International Journal of Mathematical Archive-8(8), 2017, 198-203 MAAvailable online through www.ijma.info ISSN 2229 - 5046 ## ON NANO (τ_1,τ_2) GENERALIZED β CLOSED SETS AND NANO (τ_1,τ_2) GENERALIZED β OPEN SETS IN NANO BITOPOLOGICAL SPACES ### S. B. SHALINI*, G. SINDHU AND K. INDIRANI Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India. (Received On: 18-07-17; Revised & Accepted On: 07-08-17) #### ABSTRACT **T**he aim of this paper is to introduce Nano (τ_1, τ_2) generalized β closed sets and Nano (τ_1, τ_2) generalized β open sets in Nano bitopological spaces. Also the characteristics and properties of Nano (τ_1, τ_2) β closed sets and Nano (τ_1, τ_2) β open sets are studied respectively. **Keywords:** Nano $(\tau_1, \tau_2) \beta$ interior, Nano $(\tau_1, \tau_2) \beta$ closure, Nano (τ_1, τ_2) generalized β closed sets, Nano (τ_1, τ_2) generalized β open sets. #### 1. INTRODUCTION The notion of Nano topology was introduced by Lellis Thivagar [6] which was defined in terms of approximations and boundary regions of a subset of an universe using an equivalence relation on it and he also defined Nano closed set, Nano interior and Nano closure. Levine [7] introduced generalized closed sets as a generalization of closed sets in topological spaces. Abd El Monsef *et al.* [1] introduced the notion of β -open set in topology, further investigation of Nano β open sets was given by Gnanambal [4]. Shalini *et al.* [8] have introduced Nano generalized β closed sets in Nano topology. Kelly [5] introduced the concept of bitopological space in and Fukutake [3] introduced the generalized closed sets in bitoplogical space. Bhuvaneswari et.al [2] introduced the Nano bitopological space. In this paper we introduce Nano (τ_1, τ_2) generalized β closed sets and Nano (τ_1, τ_2) generalized β open sets and some of its properties are investigated. #### 2. PRELIMINARIES **Definition 2.1[6]:** Let U be the universe, R be an equivalence relation on U and where $X \subseteq U$. Then $\tau_R(X)$ satisfies the following axioms: - U and $\phi \in \tau_R(X)$. - The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$. - The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$ hence $\tau_R(X)$ is called the Nano topology on U with respect to X, $(U, \tau_R(X))$ is called the Nano topological space. Elements of the Nano topology are known as Nano open sets in U. Elements of $[\tau_R(X)]^C$ are called Nano closed sets. **Definition 2.2[6]:** If $(U, \tau_{R}(X))$ is a Nano topological space where $X \subseteq U$ and if $A \subseteq U$, then - The Nano interior of a set A is defined as the union of all Nano open subsets contained in A and is denoted by $N \operatorname{int}(A)$. $N \operatorname{int}(A)$ is the largest Nano open subset of A. - The Nano closure of a set A is defined as the intersection of all Nano closed sets containing A and is denoted by Ncl(A). Ncl(A) is the smallest Nano closed set containing A. Corresponding Author: S. B. Shalini* **Definition 2.3** [7]: A subset A of (X, τ) is called generalized closed set (briefly g closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . **Definition 2.4 [2]:** A subset A of $(U, \tau_R(X))$ is called Nano generalized closed set (briefly Ng closed) if $Ncl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano open in $(U, \tau_R(X))$. **Definition 2.5 [8]:** A subset A of Nano topological space $(U, \tau_R(X))$ is called Nano generalized β closed set (briefly Ng β closed) if $N\beta cl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano open in $(U, \tau_R(X))$. **Definition 2.6 [3]:** A subset A of (X, τ_1, τ_2) is called (τ_i, τ_j) generalized closed set (briefly (τ_i, τ_j) g closed) if $\tau_2 cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 open in (X, τ_1, τ_2) . ## 3. NANO (τ_1, τ_2) GENERALIZED β CLOSED SETS **Definition 3.1:** Let U be the universe, R_1 and R_2 are equivalence relations on U and X_1 and X_2 are subsets of U. Then $\tau_{R1}(X_1)$ and $\tau_{R2}(X_2)$ satisfies the following axioms: - U and $\phi \in \tau_{R_1}(X_1)$ and $\tau_{R_2}(X_2)$. - The union of the elements of any sub collection of $\tau_{R1}(X_1)$ is in $\tau_{R1}(X_1)$ and $\tau_{R2}(X_2)$ is in $\tau_{R2}(X_2)$. - The intersection of the elements of any finite sub collection of $\tau_{R1}(X_1)$ is in $\tau_{R1}(X_1)$ and $\tau_{R2}(X_2)$ is in $\tau_{R2}(X_2)$. Hence $\tau_{R1}(X_1)$ and $\tau_{R2}(X_2)$ is called the Nano bitopology on U with respect to X_1 and X_2 , There $t_{R1}(X_1)$ and $t_{R2}(X_2)$ is called the Nano bitopology on C with respect to X_1 and X_2 , $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is called the Nano bitopological space. Elements of the Nano bitopology are known as Nano (τ_1, τ_2) open sets in U and elements of $[\tau_{R1}(X_1)]^C$ and $[\tau_{R2}(X_2)]^C$ are called Nano (τ_1, τ_2) closed sets. **Definition 3.2:** If $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is a Nano bitopological space where X_1 and X_2 are subsets of U and if $A \subseteq U$, then - The Nano (τ_1, τ_2) interior of a set A is defined as the union of all Nano (τ_1, τ_2) open subsets contained in A and is denoted by $N\tau_1\tau_2$ int(A). $N\tau_1\tau_2$ int(A) is the largest Nano (τ_1, τ_2) open subset of A. - The Nano (τ_1, τ_2) closure of a set A is defined as the intersection of all Nano (τ_1, τ_2) closed sets containing A and is denoted by $N\tau_1\tau_2cl(A)$. $N\tau_1\tau_2cl(A)$ is the smallest Nano (τ_1, τ_2) closed set containing A. **Definition 3.3:** Let $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ be a Nano bitopological space and $A \subseteq U$. Then A is said to be - (i) Nano (τ_1, τ_2) semi open if $A \subseteq N\tau_2 cl(N\tau_1 \operatorname{int}(A))$ - (ii) Nano (τ_1, τ_2) pre open if $A \subseteq N\tau_2$ int $(N\tau_1 cl(A))$ - (iii) Nano $(\tau_1, \tau_2) \alpha$ open if $A \subseteq N\tau_1 \inf [N\tau_2 cl(N\tau_1 \inf(A))]$ - (iv) Nano (τ_1, τ_2) regular open if $A = N\tau_2 \operatorname{int}(N\tau_1 cl(A))$ - $\text{(v)} \ \ \text{Nano} \ \left(\tau_1,\tau_2\right)\beta \ \ \text{open(Nano (1,2) semi-pre open) if} \ \ A\subseteq N\tau_1cl\big[N\tau_2\operatorname{int}\big(N\tau_1cl\big(A\big)\big)\big]$ The family of Nano (τ_1, τ_2) semi open (resp. Nano (τ_1, τ_2) pre open, Nano (τ_1, τ_2) α open, Nano (τ_1, τ_2) regular open, Nano (τ_1, τ_2) β open) sets in U is denoted by $N(\tau_1, \tau_2)$ SO(U, X) (resp. $N(\tau_1, \tau_2)$ PO(U, X), $N(\tau_1, \tau_2)$ RO(U, X) and $N(\tau_1, \tau_2)$ RO(U, X). The complement of Nano (τ_1, τ_2) semi open (resp. Nano (τ_1, τ_2) pre open, Nano (τ_1, τ_2) α open, Nano (τ_1, τ_2) regular open, Nano (τ_1, τ_2) β open) sets in U is Nano (τ_1, τ_2) semi closed (resp. Nano (τ_1, τ_2) pre closed, Nano (τ_1, τ_2) α closed, Nano (τ_1, τ_2) regular closed, Nano (τ_1, τ_2) β closed). **Definition 3.4:** A subset A of $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is called Nano (τ_1, τ_2) generalized closed set (briefly N (τ_1, τ_2) g closed) if $N\tau_2 cl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano τ_1 open in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$. **Definition 3.5:** If $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is a Nano bitopological space where X_1 and X_2 are subsets of U and if $A \subseteq U$ then - The Nano $(\tau_1, \tau_2) \beta$ interior of a set A is defined as the union of all Nano $(\tau_1, \tau_2) \beta$ open subsets contained in A and is denoted by $N\tau_1\tau_2\beta$ int(A). $N\tau_1\tau_2\beta$ int(A) is the largest Nano $(\tau_1, \tau_2) \beta$ open subset of A. - The Nano $(\tau_1, \tau_2) \beta$ closure of a set A is defined as the intersection of all Nano $(\tau_1, \tau_2) \beta$ closed sets containing A and is denoted by $N\tau_1\tau_2\beta cl(A)$. $N\tau_1\tau_2\beta cl(A)$ is the smallest Nano $(\tau_1, \tau_2) \beta$ closed set containing A. **Definition 3.6:** A subset A of Nano bitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is called Nano (τ_1, τ_2) generalized β closed set (briefly $N(\tau_1, \tau_2)$ g β closed) if $N\tau_2\beta cl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano τ_1 open in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$. **Theorem 3.8:** If A is Nano τ_2 closed set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ then it is Nano $(\tau_1, \tau_2) g \beta$ closed set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ but not conversely. **Proof:** Since every Nano closed set is Nano g β closed set, the proof follows. **Example 3.9:** Let $U = \{a,b,c,d\}$ with $U/R_1 = \{\{a\},\{c\},\{b,d\}\}, X_1 = \{a,b\},\tau_{R1}(X_1) = \{U,\phi,\{a\},\{b,d\},\{a,b,d\}\}, U/R_2 = \{\{a\},\{b\},\{c\},\{d\}\}, X_2 = \{a,d\},\tau_{R2}(X_2) = \{U,\phi,\{a,d\}\}.$ Here the set $\{a,c,d\}$ is Nano $(\tau_1,\tau_2) \in \mathcal{B}$ closed but notNano τ_2 closed in U. **Theorem 3.10:** Every Nano τ_2 pre closed set is Nano (τ_1, τ_2) g β closed set but not conversely. **Proof:** Let A be Nano τ_2 pre-closed set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ and let G be a Nano τ_1 open set such that $A \subseteq G$. Since every Nano pre-closed is Nano g β closed, we have $N\tau_2\beta cl(A) \subseteq G$. Hence A is Nano(1,2) g β closed set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$. **Example 3.11:** Let $U = \{a,b,c,d\}$ with $U/R_2 = \{\{a\},\{b\},\{c\},\{d\}\}, X_1 = \{a,d\}, \tau_{R1}(X_1) = \{U,\phi,\{a,d\}\}, U/R_2 = \{\{a\},\{c\},\{b,d\}\}, X_2 = \{a,b\}, \tau_{R2}(X_2) = \{U,\phi,\{a\},\{b,d\},\{a,b,d\}\}.$ Here the set $\{a,b\}$ is Nano (τ_1,τ_2) g β closed but not Nano τ_2 pre closed in U. **Theorem 3.12:** Every Nano τ_2 regular closed set is Nano (τ_1, τ_2) g β closed set but not conversely. **Proof:** Since every Nano regular closed set is Nano g β closed set, the proof follows. **Example 3.13:** Let $U = \{a, b, c, d\}$ with $U/R_1 = \{\{a\}, \{b\}, \{c\}, \{d\}\}, X_1 = \{a, d\}, \tau_{R1}(X_1) = \{U, \phi, \{a, d\}\}, U/R_2 = \{\{a\}, \{c\}, \{b, d\}\}, X_2 = \{a, b\}, \tau_{R2}(X_2) = \{U, \phi, \{a\}, \{b, d\}, \{a, b, d\}\}.$ Here the set $\{c, d\}$ is Nano (1,2) g β closed but not Nano τ_2 pre closed in U. **Remark 3.14:** The union of two Nano (τ_1, τ_2) g β closed sets need not be Nano (τ_1, τ_2) g β closed set which can be seen from the following example. **Example 3.15:** Let $U = \{a,b,c,d\}$ with $U/R_1 = \{\{a\},\{c\},\{b,d\}\}, X_1 = \{a,b\}, \tau_{R1}(X_1) = \{U,\phi,\{a\},\{b,d\},\{a,b,d\}\}, U/R_2 = \{\{a\},\{b\},\{c\},\{d\}\}, X_2 = \{a,d\}, \tau_{R2}(X_2) = \{U,\phi,\{a,d\}\}.$ Here the sets $\{a\}$ and $\{b,d\}$ are Nano (1,2) $\{a\},\{b\},\{c\},\{d\}\} = \{a,b,d\}$ is notNano $\{a\},\{b\},\{c\},\{d\}\}$. **Theorem 3.16:** If a set A is N (τ_1, τ_2) g β closed set in a Nano bitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$, then $N\tau_2\beta cl(A) - A$ contains no non-empty Nano τ_1 closed set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$. **Proof:** Suppose that F is a Nano τ_1 closed setsuch that $F \subseteq N\tau_2\beta cl(A) - A$. Now $F \subseteq N\tau_2\beta cl(A)$ and $F \subseteq A^C$ then $A \subseteq U - F$, U - F is Nano τ_1 open set and A is Nano (τ_1, τ_2) g β closed. Therefore $N\tau_2\beta cl(A) \subseteq U - F$. That is $F \subseteq U - (N\tau_2\beta cl(A))$. Hence $F \subseteq N\tau_2\beta cl(A) \cap (U - (N\beta cl(A))) = \phi$, $F = \phi$. Therefore $N\tau_2\beta cl(A) - A$ contains no non-empty Nano τ_1 closed set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$. **Remark 3.17:** If a set A in a Nano bitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is Nano $\tau_2 \beta$ closed then $N\tau_2 \beta cl(A) - A = \phi$. **Proof:** Assume that A is Nano $\tau_2 \beta$ closed. Since $N\tau_2 \beta cl(A) = A$, $N\tau_2 \beta cl(A) - A = \phi$. **Theorem 3.18:** For each point x of U, a singleton $\{x\}$ is Nano τ_1 closed or $\{x\}^C$ is Nano (τ_1, τ_2) g β closed. **Proof:** Suppose $\{x\}$ is not Nano τ_1 closed. Since $\{x\}^C$ is not Nano τ_1 open, a Nano τ_1 open containing $\{x\}^C$ is only U. Then $N\tau_2\beta cl(\{x\}^C)\subseteq U$ and $\{x\}^C$ is Nano (1,2) g β closed. **Theorem 3.19:** If A is Nano (τ_1, τ_2) g β closed then $N\tau_2\beta cl(x) \cap A \neq \phi$ for some $x \in N\tau_2\beta cl(A)$ but not conversely. **Proof:** If $N\tau_2\beta cl(x)\cap A=\phi$ for $x\in N\tau_2\beta cl(A)$, then $A\subseteq (N\tau_2\beta cl(x))^C$. Since A is Nano $(\tau_1,\tau_2)g\beta$ closed set, we have $N\tau_2\beta cl(A)\subseteq (N\tau_2\beta cl(x))^C$. This implies $x\not\in N\tau_2\beta cl(A)$ which is a contradiction. **Theorem 3.20:** If A is Nano (τ_1, τ_2) g β closed in a Nano bitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ and $A \subseteq B \subseteq N\tau_2\beta cl(A)$, then B is also Nano (1,2) g β closed in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$. **Proof:** Let $B \subseteq G$ where G is Nano τ_1 open set in U. Then $A \subseteq B$ implies $A \subseteq G$. As A is Nano (1, 2) g β closed, we have $N\tau_1\beta cl(A) \subseteq G$. Now $B \subseteq N\tau_2\beta cl(A)$, implies $N\tau_2\beta cl(B)\subseteq N\tau_2\beta cl(N\tau_2\beta cl(A))=N\tau_2\beta cl(A)\subseteq G \text{ . Thus } N\tau_2\beta cl(B)\subseteq G \text{ . Therefore } B \text{ is Nano (1,2) g } \beta \text{ closed set in } U \text{ . }$ ### 4. NANO (τ_1, τ_2) GENERALIZED β OPEN SETS **Definition 4.1:** A subset A of a Nano bitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is called Nano (τ_1, τ_2) generalized β open (brieflyN (τ_1, τ_2) g β open), if its compliment A^C is Nano (τ_1, τ_2) g β closed. The collection of allNano (τ_1, τ_2) g β open subsets of U is denoted by N (τ_1, τ_2) G $\beta O(U, X)$. **Theorem 4.2:** Every Nano τ_2 open set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is Nano $(\tau_1, \tau_2) g \beta$ open set in $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ but not conversely. **Proof:** Since every Nano open set is Nano g β open, the proof follows. **Example 4.3:** Let $U = \{a,b,c,d,e\}$ with $U/R1 = \{\{a\},\{b,c,d\},\{e\}\}, X_1 = \{a,b\}, \tau_{R1}(X_1) = \{U,\phi,\{a\},\{b,c,d\},\{a,b,c,d\}\}, U/R2 = \{\{a,b\},\{c,e\},\{d\}\}, X_2 = \{a,d\}, \tau_{R2}(X_2) = \{U,\phi,\{d\},\{a,b\},\{a,b,d\}\}.$ Here the set $\{a,c,e\}$ is Nano $\{\tau_1,\tau_2\}$ g β open but not Nano $\{\tau_2\}$ open in U. **Remark 4.4:** The intersection of two Nano (τ_1, τ_2) g β open sets need not be Nano (τ_1, τ_2) g β open set which can be seen from the following example. **Example** 4.5: Let $U = \{a, b, c, d, e\}$ with $U/R1 = \{\{a\}, \{b, c, d\}, \{e\}\}\}, X_1 = \{a, b\}, \{\tau_{R1}(X_1) = \{U, \phi, \{a\}, \{b, c, d\}, \{a, b, c, d\}\}, U/R_2 = \{\{a, b\}, \{c, e\}, \{d\}\}\}, X_2 = \{a, d\}, \{\tau_{R2}(X_2) = \{U, \phi, \{d\}, \{a, b\}, \{a, b, d\}\}\}$. Here the sets $\{a, e\}$ and $\{d, e\}$ are Nano $\{\tau_1, \tau_2\}$ g β open sets but $\{a, e\} \cap \{d, e\} = \{e\}$ is not Nano $\{\tau_1, \tau_2\}$ g β open set in U. **Theorem 4.6:** A subset A in a Nano bitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ is (τ_1, τ_2) g β open if and only if $F \subseteq N\tau_2\beta$ int(A) whenever F is Nano τ_1 closed and $F \subseteq A$. **Proof:** Assume that A is N (τ_1, τ_2) g β open setin $(U, \tau_R(X))$. Let F be Nano τ_1 closed and $F \subseteq A$, then $A^C \subseteq F^C$ implies F^C is Nano τ_1 open. Since A^C is Nano (τ_1, τ_2) g β closed set $N\tau_2\beta cl(A^C)\subseteq F^C$. Since $(N\tau_2\beta \operatorname{int}(A))^C = N\tau_2\beta cl(A^C), (N\tau_2\beta \operatorname{int}(A))^C \subseteq F^C$. Therefore $F \subseteq N\tau_2\beta \operatorname{int}(A)$. Conversely assume that $F\subseteq N\tau_2\beta\operatorname{int}(A)$ whenever F is Nano $\tau_1\operatorname{closed}$ set and $F\subseteq A$. Then $(N\tau_2\beta\operatorname{int}(A))^C\subseteq F^C$. Thus $N\tau_2\beta\operatorname{cl}(A^C)\subseteq F^C$. Hence A^C is Nano $(\tau_1,\tau_2)\operatorname{g}\beta$ closed set and A is Nano $(\tau_1,\tau_2)\operatorname{g}\beta$ open set in U. **Theorem 4.7:** If A is a Nano (τ_1, τ_2) g β open set in a Nano bitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$ and $N\tau_2\beta \operatorname{int}(A) \subseteq B \subseteq A$, then B is also Nano (τ_1, τ_2) g β open. **Proof:** Let A is Nano (τ_1, τ_2) g β open set and $N\tau_2\beta$ int $(A) \subseteq B \subseteq A$. Then $A^C \subseteq B^C \subseteq (N\tau_2\beta$ int $(A))^C$ implies $A^C \subseteq B^C \subseteq N\beta cl(A^C)$. Since A^C is Nano (τ_1, τ_2) g β closed, B^C is also Nano (τ_1, τ_2) g β closed. Therefore B is Nano (τ_1, τ_2) g β open. **Theorem: 4.8:** If a set A is Nano (τ_1, τ_2) g β open in a Nanobitopological space $(U, \tau_{R1}(X_1), \tau_{R2}(X_2))$, then G = U whenever G is Nano τ_1 open and $N\tau_2\beta$ int $(A) \cup A^C \subseteq G$. **Proof:** Let A be Nano $(\tau_1, \tau_2) g \beta$ open, G be Nano τ_1 open set and $N\tau_2 \beta \operatorname{int}(A) \cup A^C \subseteq G$. Then $G^C \subseteq (N\tau_2 \beta \operatorname{int}(A) \cup A^C)^C = N\tau_2 \beta \operatorname{cl}(A^C) - A^C$, since G^C is Nano τ_1 closed and A^C is Nano $(\tau_1, \tau_2) g \beta$ closed. By theorem 3.13[8] we have $G^C = \phi$. Therefore G = U. #### REFERENCES - 1. Abd EL-Monsef M. E., EL-Deep S. N. and Mahmoud R. A., β -Open Sets and β -continuous mappings, Bull. Fac. Sci., Assiut Univ., 12 (1983), 77-90. - 2. Bhuvaneshwari. K and Karpagam. K., Nano generalized closed sets in Nano bitopological Spaces, Inter. J. of Math.and its Applications, 4(1-B) (2016), 149-153. - 3. Fukutake. T., On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35 (1985), 19-28. - 4. Gnanambal. Y, On Nano β open sets, Int. Jr. of Engineering, 1(2) (2015), 1-6. - 5. Kelly. J. C., Bitopological spaces, Proc.London Math. Soc., 13 (1963), 71-89. - 6. LellisThivagar .M, and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31 -37. - 7. Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(2) (1970), 89-96. - 8. Shalini. S.B, and Indirani. K, Characterisation of nano generalized β closed sets in nano topological spaces, International Journal of Science and Applied Research, 4(1) (2017), 7-11. #### Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]