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ABSTRACT
The aim of this paper is to introduce Nano (Tl,rz)generalizedﬂ closed sets and Nano (2'1,1'2 )generalized /3 open

sets in Nano bitopological spaces. Also the characteristics and properties of Nano (Tl,rz)g P closed sets and Nano

(Z‘l 1 Ts ) g [f open sets are studied respectively.

Keywords: Nano (rl,z'z)ﬂ interior, Nano (z’l,z'z)ﬂ closure, Nano (z’l,rz)generalized P closed sets, Nano

(Tl Ty ) generalized /3 open sets.

1. INTRODUCTION

The notion of Nano topology was introduced by Lellis Thivagar [6] which was defined in terms of approximations and
boundary regions of a subset of an universe using an equivalence relation on it and he also defined Nano closed set,
Nano interior and Nano closure. Levine [7] introduced generalized closed sets as a generalization of closed sets in

topological spaces. Abd El Monsef et al. [1] introduced the notion of /3 -open set in topology, further investigation of

Nano [ open sets was given by Gnanambal [4]. Shalini et al. [8] have introduced Nano generalized /3 closed sets in

Nano topology. Kelly [5] introduced the concept of bitopological space in and Fukutake [3] introduced the generalized
closed sets in bitoplogical space. Bhuvaneswari et.al [2] introduced the Nano bitopological space. In this paper we

introduce Nano (z‘l,rz)generalized P closed sets and Nano (rl,rz)generalized B open sets and some of its
properties are investigated.

2. PRELIMINARIES

Definition 2.1[6]: Let U be the universe, R be an equivalence relation on U and where X < U . Thenz, (X)
satisfies the following axioms:
o Uand gery(X).
e The union of the elements of any sub collection of 7 (X ) isinzg(X).
e The intersection of the elements of any finite sub collection of Z'R(X) isin7y (X).hence Tq (X) is called
the Nano topology on U with respect to X , (U , TR(X )) is called the Nano topological space. Elements of

the Nano topology are known as Nano open sets in U . Elements of [rR (X )]C are called Nano closed sets.

Definition 2.2[6]: If (U TR (X )) is a Nano topological space where X — U andif Ac U , then
e The Nano interior of a set A is defined as the union of all Nano open subsets contained in A and is denoted
by N int(A). N int(A)isthe largest Nano open subset of A
e The Nano closure of a set A is defined as the intersection of all Nano closed sets containing A and is
denoted by NcI(A). NcI(A)is the smallest Nano closed set containing A.
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Definition 2.3 [7]: A subset A of (X,z’) is called generalized closed set (briefly g closed) if Cl(A)g U whenever
AcU and U isopen in(X,z’).

Definition 2.4 [2]: A subset A of (U,z'R (X )) is called Nano generalized closed set (briefly Ng closed) if
NC|(A)gV whenever AV and V is Nano open in (U,Z’R (X ))

Definition 2.5 [8]: A subset A of Nano topological space (U,Z'R(X )) is called Nano generalized £ closed set
(briefly Ng £ closed) if Nﬁcl(A)gV whenever AV and V is Nano open in(U TR (X ))

Definition 2.6 [3]: A subset A of (X,z’l,fz) is called (Ti,z'j )generalized closed set (briefly (Ti 1T )g closed) if
7,cl(A)cU whenever Ac U and U is 7,0penin(X,7,,7,).

3.NANO(7,,7,) GENERALIZED /8 CLOSED SETS

Definition 3.1: Let U be the universe, R, and R, are equivalence relations on U and X, and X, are subsets of U .
Then 7, (X, )and 7, (X, ) satisfies the following axioms:
o Uandg e 7qy(X, )and 74,(X,).
«  The union of the elements of any sub collection of 7g, (X, )isin 7o, (X,) and 7o, (X, )isinzg,(X,).
e The intersection of the elements of any finite sub collection of TRl(Xl) is in TRl(Xl) and TRz(Xz) isin
TRZ(X2 )
Hence 7o, (X, )and 74,(X,) is called the Nano bitopology on U with respect to X, and X,,
(U ,TRl(Xl), TRZ(X ’ )) is called the Nano bitopological space. Elements of the Nano bitopology are known

as Nano (71,72) open sets inU and elements of [rRl(Xl)]C and [TRZ (Xz)]C are called Nano (71,72)
closed sets.

Definition 3.2: If (U, 74, (X, ), 7, (X, )) is a Nano bitopological space where X, and X, are subsets of U and if
AcU , then
e The Nano (Tl,TZ) interior of a set A is defined as the union of all Nano (z'l,rz) open subsets contained in
A and is denoted by N 7,7, int(A). Nz,z, int(A)is the largest Nano (z,,7, ) open subset of A
e The Nano (Tl,TZ) closure of a set A is defined as the intersection of all Nano (rl,rz)closed sets

containing A and is denoted by N7,7,cl(A). Nz,z,Cl(A)is the smallest Nano (z,,7, )closed set
containing A.

Definition 3.3: Let (U, 7, (X, ), 74, (X, )) be a Nano bitopological space and A < U . Then Ais said to be
(i) Nano (z,,7,) semiopenif Ac Nz,cl(Nz, int(A))
(i) Nano (z,,7, )pre openif Ac Nz, int(Nz,cl(A))

(iii) Nano (7,,7,) e openif A< Nz, int[Nz,cl(Nz, int(A))]

(iv) Nano (z,,7, ) regular openif A= Nz, int(Nz,cl(A))

(v) Nano (Tl,fz) /3 open(Nano (1,2) semi-pre open) if A C Nz’lcl[N 7, int(N Tlc|(A))]

The family of Nano (1’1,2'2) semi open (resp. Nano (rl,z'z)pre open, Nano (1'1,2'2) « open, Nano (rl,fz)regular
open, Nano (7,,7,) Bopen) sets in Uis denoted by N(z,,7,) SOU,X) (resp. N(z,,7,) PO(U,X), N
(r,,7,) @O, X ) N(z,,7,) ROU, X) and N(z,,7,) SO(U, X )).
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The complement of Nano (1'1,2'2) semi open (resp. Nano (z’l,rz)pre open, Nano (1'1,2'2) « open, Nano (1'1,2'2)
regular open, Nano (71,2'2) [ open) sets in U is Nano (Tl,fz) semi closed (resp. Nano (Tl,fz) pre closed, Nano

(71,72) « closed, Nano (rl,fz) regular closed, Nano (71,12) P closed).

Definition 3.4: A subset A of (U,7g,(X,),7s,(X,)) is called Nano (z,,7,) generalized closed set (briefly N
(r,,7,)gclosed) if N7,cl(A)cV whenever ACV and V is Nano 7, open in(U,7g, (X, ), 75, (X)).

Definition 3.5: If (U, 74, (X, ), 7, (X, )) is a Nano bitopological space where X, and X, are subsets of U and if
A c U then
e The Nano (z’l,rz) P interior of a set A is defined as the union of all Nano (rl,z'z) J3 open subsets

contained in A and is denoted by N7,7,8int(A). Nz,z,3int(A)is the largest Nano (z,,7,) /3 open
subset of A.
e The Nano (Z’l,fz) [ closure of a set A is defined as the intersection of all Nano (2'1,72) /3 closedsets

containing A and is denoted by N7,7,cl(A). Nz,z,5cI(A)is the smallest Nano (z,,7,) /3 closed set
containing A.

Definition 3.6: A subset A of Nano bitopological space (U ,TRI(Xl),TRZ(XZ)) is called Nano (Tl,fz)generalized
B closed set (briefly N(Tl,fz)gﬁ closed) if Nfzﬂd(A)gV whenever AcV and V is Nano 7, open in

(U ’TRl(Xl)’TRZ(XZ))'

Theorem 3.8: If Ais Nano 7, closed set in (U, 7q, (X, ) 7a,(X,))then it is Nano (z,,7,)g /B closed set in
(U, 74,(X, ), 74,(X,)) but not conversely.

Proof: Since every Nano closed set is Nano g /3 closed set, the proof follows.

ek b.dl} X, ={a,b}.ze,(X,)= 10,4, a) .0} b},

{U,¢,{a,d}}. Here the set {a,c,d }is Nano (z,,7,)q 3

Example 3.9: Let U = {a b,c, d} with U/R, = {{

U/R, ={la} bl e} {d}} X, = {a.d} 74, (X,)

closed but notNano 7, closed inU .
Theorem 3.10: Every Nano 7, pre closed set is Nano (Tl,TZ) g f closed set but not conversely.

Proof: Let A be Nano 7,pre closed set in (U,rRl(Xl),rRz(Xz)) and let G be a Nano 7, open set such that
A c G. Since every Nano pre closed is Nano g £ closed, we have erﬁ'cl(A) < G . Hence A is Nano(1,2) g 8
closed setin (U, 74, (X, ), 75,(X, ).

Example 3.11: Let U = {a,b,c,d} with U/R, = {{a},{b},{c},{d}} X, ={a,d}, 7o, (X,)={U, 4, {a,d}},
U/R, :{{a},{c},{b,d}} X _{a b} ’Z'Rz( ) {U ¢,{a},{b,d},{a,b,d}}. Here the set {a,b}is Nano

(Tl,‘[z) g /3 closed but not Nano 7, pre closed inU .

Theorem 3.12: Every Nano 7, regular closed set is Nano (2'1,72) g [ closed set but not conversely.

Proof: Since every Nano regular closed set is Nano g /3 closed set, the proof follows.

Example 3.13: Let U = {a b,c, d}with U/R, = {{a},{b},{ } {d}} X, = {a d} rRl( ): {U,¢, {a,d}},
U/R, = {{a}, {C}, {b,d}} X, = {a b} rRz( )= {U ,¢,{ },{ , }, {a,b,d}}. Here the set {C,d}is Nano (1,2)
g /3 closed but not Nano 7, pre closed inU .
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Remark 3.14: The union of two Nano (z‘l,fz)gﬁ closed sets need not be Nano (Z'l,l'z) g B closed set which can
be seen from the following example.

Example 3.15: Let U = {a,b,c,d with U/R, = {{a},{c}, {b,d}}, X, = {a,b}, ., (X,)

U/R, = {al b} e} 101}, X, = a0}, ron (X,)= U, g a0} vere e sets ) an

g /[3 closed sets but {a}u {b, d } = {a, b, d} is notNano (Tl,Tz)g [ closed setinU .

U.g.{a){b.d} {ab.djj,
and {b d}are Nano (1,2)

Theorem 3.16: If a set AisN (z,,7,) g3 closed set in a Nano bitopological space (U, 74, (X, ), 75,(X,)), then
Nz, Bcl(A) - Acontains no non-empty Nano 7, closed setin (U, 7, (X, ), 75, (X, )).

Proof: Suppose that F is a Nano 7, closed setsuch that F < Nz,/cl(A)— A. NowF < N7z, /cl(A)and
Fc ASthen AcU-F, U—Fis Nanoz, open set and A is Nano (z,,7,)g/8 closed. Therefore
Nz,Acl(A)cU - F. That isF cU —(Nz,Acl(A)). Hence
F < Nz, Bcl(A)n (U = (NSCl(A)) = ¢, F = ¢. Therefore N7, icl(A)— Acontains no non-empty Nano 7,
closed setin (U, 74, (X, ), 7, (X))

Remark 3.17: If a setA in a Nano bitopological space(U,zq,(X,),74,(X,))is Nano 7,5 closed then
Nz,fcl(A)-A=¢.
Proof: Assume that A is Nano 7, /3 closed. Since erﬂcI(A)z A, erﬂCI(A)— A=g.

Theorem 3.18: For each point X of U , a singleton {X} is Nano 7, closed or {X}C is Nano (Tl,fz) g S closed.

Proof: Suppose {x}is not Nano 7, closed. Since {X}C is not Nano 7z, open, a Nano 7, open containing {X}C is onlyU

Then erﬁcl({x}c )g U and {X}C is Nano (1,2) g / closed.

Theorem 3.19: If A is Nano (rl,rz)gﬁ closed then Nz, 8cl(x) A% ¢ for some x e Nz, /4cl(A)but not
conversely.

Proof: 1fN7,Acl(x)n A= gfor x e Nz,fcl(A) then Ac (N z'zﬂcl(x))C . Since Ais Nano (fl,rz)gﬂ
closed set, we have N Tzﬁcl(A) c (N rzﬂcl(x))c . This implies x & Nz, 8cl(A) which is a contradiction.

Theorem 3.20: If A is Nano (z,,7,)g /8 closed in a Nano bitopological space (U, 7q, (X, ), 74,(X,))and
Ac B c Nz,fcl(A), then B isalso Nano (1,2) g 8 closed in (U, 7g, (X, ), 7o, (X ;).

Proof: Let B = G where G is Nano 7, open setin U . Then Ac BimpliesAc G. As A is Nano (1, 2) g
closed, we have N7, Acl(A) = G . Now B < N7, cl(A), implies

Nz,/cl(B)c Nz, el (N7, el (A) = Nz, Al (A) = G. Thus Nz, 5cl(B) < G . Therefore Bis Nano (1,2) g
L closed setinU .

4.NANO(7,,7,) GENERALIZED f OPEN SETS

Definition 4.1: A subset A of a Nano bitopological space (U , rRl(Xl), Tro (X 2 )) is called Nano (Tl , rz) generalized
L3 open (brieflyN (Tl,rz)g S open), if its compliment AC is Nano (Tl,TZ )gﬁ' closed.

The collection of allNano (z,,7, )g B open subsets ofU  is denoted by N (z,,7,) G fJO(U, X).
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Theorem 4.2: Every Nano 7, open set in (U,7q(X,),7,(X,)) is Nano (z,,7,)g/B open set in
(U, 74,(X, ), 74,(X,)) but not conversely.

Proof: Since every Nano open set is Nano g /3 open, the proof follows.

Example 4.3: Let U = {a,b,c,d,e}with U/R1= {{a} { } {e}} { } rRl(Xl): {U,¢, {a}, {b,c,d}, {a,b,c,d}},

X
U/R2:{{a'b}’{c’e}’{d}}’xz:{a,d},TRz(Xz) { ¢{}{ }{ab,d}}.Heretheset{a,c,e}isNano
(Tl,’[z) g /3 open but not Nano 7,openinU .

Remark 4.4: The intersection of two Nano (1’1,2'2) g /3 open sets need not be Nano (z‘l,rz) g/ open set which can
be seen from the following example.

Example 45: Let U= {a, b,c, d,e}with U/R1= {{a}, {b,C, d }, {e}} X, = {a, b},
7r(X,)=1{U.4.{a) {b.c.d} fab,c,dj} U/R, = {{a,bl {c.ef {d}} X, ={a,d},

TRz(Xz): {U 0, {d }, {a,b}, {a, b, d }} Here the sets {a,e} and {d,e}are Nano (Tl,fz)gﬂopen sets but
{a, e}m {d , e} = {e} is not Nano (Tl,z'z)g S opensetinU .

Theorem 4.6: A subset A in a Nano bitopological space (U, 74, (X, ), 7o, (X, )) isN (z,,7,) g8 open if and only
it F < Nz,int(A) whenever F is Nano 7, closed and F < A .

Proof: Assume that A is N (2'1,72) g3 open setin (U,7,(X)). LetF be Nano 7,closedand F < A, then
A® < Fimplies F®is Nanoz,open. Since A® isNano(rl,z'Z) gf closed seterﬂCI(AC)g F© Since
(Nz,Bint(A)° = Nz, Bcl(A°), (N7, Bint(A))° < FC. Therefore F < Nz, Bint(A).

Conversely assume that F < Nz,fint(A)whenever Fis Nano 7 closed set andF < A. Then
(Nz,pint(A))° < F© .Thus NrZ,BCI(AC)g FC. Hence A is Nano (r,,7,)g /8 closed set and A isNano
(r,,7,)9 B opensetinU .

Theorem 4.7: If Aisa Nano(rl,rz) g3 open set in a Nano bitopological space (U,z‘Rl(Xl),rRz(Xz))and
Nz,Bint(A)c B < A, then B is also Nano (z,,7,)g 3 open.

Proof: LetA is Nano(z,,7,) g3 open set and Nz,Bint(A)c B < A. Then A® < B® < (Nz,gint(A))
implies A° B¢ ¢ N,BCI(AC). Since A® isNano (Tl,rz)gﬂ closed, B¢ is aIsoNano(z'l,Tz) gf closed.
Therefore B isNano (rl,rz)gﬂopen.

Theorem: 4.8: If a set A isNano(z,,7,)g /8 open in a Nanobitopologicalspace (U, 7, (X, ),74,(X,)), then
G =U whenever G is Nano 7, openand N7, Aint(A)U A° ¢ G .

Proof: Let Abe Nano (Tl,rz)gﬁ' open,Gbe Nano z,open set andNz,Bint(A)UA® cG. Then
G° c (N 7, Bint(A)u A° )C = NTZ,BCl(AC)— A®, since G is Nano 7, closed and A® is Nano(z,,7, )g 3
closed. By theorem 3.13[8] we have G© = ¢ . Therefore G =U .
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