
Definition 2.6: A subset A of a topological space (X, τ) is called a 𝜓g#-closed set if 𝜓cl(A)⊆U whenever A ⊆ U and U 
is g#-open in X.  
 
A subset A of a topological space (X, τ) is called a 𝜓g#-open if X \ A is 𝜓g#-closed in X. 
 
Definition 2.7: A subset A of a topological space X is called  

(i) 𝜓g#-continuous if f -1(V) is 𝜓g#-closed in X for every closed set V in Y. 
(ii) 𝜓g#-irresolute if f -1(V) is 𝜓g#-closed in X for every 𝜓g#-closed set V in Y. 

 
Definition 2.8: A topological space X is called a T𝜓g# space if every 𝜓g#-closed set is closed in X. 
 
Definition 2.9: For any set A ⊂ X, the 𝜓g#-closure of A is defined as the intersection of all 𝜓g#-closed sets contains A 
and is denoted by 𝜓g#cl(A). 
 
For any set A ⊂ X, the 𝜓g#-interior of A is defined as the union of all 𝜓g#-open sets contained in A and is denoted by 
𝜓g#int(A). 
 
Lemma 2.10: For x ∈ X and a subset A in X, x ∈ 𝜓g#int(A) if and only if F ∩ A ≠ φ  for every  𝜓g#-closed set F 
containing x. 
 
3. MINIMAL AND MAXIMAL 𝜓g#-CLOSED SETS 
 
Definition 3.1: A nonempty proper 𝜓g#-closed set A of X is said to be minimal 𝜓g#-closed if any 𝜓g#-closed set 
contained in A is φ or A. 
 
Definition 3.2: A nonempty proper 𝜓g#-closed set A of X is said to be maximal 𝜓g#-closed if any 𝜓g#-closed set 
contains A is X or A. 
 
Example 3.3: Let X = {1, 2, 3} with the topology τ = {φ, {1}, {2}, {1, 2}, {1, 3}, X}. 
 
Then 𝜓g#-closed sets are φ, {2}, {3}, {1, 3}, {2, 3}, X. 
 
Here the minimal 𝜓g#-closed sets are {2}, {3} and the maximal 𝜓g#-closed sets are {1, 3}, {2, 3}. 
 
Theorem 3.4: Let X be a topological space and F ⊆ X. Then F is minimal 𝜓g#-closed if and only if X \ F is maximal 
𝜓g#-open. 
 
Proof: Let F be a minimal 𝜓g#-closed set in X. Let V be a 𝜓g#-open set such that X \ F ⊆ V. Since X \V is a 𝜓g#-closed 
set contained in a minimal 𝜓g#-closed set F, then X \ V = φ or X \ V = F. That is V = X or V = X \ F. Therefore X \ F is 
a maximal 𝜓g#-open set.  
 
Conversely, let X \ F be maximal 𝜓g#-open. Let U be a 𝜓g#-closed such that U ⊆ F. But X \ U is 𝜓g#-open and X \ F is 
maximal 𝜓g#-open,  then X \ U = X \ F or X \ U = X. That is, U = F or U = φ. Therefore F is a minimal 𝜓g#-closed set. 
 
Remark 3.5: Maximal closed and Maximal 𝜓g#-closed sets are independent to each other. 
 
Example 3.6: Let X = {a, b, c} with the topology τ = {φ, {a, b}, X} and τc = {φ, {c}, X}. 
Then 𝜓g#-closed sets are φ,{c}, {b, c}, {a, c}, X. 
 
Here {c} is a maximal closed set but not maximal 𝜓g#-closed and {b, c}, {a, c} are maximal 𝜓g#-closed but not a 
maximal closed set.      
 
Theorem 3.7: Let (X, τ) be a topological space. 

(a) If F is a minimal 𝜓g#-closed set and W is a 𝜓g#-closed set such that F ∩ W ≠ φ, then F ⊆ W. 
(b) If F and W are minimal 𝜓g#-closed sets such that F ∩ W ≠ φ, then F = W. 

 
Proof: 

(a) If F ∩ W ≠ φ, then F ∩ W ⊆ F. But F ∩ W is a nonempty 𝜓g#-closed set contained in a minimal 𝜓g#-closed 
set F, so F ∩ W = F. Thus F ⊆ W. 

(b) If F ∩ W ≠ φ, then by (a), F ⊆ W and W ⊆ F. Thus F = W. 
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Theorem 3.8: Let F be a minimal 𝜓g#-closed set. If x is an element of F, then F ⊆ W for any 𝜓g#-closed set W 
containing x. 
 
Proof: Let x ∈ F and W is a 𝜓g#-closed set containing x. Then F ∩ W ≠ φ.  
 
So, by Theorem 3.7, F ⊆ W.  
 
Corollary 3.9:  Let F be a minimal 𝜓g#-closed set and x ∈ F. Then F = ∩ {W: W is a 𝜓g#-closed set containing x}. 
 
Theorem 3.10: Let W be a nonempty finite 𝜓g#-closed set in a topological space X. Then there exists atleast one 
(finite) minimal 𝜓g#-closed set F such that F ⊆ W. 
 
Proof: If W is a minimal 𝜓g#-closed set, we set F = W. If W is not a minimal 𝜓g#-closed set, then there exists a finite 
𝜓g#-closed set W1 such that φ ≠ W1 ⊂ W. If W1 is a minimal 𝜓g#-closed set, we set F = W1. If W1 is not minimal 𝜓g#-
closed set, then there exists a finite 𝜓g#-closed set W2 such that φ ≠ W2 ⊂ W1 ⊂ W. Continuing this process, we have a 
sequence of 𝜓g#-closed sets W ⊃W1 ⊃ W2 ⊃ … ⊃ Wk … . Since W is a finite set, this process repeats only finitely 
many. Then finally, we get a minimal 𝜓g#-closed set F = Wn for some positive integer n. 
 
Corollary 3.11: If W is a finite minimal closed set, then there exists atleast one minimal 𝜓g#-closed set F such that       
F ⊆ W. 
 
Theorem 3.12: Let W be a proper nonempty cofinite 𝜓g#-closed subset of a topological space X. Then there exists at 
least one (cofinite) maximal 𝜓g#-closed set F such that W ⊆ F. 
 
Proof: If W is a maximal 𝜓g#-closed set, we set F = W. If W is not a maximal 𝜓g#-closed set, then there exists a 
cofinite 𝜓g#-closed set W1 such that W ⊂ W1 ≠ X. If W1 is maximal 𝜓g#-closed, we set F = W1. If W1 is not maximal 
𝜓g#-closed, then there exists a cofinite 𝜓g#-closed set W2 such that W ⊂ W1 ⊂ W2 ≠ X. Continuing this process, we 
have a sequence of 𝜓g#-closed sets W ⊂ W1 ⊂ W2 ⊂…⊂ Wk … . Since W is a cofinite set, this process repeats only 
finitely many. Then finally, we get a maximal 𝜓g#-closed set F = Wn for some positive integer n. 
 
Theorem 3.13: Let A be a nonempty 𝜓g#-closed set. Then the following three conditions are equivalent : 

(i) A is a minimal 𝜓g#-closed set. 
(ii) A ⊂ 𝜓g#int(U), for any nonempty subset U of A. 
(iii) 𝜓g#int(A) = 𝜓g#int(U), for any nonempty subset U of A. 

 
Proof: To prove (i) ⇒ (ii): Let x ∈ A and U be a nonempty subset of A. Then there is a 𝜓g#-closed set B containing x 
such that A ⊂ B. Now, U = U∩A ⊂ U∩B. Since U is nonempty, we have U ∩ B ≠ φ. Again since B is any 𝜓g#-closed 
set containing x and by Lemma 2.10, x ∈ 𝜓g#int(U). Hence A ⊂ 𝜓g#int(U), for any nonempty subset U of A. 
 
To prove (ii) ⇒ (iii): Let U be a nonempty subset of A and A ⊂ 𝜓g#int(U). Then 𝜓g#int(U) ⊂ 𝜓g#int(A) and 𝜓g#int(A) 
⊂ 𝜓g#int(U). Hence 𝜓g#int(A) = 𝜓g#int(U), for any nonempty subset U of A. 
 
To prove (iii) ⇒ (i): Let 𝜓g#int(A) = 𝜓g#int(U), for any nonempty subset U of A. Suppose A is not a minimal 𝜓g#-
closed set. Then there exists a nonempty 𝜓g#-closed set B such that B ⊂ A and B ≠ A.  Now there exist an element x ∈ 
A such that x ∉ B. That is, 𝜓g#int({x}) ⊂ 𝜓g#int(X \ B) = X \ B, since X \ B is 𝜓g#-open set in X. It follows that 
𝜓g#int({x}) ≠ 𝜓g#int(A). This is contradiction to the fact that 𝜓g#int({x}) = 𝜓g#int(A), for any nonempty subset {x} of 
A. Thus A is a minimal 𝜓g#-closed set. 
 
Theorem 3.14: Let A be a nonempty subset of X and F a 𝜓g#-closed set in A. If F is a minimal 𝜓g#-closed in A, then F 
is a minimal 𝜓g#-closed set in X. 
 
Proof: Let F be a nonempty proper 𝜓g#-closed set in X. Let U be a nonempty subset of F. Since F is minimal           
𝜓g#-closed in A and by Theorem 3.13, we have F ⊆ 𝜓g#intA(U) = 𝜓g#intX(U) ∩  A ⊆ 𝜓g#intX(U). Thus by          
Theorem 3.13, F is a minimal 𝜓g#-closed set in X. 
 
Theorem 3.15: Let A, B, C be minimal 𝜓g#-closed sets such that A ≠ B. If C ⊂ A ∪ B, then either A = C or B = C. 
 
Proof: If A = C, then there is nothing to prove. If A ≠ C, by  Theorem 3.7, we have B ∪ C = B ∪ (C ∪ φ) = B ∪ (C ∪ 
(A ∩ B)) = B ∪ ((C ∪ A) ∩ (C ∪ B)) = (B ∪ C ∪ A) ∩ (B ∪ C ∪ B) = (A ∪ B) ∩ (C ∪ B) = (A ∩ C) ∪ B = φ ∪ B = 
B. This implies that C ⊆ B. Since B and C are minimal 𝜓g#-closed sets, we have B = C. 
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Theorem 3.16: If A, B, C be minimal 𝜓g#-closed sets which are different from each other. Then 
 (A ∪ B)⊄ (A ∪ C). 
 
Proof: Suppose (A ∪ B) ⊂ (A ∪ C).  
Then (A ∪ B) ∩ (C ∪ B) ⊂ (A ∪ C) ∩ (C ∪ B). Hence (A ∩ C) ∪ B ⊂ C ∪ (A ∩ B).  
 
By Theorem 3.7, A ∩ C = φ, A ∩ B = φ. Then φ ∪ B ⊂ C ∪ φ ⇒ B ⊂ C. By Definition 3.1, we have B = C, which is 
contradiction to A, B and C are different from each other. Therefore (A ∪ B) ⊄ (A ∪ C). 
 
Theorem 3.17: Let A and {Ai / i ∈ Λ} be minimal 𝜓g#-closed sets. If A ⊂ Λ∈i  Ai, then there exists an element i ∈ Λ 
such that A = Ai. 
 
Proof: Let A ⊂ Λ∈i Ai. Then A ∩ Λ∈i Ai = A. Since A ∩ Ai ≠ φ and by Theorem 3.7, we have A = Ai for any i ∈ Λ. 

Hence there exists an element i ∈ Λ such that A = Ai. 
 
Theorem 3.18: Let A and {Ai / i ∈ Λ} be minimal 𝜓g#-closed sets. If A ≠ Ai for any i ∈ Λ, then ( Λ∈i Ai) ∩ A = φ. 
 
Proof: Suppose ( Λ∈i Ai) ∩ A ≠ φ. That is, Λ∈i (Ai ∩ A) ≠ φ. Then there exists an element i ∈ Λ such that                

A ∩ Ai ≠ φ. By Theorem 3.7, we have A = Ai, which is contradiction to A ≠ Ai for any i ∈ Λ. Hence ( Λ∈i Ai) ∩A = φ. 
 
4. MINIMAL 𝜓g#-CONTINUOUS FUNCTION 
 
Definition 4.1: Let X and Y be topological spaces. A map f: X → Y is called 

(i) minimal 𝜓g#-continuous (briefly, min-𝜓g#-continuous) if f −1(M) is a 𝜓g#-open set in X for every minimal 
𝜓g#-open set M in Y. 

(ii) maximal 𝜓g#-continuous (briefly, max-𝜓g#-continuous) if f −1(M) is a 𝜓g#-open set in X for every maximal 
𝜓g#-open set M in Y. 

(iii) minimal 𝜓g#-irresolute (briefly, min-𝜓g#-irresolute) if f −1(M) is a minimal 𝜓g#-open set in X for every 
minimal 𝜓g#-open set M in Y. 

(iv) maximal 𝜓g#-irresolute (briefly, max-𝜓g#-irresolute) if f −1(M) is a maximal 𝜓g#-open set in X for every 
maximal 𝜓g#-open set M in Y. 

(v) minimal-maximal 𝜓g#-continuous (briefly, min-max 𝜓g#-continuous) if f −1(M) is a maximal 𝜓g#-open set in 
X for every minimal 𝜓g#-open set M in Y. 

(vi) maximal-minimal 𝜓g#-continuous (briefly, max-min 𝜓g#-continuous) if f −1(M) is a minimal 𝜓g#-open set in X 
for every maximal 𝜓g#-open set M in Y. 

 
Theorem 4.2: Let X and Y be the topological spaces. A map f : X → Y is minimal(resp. maximal) 𝜓g#-continuous if 
and only if the inverse image of each maximal(resp. minimal) 𝜓g#-closed set in Y is a 𝜓g#-closed set in X. 
 
Proof: Obvious. 
 
Theorem 4.3: Let X and Y be the topological spaces and A be a nonempty subset of X. If f: X → Y is minimal (resp. 
maximal) 𝜓g#-continuous then the restriction map fA : A → Y is a minimal(resp. maximal) 𝜓g#-continuous. 
 
Proof: Let f: X →  Y be minimal 𝜓g#-continuous. Let B be any minimal 𝜓g#-open set in Y. Since f is minimal         
𝜓g#-continuous, f −1(B) is a 𝜓g#-open set in X.  But fA

-1 (B) = A ∩ f  −1(B) and A ∩ f  −1(B) is a 𝜓g#-open set in A. 
Therefore fA is minimal 𝜓g#-continuous. 
 
Remark 4.4: The composition of two minimal 𝜓g#-continuous function need not be a minimal 𝜓g#-continuous. 
 
Example 4.5:. Let X = Y = Z = {a, b, c} with the topology τX = {φ, {a, b}, X}, τY = {φ, {a}, {b}, {a, b}, {b,c}, Y} and 
τZ = {φ, {a}, {c}, {a, c}, {b, c}, Z}.  
 
Define f : X → Y by f(a) = c, f(b) = b, f(c) = a and g : Y → Z by g(a) = a, g(b) = b, g(c) = a.  
 
Then f and g are minimal 𝜓g#-continuous. But g○f is not a minimal 𝜓g#-continuous, since the set {a} is a minimal 𝜓g#-
closed set in Z while (g○f)-1({a}) = {c} which is not a 𝜓g#-closed set in Y.  
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Theorem 4.6: If f: X  → Y is 𝜓g#-continuous, Y is T𝜓g# space and g: Y →  Z is minimal  (resp. maximal)                    
𝜓g#-continuous. Then g ○ f : X → Z is minimal(resp. maximal) 𝜓g#-continuous. 
 
Proof: Let A be any minimal 𝜓g#-open set in Z. Since g is minimal 𝜓g#-continuous, g −1(A) is 𝜓g#-open in Y. But Y is 
T𝜓g# space, g −1(A) is open in Y. Again since f is 𝜓g#-continuous, f −1(g −1(A)) = (g ○ f) −1(A) is a 𝜓g#-open set in X. 
Hence g ○ f is minimal 𝜓g#-continuous. 
 
Theorem 4.7: Every minimal (resp. maximal) 𝜓g#-irresolute map is a minimal (resp. maximal) 𝜓g#-continuous map. 
 
Proof: Let f: X →  Y be a minimal 𝜓g#-irresolute map. Let A be any minimal 𝜓g#-open set in Y. Since f is minimal 
𝜓g#-irresolute, f −1(A) is a minimal 𝜓g#-open set in X. That is f −1(A) is a 𝜓g#-open set in X. Hence f is minimal 𝜓g#-
continuous. 
 
Theorem 4.8: Let X and Y be the topological spaces. A map f: X → Y is minimal (resp. maximal) 𝜓g#-irresolute if and 
only if the inverse image of each maximal (resp. minimal) 𝜓g#-closed set in Y is a maximal (resp. minimal) 𝜓g#-closed 
set in X. 
 
Proof: Obvious. 
 
Theorem 4.9: If f: X →  Y and g: Y → Z are minimal( resp. maximal) 𝜓g#-irresolute, then g ○ f : X →  Z is a 
minimal(resp. maximal) 𝜓g#-irresolute map. 
 
Proof: Let A be any minimal 𝜓g#-open set in Z. Since g is minimal 𝜓g#-irresolute, g −1(A) is a minimal 𝜓g#-open set in 
Y. Again Since f is minimal 𝜓g#-irresolute, f −1(g −1(A)) = (g ○ f) −1(A) is minimal 𝜓g#-open  in X. Therefore g ○ f is 
minimal 𝜓g#-irresolute. 
 
Theorem 4.10: Every minimal-maximal (resp. maximal-minimal) 𝜓g#-continuous map is minimal (resp. maximal) 
𝜓g#-continuous. 
 
Proof: Let f: X → Y be a minimal-maximal 𝜓g#-continuous map. Let A be a minimal 𝜓g#-open set in Y. Since f is 
minimal-maximal 𝜓g#-continuous, f −1(A) is a maximal 𝜓g#-open set in X. Since every maximal 𝜓g#-open set is a     
𝜓g#-open set, f −1(A) is 𝜓g#-open in X. Hence f is minimal 𝜓g#-continuous. 
 
Theorem 4.11: Let X and Y be the topological spaces. A map f : X → Y is  minimal-maximal (resp. maximal-minimal) 
𝜓g#-continuous if and only if the inverse image of each maximal(resp. minimal) 𝜓g#-closed in Y is a minimal(resp. 
maximal) 𝜓g#-closed set in X. 
 
Proof: Obvious. 
 
Theorem 4.12: If f: X → Y is maximal (resp. minimal) 𝜓g#-irresolute and g: Y → Z is minimal -maximal (resp. 
maximal-minimal) 𝜓g#-continuous, then g○f : X → Z is minimal-maximal(resp. maximal-minimal) 𝜓g#-continuous. 
 
Proof: Let A be a minimal 𝜓g#-open set in Z. Since g is minimal-maximal 𝜓g#-continuous, g −1(A) is a maximal      
𝜓g#-open set in Y. Again since f is maximal 𝜓g#-irresolute, f −1(g −1(A)) = (g ○ f)−1(A) is a maximal 𝜓g#-open set in X. 
Hence g ○ f is minimal-maximal 𝜓g#-continuous. 
 
Theorem 4.13: If f: X → Y is maximal (resp. minimal) 𝜓g#-continuous and g: Y → Z is minimal -maximal (resp. 
maximal-minimal) 𝜓g#-continuous, then g ○ f : X → Z is a minimal(resp. maximal) 𝜓g#-continuous. 
 
Proof: Obvious. 
 
Theorem 4.14: If f : X → Y is 𝜓g#-continuous and Y is T𝜓g# space and g : Y → Z is minimal-maximal (resp. maximal-
minimal) 𝜓g#-continuous, then g ○ f : X → Z is minimal(resp. maximal) 𝜓g#-continuous. 
 
Proof: Obvious. 
 
Definition 4.15: A topological space (X, τ) is called a 
(i) Tmin−𝜓g# space if every 𝜓g#-open set is a minimal 𝜓g#-open set. 
(ii) Tmax−𝜓g# space if every 𝜓g#-open set is a maximal 𝜓g#-open set. 
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Theorem 4.16: Let f: X → Y be a minimal (resp. maximal) 𝜓g#-continuous and Y be a Tmin−𝜓g#(resp. Tmax−𝜓g#) space. 
Then f is 𝜓g#-continuous. 
 
Proof: Let f be a minimal 𝜓g#-continuous. Let A be a open set in Y. Since every open set is 𝜓g#-open, A is 𝜓g#-open 
in Y. By hypothesis Y is Tmin−𝜓g# space, we have A is a minimal 𝜓g#-open set in Y. Since f is minimal 𝜓g#-continuous, 
f−1(A) is 𝜓g#-open in X. Therefore f is 𝜓g#-continuous. 
 
Theorem 4.17: Let f : X → Y and g : Y →Z be minimal 𝜓g#-continuous and Y is Tmin-𝜓g#  space, then g ○ f : X → Z is 
minimal 𝜓g#-continuous. 
 
Proof: Obvious.  
 
Theorem 4.18: Let f: X → Y be a minimal(resp. maximal) 𝜓g#-irresolute and let Y be a Tmin−𝜓g#(resp. Tmax−𝜓g#) space. 
Then f is 𝜓g#-continuous. 
 
Proof: Obvious. 
 
Theorem 4.19: Let f: X →  Y be a minimal -maximal(resp. maximal-minimal) 𝜓g#-continuous and let Y be a 
Tmin−𝜓g#(resp. Tmax−𝜓g#) space. Then f is 𝜓g#-continuous. 
 
Proof: Obvious.    
 
Theorem 4.20: If f: X → Y and g: Y → Z are minimal-maximal(resp. maximal-minimal) 𝜓g#-continuous maps and if 
Y is a Tmin−𝜓g#(resp. Tmax−𝜓g#) space, then g ○ f : X → Z is minimal-maximal(resp. maximal-minimal) 𝜓g#-continuous. 
 
Proof: Let A be any minimal 𝜓g#-open set in Z. Since g is minimal-maximal 𝜓g#-continuous, g−1(A) is a maximal 𝜓g#-
open set in Y. It follows that g −1(A) is 𝜓g#-open in Y. Since Y is Tmin−𝜓g# space, g −1(A) is a minimal 𝜓g#-open set in Y. 
Again since f is minimal-maximal 𝜓g#-continuous, f −1(g −1(A)) = (g ○ f) −1(A) is a maximal 𝜓g#-open set in X.  
 
Hence g ○ f is minimal-maximal 𝜓g#-continuous. 
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