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ABSTRACT 
Let G = (V, E) be a simple graph. A Near Mean Cordial Labeling of G is a function in f : V(G) → {1, 2, 3, . . . , p−1, 
p+1} such that the induced map f* defined by   

                               f*(uv) =   �  1   𝑖𝑓�𝑓(𝑢) + 𝑓(𝑣)� ≡ 0 (𝑚𝑜𝑑2)
0                                                  𝑒𝑙𝑠𝑒

� 

and it satisfies the condition |𝑒𝑓(0)− 𝑒𝑓(1)|≤ 1, where 𝑒𝑓(0) and 𝑒𝑓(1) represent the number of edges labeled with 0 and 
1 respectively. A graph is called a Near Mean Cordial Graph if it admits a near mean cordial labeling. 
 
In this paper, It is to be proved that  𝑃𝑛 × 𝐾2 , 𝑃𝑛@2𝐾1,𝑛  and  𝐻𝑛+ are Near Mean Cordial graphs. 
 
AMS Mathematics subject classification 2010:05C78. 
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1. INTRODUCTION  
 
By a graph, it means a finite undirected graph without loops or multiple edges. For graph theoretic terminology, Harary 
[4] and G.J. Gallian[1] are referred. 
 
A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge uv a label 
depending on the vertex labels of u and v. 
 
A graph G is said to be labeled if the n vertices are distinguished from a given set, which induces distinguish edge 
values satisfying certain conditions. The concept of graceful labeling was introduced by Rosa [3] in 1967 and 
subsequently by Golomb [2].  
 
In this paper, It is to be proved that  𝑃𝑛 × 𝐾2 , 𝑃𝑛@2𝐾1,𝑛 and 𝐻𝑛+ are Near Mean Cordial graphs. 
 
2. PRELIMINARIES 
 
Definition 2.1: Let G = (V, E) be a simple graph. Let f:V(G)→{0,1} and for each edge uv, assign the label           
|f(u) − f(v)|. f is called a cordial labeling if the number of vertices labeled 0 and the the number of vertices labeled 1 
differ by atmost 1 and also the number of edges labeled 0 and the the number of edges labeled 1 differ by atmost 1. A 
graph is called Cordial if it has a cordial labeling. 
 
Definition 2.2: Let G = (V, E) be a simple graph. A Near Mean Cordial Labeling of G is a function in f : V(G) → {1, 
2, 3, . . . , p−1, p+1}such that the induced map f* defined by   

f*(uv) = �  1   𝑖𝑓�𝑓(𝑢) + 𝑓(𝑣)� ≡ 0 (𝑚𝑜𝑑2)
0                                                  𝑒𝑙𝑠𝑒

� 

and it satisfies the condition |𝑒𝑓(0)− 𝑒𝑓(1)|≤ 1, where 𝑒𝑓(0) and 𝑒𝑓(1) represent the number of edges labeled with 0 and 
1 respectively. A graph is called a Near Mean Cordial Graph if it admits a near mean cordial labeling. 
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Definition 2.3: 𝑃𝑛@2𝐾1,𝑛 is a graph which is obtained by joining the root of the star 𝐾1,𝑛 to the end vertex of the path 
𝑃𝑛. 
 
Definition 2.4: Define the product G1 × G2 , by consider any two vertices u = (u1 ,u2),  and  v = (v1 , v2) in  V1 × V2  
Then u and v are adjacent in   G1 × G2.whenever (u1 = v1 and u2 adj to v2 ) or (u2 =  v2 and u1 adj to v1 ).  
 
The product Pm × Pn is called planar grids and K2 × Pn is called Ladder. The product Cm × Pn is called Grids on 
cylinder of order mn. In particular, Dn = Cn × K2 is called  a prism and  Bm = K1,m × K2 is called  a book. 
 
Definition 2.5: G+ is a graph obtained from G by attaching a pendant vertex from each vertex of the graph G.  
 
3. MAIN RESULTS 
 
Theorem 3.1:  𝑃𝑛 × 𝐾2  is a Near Mean Cordial Graph ∀ 𝑛 ≥ 2 . 
 
Proof:  Let V(𝑃𝑛 × 𝐾2) = {𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛 , 𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛}. 
             Let E ( 𝑃𝑛 × 𝐾2 ) = {(𝑢𝑖𝑣𝑖) : 1 ≤ 𝑖 ≤ 𝑛 } ∪ {(𝑢𝑖𝑢𝑖+1) ∶  1 ≤ 𝑖 ≤ 𝑛 − 1}∪ {(𝑣𝑖𝑣𝑖+1) ∶  1 ≤ 𝑖 ≤ 𝑛 − 1} 
 
Case (i): when n = 2 and n = 3    
 
Define f : V( 𝑃𝑛 × 𝐾2) → {1, 2, 3, . . . , 2n−1 , 2n+1} by 
   

 
                                                 Figure: 3.1.1                                       Figure: 3.1.2 

 
Case (ii): when n > 3 
 
Define f : V( 𝑃𝑛 × 𝐾2) → {1, 2, 3, . . . , 2n−1 , 2n+1} by 
 
when n is even: 

Let f(𝑢1) =   1                
f(𝑢2𝑖+1)  =   𝑛

2
 +i+1,       1 ≤ 𝑖 ≤ 𝑛−2

2
   

f(𝑢2𝑖)      =   1+i,           1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑣2𝑖−1)  =   𝑛 + 𝑖,         1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑣2𝑖)      =   3𝑛
2

+ 𝑖,       1 ≤ 𝑖 ≤ 𝑛−2
2

 
f(𝑣𝑛)       =  2n+1 

 
when n is odd : 

Let f(𝑢1) =   1,   f(𝑢2) = 2 
f(𝑢2𝑖+1)  =   2+𝑖,          \             1 ≤ 𝑖 ≤ 𝑛−1

2
 

f(𝑢2𝑖)      =   𝑛+3
2

+ 𝑖 − 1,           2 ≤ 𝑖 ≤ 𝑛−3
2

 

f(𝑣2𝑖−1)  =   𝑛 + 𝑖,                      1 ≤ 𝑖 ≤ 𝑛+1
2

 

f(𝑣2𝑖)      =   3(𝑛+1)
2

+ (𝑖 − 1),    1 ≤ 𝑖 ≤ 𝑛−3
2

 
f(𝑣𝑛−1)   =   2n+1 

 
The induced edge labeling are 

f*(𝑢𝑖 𝑣𝑖)     =   �  1   if  f(𝑢𝑖) + f(𝑣𝑖) ≡ 0 (mod 2) 
    0     else                                                

�  ,   1 ≤ 𝑖 ≤ 𝑛 

f*(𝑢𝑖 𝑢𝑖+1) =   �  1   if  f(𝑢𝑖) + f(𝑢𝑖+1) ≡ 0 (mod 2)  
 0     else                                                 

�   , 1 ≤ 𝑖 ≤ 𝑛 − 1 

f*(𝑣𝑖 𝑣𝑖+1) =   �  1   if  f(𝑣𝑖) + f(𝑣𝑖+1) ≡ 0 (mod 2)  
 0     else                                                 

�   , 1 ≤ 𝑖 ≤ 𝑛 − 1 

(i) Let  𝑛 = 2𝑘, (𝑘𝜖𝑁)   
     Here, 𝑒𝑓(1) =  𝑒𝑓(0) = 𝑛 + 𝑘 − 1. 
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(ii) Let  𝑛 = 2𝑘 + 1, (2, 4, 6 , . . .  𝜖 𝑁)   
     Here, 𝑒𝑓(0) =  𝑛 + 𝑘 and 𝑒𝑓(1) = 𝑛 + 𝑘 − 1 
(iii) Let  𝑛 = 2𝑘 + 1, ( 3, 5 , . . .  𝜖 𝑁)   
     Here, 𝑒𝑓(0) =  𝑛 + 𝑘 − 1 and 𝑒𝑓(1) = 𝑛 + 𝑘 
 
Hence, it satisfies the condition |𝑒𝑓(0)− 𝑒𝑓(1)|≤ 1. 
 
Hence, 𝑃𝑛 × 𝐾2  is a Near Mean Cordial Graph. 
 
For example, the Near Mean Cordial Labeling of  𝑃6 × 𝐾2 , 𝑃7 × 𝐾2 and 𝑃9 × 𝐾2 are shown in Figures 3.1.3 - 3.1.5. 
 

 
Figure: 3.1.3 

 

 
Figure: 3.1.4 

 

 
Figure: 3.1.5 

 
Theorem 3.2:  𝑃𝑛@2 𝐾1,𝑛 is a Near Mean Cordial Graph. 
 
Proof:   Let V(𝑃𝑛@2 𝐾1,𝑛)  = { 𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛 ,𝑤𝑖: 1 ≤ 𝑖 ≤ 𝑛}. 

Let E (𝑃𝑛@2 𝐾1,𝑛)  = {(𝑢𝑖𝑤𝑖) : 1 ≤ 𝑖 ≤ 𝑛} ∪ {(𝑤𝑖𝑤𝑖+1) ∶  1 ≤ 𝑖 ≤ 𝑛 − 1} ∪{𝑤𝑖𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛}. 
 
When n ≡ 𝟎 (𝒎𝒐𝒅 𝟒): 
 
Define f: V(𝑃𝑛@2 𝐾1,𝑛) → {1, 2, 3, . . . , 3n−1 , 3n+1} by          

f(𝑢𝑖)         =   2𝑖 − 1,          1 ≤ 𝑖 ≤ 𝑛 
f(𝑣𝑖)         =    2𝑖,                1 ≤ 𝑖 ≤ 𝑛           
f(𝑤2𝑖−1) =   2𝑛 + 𝑖,            1 ≤ 𝑖 ≤ 𝑛

2
 

f(𝑤2)        =   3n+1 
f(𝑤2(𝑖+1))      =   3n−𝑖,       1 ≤ 𝑖 ≤ 𝑛−2

2
 

 
When n ≡ 𝟏 (𝒎𝒐𝒅 𝟒): 
 
Define f : V(𝑃𝑛@2 𝐾1,𝑛) → {1, 2, 3, . . . , 3n−1 , 3n+1} by          

f(𝑢𝑖)        =   2𝑖 − 1,            1 ≤ 𝑖 ≤ 𝑛 
f(𝑣𝑖)         =   2𝑖,                  1 ≤ 𝑖 ≤ 𝑛         
f(𝑤2𝑖−1) =   2𝑛 + 𝑖,             1 ≤ 𝑖 ≤ 𝑛+1

2
 

f(𝑤2)        =  3n+1 
f(𝑤2(𝑖+1))      =   3n−𝑖,       1 ≤ 𝑖 ≤ 𝑛−3

2
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When  n ≡ 𝟐 (𝒎𝒐𝒅 𝟒): 
 
Define f : V(𝑃𝑛@2 𝐾1,𝑛) → {1, 2, 3, . . . , 3n−1 , 3n+1} by          

f(𝑢𝑖)       =   2𝑛 + 𝑖,             1 ≤ 𝑖 ≤ 𝑛 − 1 
f(𝑢𝑛)      =   3n+1 
f(𝑣𝑖)       =   𝑛 + 𝑖,                1 ≤ 𝑖 ≤ 𝑛           
f(𝑤2𝑖−1) =   𝑖,                       1 ≤ 𝑖 ≤ 𝑛

2
 

f(𝑤2𝑖)     =   𝑛
2

+ 𝑖,                1 ≤ 𝑖 ≤ 𝑛
2
 

 
When n ≡ 𝟑 (𝒎𝒐𝒅 𝟒): 
 
Define f : V(𝑃𝑛@2 𝐾1,𝑛) → {1, 2, 3, . . . , 3n−1 , 3n+1} by          

f(𝑢𝑖)       =  2𝑛 + 𝑖,           1 ≤ 𝑖 ≤ 𝑛 − 1 
f(𝑢𝑛)      =  3n+1    
f(𝑣𝑖)       =  𝑛 + 𝑖,              1 ≤ 𝑖 ≤ 𝑛           
f(𝑤2𝑖−1) =  𝑖,                     1 ≤ 𝑖 ≤ 𝑛+1

2
 

f(𝑤2𝑖)     =   𝑛+1
2

+ 𝑖,         1 ≤ 𝑖 ≤ 𝑛−1
2

 
 
From all the cases, The induced edge labelings are 

f*(𝑢𝑖 𝑤𝑖 )    =  � 1   if  f�𝑢𝑖  � + f(𝑤𝑖) ≡ 0 (mod 2)  
  0     else                                                 

�   ,   1 ≤ 𝑖 ≤ 𝑛 

f*(𝑤𝑖 𝑤𝑖+1) = �   1   if  f(𝑤𝑖) + f(𝑤𝑖+1) ≡ 0 (mod 2)  
 0     else                                                 

� , 1 ≤ 𝑖 ≤ 𝑛 − 1   

f*(𝑤𝑖 𝑣𝑖 )     = �   1   if  f(𝑤𝑖 ) + f(𝑣𝑖) ≡ 0 (mod 2)  
   0     else                                                 

�   , 1 ≤ 𝑖 ≤ 𝑛 
 
Let  𝑛 = 2𝑘 + 1, (𝑘𝜖𝑁)   
 
Here, 𝑒𝑓(1) = 𝑒𝑓(0) = 𝑛 + 𝑘. 
 
Let  𝑛 = 2𝑘, (𝑘𝜖𝑁)   
 
Here, 𝑒𝑓(1) = 𝑛 + 𝑘 − 1 and 𝑒𝑓(0) = n +𝑘, (when 𝑘 ≡ 0 (𝑚𝑜𝑑 2)) . 
 
Here, 𝑒𝑓(0) = 𝑛 + 𝑘 − 1 and 𝑒𝑓(1) = 𝑛 + 𝑘, (when 𝑘 ≡ 1 (𝑚𝑜𝑑 2)). 
 
So, it satisfies the condition |𝑒𝑓(0)− 𝑒𝑓(1)|≤ 1. 
 
Hence,  𝑃𝑛@2 𝐾1,𝑛   is a Near Mean Cordial Graph . 
 
For example, the Near Mean Cordial Labeling of  𝑃8@2 𝐾1,8 , 𝑃9@2 𝐾1,9 , 𝑃6@2 𝐾1,6 and 𝑃7@2 𝐾1,7 are shown in 
Figures 3.2.1 - 3.2.4. 
 
When n ≡ 0 (mod 4): 

 
Figure: 3.2.1 
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When n ≡ 1 (mod 4): 

 
Figure: 3.2.2 

 
When n ≡ 2 (mod 4): 

 
Figure: 3.2.3 

 
When n ≡ 3 (mod 4): 

 
Figure: 3.2.4 

 
Theorem 3.3:  𝐻𝑛+  (n : odd) is a Near Mean Cordial Graph. 
 
Proof: Let V(𝐻𝑛+) =  {𝑢𝑖  , 𝑣𝑖 ∶  1 ≤ 𝑖 ≤ 𝑛  ,𝑢𝑖′ , 𝑣𝑖′ ∶  1 ≤ 𝑖 ≤ 𝑛}. 

 Let E(𝐻𝑛+) =  {(𝑢𝑖𝑢𝑖+1), (𝑣𝑖𝑣𝑖+1)  :1 ≤ 𝑖 ≤ 𝑛 − 1}  ∪ {𝑢𝑖𝑢𝑖′ , 𝑣𝑖𝑣𝑖′ ∶ 1 ≤ 𝑖 ≤ 𝑛} ∪   {𝑢�𝑛+12 �𝑣�𝑛+12 �} . 

 
Define f : V(𝐻𝑛+ ) → {1, 2, 3, . . . , 4n−1 , 4n+1} by                

f(𝑢2𝑖−1)  =   2𝑛 − 2(𝑖 − 1),              1 ≤ 𝑖 ≤ 𝑛+1
2

 

f(𝑢2𝑖)      =   2𝑖,                                 1 ≤ 𝑖 ≤ 𝑛−1
2

 

f(𝑢2𝑖−1′ )  =   2𝑖 − 1,                           1 ≤ 𝑖 ≤ 𝑛+1
2

 

f(𝑢2𝑖′ )      =   2𝑛 − 1 − 2(𝑖 − 1),       1 ≤ 𝑖 ≤ 𝑛−1
2

 
f(𝑣1)       =   4𝑛 + 1    
f(𝑣2𝑖+1)  =   4𝑛 − 2 − 2(𝑖 − 1),       1 ≤ 𝑖 ≤ 𝑛−1

2
 

f(𝑣2𝑖)     =   2𝑛 + 2 + 2(𝑖 − 1),        1 ≤ 𝑖 ≤ 𝑛−1
2

 

f(𝑣2𝑖−1′ ) =   2𝑛 + 1 + 2(𝑖 − 1),        1 ≤ 𝑖 ≤ 𝑛+1
2

 

f(𝑣2𝑖′ )    =   4𝑛 − 1 − 2(𝑖 − 1),         1 ≤ 𝑖 ≤ 𝑛−1
2

 



L. Pandiselvi*, S. Navaneethakrishnan and A. Nagarajan / Path Related Near Mean Cordial Graphs / IJMA- 8(9), Sept.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                        57  

 
The induced edge labelings are 

f*(𝑢𝑖𝑢𝑖+1) =   �    1   if  f(𝑢𝑖) + f(𝑢𝑖+1) ≡ 0 (mod 2)  
  0     else                                                 

� ,        1 ≤ 𝑖 ≤ 𝑛 − 1 

f*(𝑢𝑖𝑢𝑖′)    =   � 1   if  f(𝑢𝑖) + f(𝑢𝑖′) ≡ 0 (mod 2)  
  0     else                                                 

�         ,   1 ≤ 𝑖 ≤ 𝑛 

f*(𝑣𝑖𝑣𝑖+1) =  �   1   if  f(𝑣𝑖) + f(𝑣𝑖+1) ≡ 0 (mod 2)  
  0     else                                                 

�    ,        1 ≤ 𝑖 ≤ 𝑛 − 1 

f*(𝑣𝑖𝑣𝑖′)    =   � 1   if  f(𝑣𝑖) + f(𝑣𝑖′) ≡ 0 (mod 2)  
    0     else                                                 

�        ,   1 ≤ 𝑖 ≤ 𝑛  

f*(𝑢�𝑛+12 �𝑣�𝑛+12 �) = 1 

 
Here, 𝑒𝑓(0) = 2 𝑛      and      𝑒𝑓(1) = 2𝑛 − 1 
 
So, it satisfies the condition |𝑒𝑓(0)− 𝑒𝑓(1)|≤ 1. 
 
Hence, 𝐻𝑛+  is a Near Mean Cordial Graph . 
 
For example, the Near Mean Cordial Labeling of 𝐻7+ is shown in the Figure 3.3.1.   
 

 
Figure: 3.3.1 

 
Theorem 3.4:  𝐻𝑛+ (n : even) is a Near Mean Cordial Graph . 
 
Proof:   Let V (𝐻𝑛+) =  {𝑢𝑖  , 𝑣𝑖 ∶  1 ≤ 𝑖 ≤ 𝑛  ,𝑢𝑖′ , 𝑣𝑖′ ∶  1 ≤ 𝑖 ≤ 𝑛}. 
 
              Let E (𝐻𝑛+) = {(𝑢𝑖𝑢𝑖+1), (𝑣𝑖𝑣𝑖+1)  :1 ≤ 𝑖 ≤ 𝑛 − 1}  ∪ {𝑢𝑖𝑢𝑖′ ,𝑣𝑖𝑣𝑖′ ∶ 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢�𝑛2+1�

𝑣�𝑛2�
} . 

 
Define f : V(𝐻𝑛+ ) → {1, 2, 3, . . . , 4n−1 , 4n+1} by                

f(𝑢2𝑖−1)  =   2𝑛 − 2(𝑖 − 1),             1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑢2𝑖)     =   2𝑖,    1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑢2𝑖−1′ ) =   2𝑖 − 1,                           1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑢2𝑖′ )    =   2𝑛 − 1 − 2(𝑖 − 1),        1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑣1)      =   4𝑛 + 1    
f(𝑣2𝑖+1) =   4𝑛 − 2 − 2(𝑖 − 1),        1 ≤ 𝑖 ≤ 𝑛−2

2
 

f(𝑣2𝑖)     =   2𝑛 + 2 + 2(𝑖 − 1),        1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑣2𝑖−1′ ) =   2𝑛 + 1 + 2(𝑖 − 1),        1 ≤ 𝑖 ≤ 𝑛
2
 

f(𝑣2𝑖′ )    =   4𝑛 − 1 − 2(𝑖 − 1),         1 ≤ 𝑖 ≤ 𝑛
2
 

 
The induced edge labelings are 

f*(𝑢𝑖𝑢𝑖+1)  = �    1   if  f(𝑢𝑖) + f(𝑢𝑖+1) ≡ 0 (mod 2)  
  0     else                                                 

�   ,       1 ≤ 𝑖 ≤ 𝑛 − 1 

f*(𝑢𝑖𝑢𝑖′)     =  � 1   if  f(𝑢𝑖) + f(𝑢𝑖′) ≡ 0 (mod 2)  
  0     else                                                 

�         ,   1 ≤ 𝑖 ≤ 𝑛 

f*(𝑣𝑖𝑣𝑖+1) =  �   1   if  f(𝑣𝑖) + f(𝑣𝑖+1) ≡ 0 (mod 2)  
  0     else                                                 

�    ,        1 ≤ 𝑖 ≤ 𝑛 − 1 
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f*(𝑣𝑖𝑣𝑖′)     =  � 1   if  f(𝑣𝑖) + f(𝑣𝑖′) ≡ 0 (mod 2)  
    0     else                                                 

�        , 1 ≤ 𝑖 ≤ 𝑛  

f*(𝑢�𝑛2+1�
𝑣�𝑛2�

) = 1 

 
Here, 𝑒𝑓(0) = 2 𝑛      and      𝑒𝑓(1) = 2𝑛 − 1 
 
So, it satisfies the condition |𝑒𝑓(0)− 𝑒𝑓(1)|≤ 1. 
 
Hence, 𝐻𝑛+  is a Near Mean Cordial Graph. 
 
For example, the Near Mean Cordial Labeling of  𝐻8+ is shown in the Figure 3.4.1. 
 

 
Figure: 3.4.1 
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