International Journal of Mathematical Archive-8(9), 2017, 67-73

(cc s)MA Available online through www.ijma.info ISSN 2229-5046

VERTEX COVER POLYNOMIAL OF $K_{n} \times K_{r}$

B. STEPHEN JOHN*1
Associate Professor, Department of Methematics, Annai Velankanni College, Tholayavattom Kanyakumari District, Tamil Nadu, India - 629157.

K. SABITHA MINI ${ }^{2}$

Associate Professor, Department of Methematics, Sree Devikumari Women's College Kuzhithurai, Kanyakumari District, Tamil Nadu, India - 629165.
(Received On: 16-08-17; Revised \& Accepted On: 11-09-17)

Abstract

The vertex cover Polynomial of a graph G of order n has been already introduced in [3]. It is defined as the polynomial, $C(G, i)=\sum_{i=\beta(G)}^{|v(G)|} c(G, i) x^{i}$, where $c(G, i)$ is the number of vertex covering sets of G of size i and $\beta(G)$ is the covering number of G. In this paper, we derived a formula for finding the vertex cover polynomial of $K_{n} \times K_{r}$. Aslo we proved that $x^{r-r n}\left[C\left(K_{n} \times K_{r}, x\right]\right.$ is \log concave.

Key words: Vetex covering set, vertex covering number, vertex cover polynomial.

1. INTRODUCTION

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. For any vertex $v \in \mathrm{~V}$, the open neighborhood of v is the set $\mathrm{N}(v)=\{\mathrm{u} \in \mathrm{V} / \mathrm{uv} \in \mathrm{E}\}$ and the closed neighborhood of v is the set $\mathrm{N}[v]=\mathrm{N}(v) \cup\{v\}$. For a set $\mathrm{S} \subset \mathrm{V}$, the open neighborhood of S is $N(S)=\bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S]=N(S) \cup S$. A set $S \subset V$ is a vertex covering of G if every edge $u v \epsilon E$ is adjacent to at least one vertex in S. The vertex covering number $\beta(G)$ is the minimum cardinality of the vertex covering sets in G. A vertex covering set with cardinality $\beta(\mathrm{G})$ is called a β - set. Let C (G, i) be the family of vertex covering sets of G with cardinality i and let $\mathrm{c}(\mathrm{G}, \mathrm{i})=|\mathrm{C}(\mathrm{G}, \mathrm{i})|$. The polynomial, $\mathrm{C}(\mathrm{G}, \mathrm{x})=\sum_{\mathrm{i}=\beta(\mathrm{G})}^{|\mathrm{v}(\mathrm{G})|} c(G, i) x^{i}$, is defined as the vertex cover polynomial of G. In [3], many properties of the vertex cover polynomials have been studied.

Theorem 2.1: The vertex cover polynomial of $K_{n} \times K_{r}$ is

$$
\mathrm{C}\left(\mathrm{~K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{r}}, x\right)=\sum_{\mathrm{i}=0}^{\mathrm{r}} \mathrm{rC}_{\mathrm{r}-\mathrm{i}} \frac{\mathrm{n}!}{\mathrm{i}!} x^{\mathrm{r} \mathrm{n}-\mathrm{r}+\mathrm{i}} .
$$

[^0]
Proof:

Figure: 1
Let the vertices of $\mathrm{G}=\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{r}}$ are denoted by

$$
\left\{v_{11}, v_{12}, v_{13}, \ldots, v_{1 \mathrm{n}}, v_{21}, v_{22}, \ldots, v_{2 \mathrm{n}}, \ldots, v_{\mathrm{r} 1}, v_{\mathrm{r} 2}, \ldots, v_{\mathrm{rn}}\right\}
$$

Now the vertices of G can be partitioned into r sets are denoted by $S_{1}, S_{2}, \ldots, S_{r}$ where

$$
\begin{aligned}
& \mathrm{S}_{1}=\left\{v_{11}, v_{12}, v_{13}, \ldots, v_{1 \mathrm{n}}\right\} \\
& \mathrm{S}_{2}=\left\{v_{21}, v_{22}, v_{23}, \ldots, v_{2 \mathrm{n}}\right\} \\
& \mathrm{S}_{3}=\left\{v_{31}, v_{32}, v_{33}, \ldots, v_{3 \mathrm{n}}\right\} \\
& \cdot \\
& \mathrm{S}_{\mathrm{r}}=\left\{v_{\mathrm{r} 1}, v_{\mathrm{r} 2}, v_{\mathrm{r} 3}, \ldots, v_{\mathrm{rn}}\right\}
\end{aligned} .
$$

Now each sub graph H_{i} of G consists the vertices of $S_{i}, i=1, \ldots$. .r complete sub graph with n-vertices. That is the graph G contains n complete sub graphs $\mathrm{Q}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$ whose vertices are

$$
\begin{aligned}
& \mathrm{Q}_{1}=\left\{v_{11}, v_{21}, v_{31}, \ldots, v_{\mathrm{r} 1}\right\} \\
& \mathrm{Q}_{2}=\left\{v_{12}, v_{22}, v_{32}, \ldots, v_{\mathrm{r} 2}\right\} \\
& \mathrm{Q}_{3}=\left\{v_{13}, v_{23}, v_{33}, \ldots, v_{\mathrm{r} 3}\right\} \\
& \cdot \\
& \mathrm{Q}_{\mathrm{n}}=\left\{\begin{array}{c}
\cdot \\
\cdot
\end{array} \cdot\right. \\
& . \\
& v_{\mathrm{in}}, \\
& v_{2 \mathrm{n}}, \\
& \left., v_{3 \mathrm{n}}, \ldots, v_{\mathrm{rn}}\right\}
\end{aligned} .
$$

Since each sub graph of G containing the vertices of S_{i} are complete, the maximum independent set of G with cardinality of r elements are as follows. Let us take the element $v_{11} \in S_{1}$, each element $\left\{v_{2 j}\right\}, j=2,3, \ldots, n \in S_{2}$ are independent to element $v_{11} \in \mathrm{~S}_{1}$. For the fixed element $v_{11}, \mathrm{n}-1$ chances to select one element from S_{2} which is independent to v_{11}. Suppose we select v_{11} and v_{22} be the first two elements of our maximum independent set from S_{1} and S_{2}, the selected elements $v_{11} \in \mathrm{~S}_{1}$ and $v_{22} \in \mathrm{~S}_{2}$ are adjacent with v_{31} and v_{32} in S_{3} respectively.

Since H_{3} is complete, the third element in our independent set from S_{3} which is independent to v_{11}, v_{22} are other than the elements of $v_{31}, v_{32} \in \mathrm{~S}_{3}$. Therefore. $\mathrm{n}-2$ choices to select one element from S_{3} which are independent to v_{11} and v_{22}. Similarly, the number of choices to select independent sets to the fixed vertex $v_{11} \in \mathrm{~S}_{1}$ are

$$
(n-1)(n-2)(n-3) \ldots(n-r-\overline{1})
$$

Therefore, for all the elements of S_{1}, the number of maximum independent sets with cardinality r are $n(n-1)(n-2) \ldots$.$(\mathrm{n}-\overline{\mathrm{r}-1})$.

It is equal to the number of minimum covering sets with cardinality $\mathrm{r} \mathrm{n}-\mathrm{r}$.
Therefore,

$$
c(G, r n-r)=n(n-1)(n-2) \ldots(n-\overline{r-1})
$$

To find the number of independent sets with cardinality $r-1$, since each sub graph $G_{i}, i=1, \ldots, r$ is complete, we can choose independent set containing $r-1$ elements from any $r-1$ sub graph of $G_{i}, i=1,2, \ldots$, r. From $r-1$ sub graphs G_{i} of G can be chosen in $\mathrm{rC}_{\mathrm{r}-1}$ ways. Let $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{r}-1}$ be the $\mathrm{r}-1$ sub graphs of G, then a fixed vertex $v_{1 i} \in \mathrm{~S}_{1}$, $\mathrm{i}=1, \ldots, \mathrm{n}$ the vertices $v_{2 \mathrm{j}} \in \mathrm{S}_{2}, \mathrm{j}=1, \ldots, \mathrm{n} ; \mathrm{i} \neq \mathrm{j}$ are independent $v_{1 \mathrm{i}} \in \mathrm{S}_{1}$.

Similarly for the fixed vertices $v_{1 i} \in S_{1}$ and $v_{2 j} \in S_{2}$, we can choose $v_{3 k} \in S_{3}, i \neq j \neq k ; k=1,2, \ldots, n$ which are independent to both $v_{1 i} \in S_{1}$ and $v_{2 j} \in S_{2}$ proceeding this way $(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3) \ldots(\mathrm{n}-\overline{\mathrm{r}-2})$ choices to select an independent set, of the fixed vertex $v_{1 \mathrm{i}} \in \mathrm{S}_{1}$. Therefore, for all vertices $v_{1 \mathrm{i}} \in \mathrm{S}_{1}$, the number of choices are

$$
\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-2})
$$

Therefore, the total number of independent sets with cardinality

$$
\mathrm{r}-1 \text { are } \quad \mathrm{rC}_{\mathrm{r}-1} \cdot \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-2})
$$

Therefore, the covering sets with cardinality $\mathrm{r} n-(\mathrm{r}-1)$ are

$$
\mathrm{c}(\mathrm{G}, \mathrm{rn}-\overline{\mathrm{r}-1})=\mathrm{rC}_{\mathrm{r}-1} \cdot \mathrm{n} .(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-2})
$$

The same procedure for the number of independent sets with cardinality $r-2$ is, among r sets we can select $r-2$ sets in $\mathrm{rC}_{\mathrm{r}-2}$ ways and for a fixed element in one set, independent sets with cardinality $r-2$ are $(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3) \ldots$ $(n-\overline{r-3})$.

Therefore, for all n elements to a fixed set S_{i} the number of independent set with cardinality $r-2$ are

$$
(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3) \ldots(\mathrm{n}-\overline{r-3})
$$

Therefore, the total number of independent sets with cardinality ($r-2$) of G is same as the covering sets with cardinality $\mathrm{n} \mathrm{n}-\overline{r-2}$.

That is, $\mathrm{c}(\mathrm{G}, \mathrm{rn}-\overline{r-2})=\mathrm{rC}_{\mathrm{r}-2} \cdot \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-2})$
Similarly,

$$
\begin{gathered}
\mathrm{c}(\mathrm{G}, \mathrm{rn}-\overline{r-3})=\mathrm{rC}_{\mathrm{r}-3} \cdot \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-4}) \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{c}(\mathrm{G}, \mathrm{rn}-(\mathrm{r}-\overline{r-2}))=\mathrm{rC}_{\mathrm{r}-\overline{\mathrm{r}-2}} \cdot \mathrm{n}(\mathrm{n}-1) \\
\mathrm{c}(\mathrm{G}, \mathrm{rn}-(\mathrm{r}-\overline{r-1}))=\mathrm{rC}_{\mathrm{r}-\overline{\mathrm{r}-1}} \cdot \mathrm{n} \text { and } \\
\mathrm{c}(\mathrm{G}, \mathrm{rn}-\mathrm{r}+\mathrm{r})=\mathrm{rC}_{\mathrm{r}-\mathrm{r}} .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& c(G, r n-r)=n(n-1)(n-2) \ldots(n-\overline{r-1}) \\
& c(G, r n-r+1)=r_{r-1} . n(n-1)(n-2) \ldots(n-\overline{r-2}) \\
& c(G, r n-r+2)=\mathrm{rC}_{\mathrm{r}-2} \cdot \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-3}) \\
& c(G, r n-r+3)=r C_{r-3} . n(n-1)(n-2) \ldots(n-\overline{r-4}) \\
& c(G, r n-2)=r C_{2} n(n-1) \\
& c(G, r n-1)=r C_{1} n \\
& \mathrm{c}(\mathrm{G}, \mathrm{rn})=\mathrm{rC}_{0} \cdot \mathrm{nC}_{0}
\end{aligned}
$$

Therefore the vertex cover polynomial

$$
\begin{aligned}
\mathrm{C}(\mathrm{G}, x)=\mathrm{n}(\mathrm{n}-1) & (\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-1}) x^{\mathrm{rn}-\mathrm{r}} \\
& +\mathrm{rC}_{\mathrm{r}-1} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-2}) x^{\mathrm{rn}-\mathrm{r}+1} \\
& +\mathrm{rC}_{\mathrm{r}-2} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-3}) x^{\mathrm{rn}-\mathrm{r}+2} \\
& +\mathrm{rC}_{\mathrm{r}-3} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{r-4}) x^{\mathrm{rn}-\mathrm{r}+3}+\ldots+
\end{aligned}
$$

$$
\begin{align*}
& +\mathrm{rC}_{\mathrm{r}-\overline{\mathrm{r}-2}} \cdot \mathrm{n}(\mathrm{n}-1) x^{\mathrm{rn}-(\mathrm{r}-\overline{\mathrm{r}-2})}+\mathrm{rC}_{\mathrm{r}-\overline{\mathrm{r}-1}} \cdot \mathrm{n} x^{\mathrm{rn-(r-} \mathrm{\overline{r-1}})} \\
& \quad+\mathrm{rC}_{\mathrm{r}-\mathrm{r}} \mathrm{nC}_{0} \cdot x^{\mathrm{rn}} . \tag{A}
\end{align*}
$$

$C(G, x)=\sum_{i=0}^{r} r C_{r-i} \frac{n!}{(n-r+i)!} x^{r n-r+i}$

Corollary 2.2: The vertex cover polynomial of $K_{n} \times K_{n}$ is

$$
\mathrm{C}\left(\mathrm{~K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{n}}, x\right)=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{nC}_{\mathrm{n}-\mathrm{i}} \frac{\mathrm{n}!}{\mathrm{i}!} x^{\mathrm{n}^{2}-\mathrm{n}+\mathrm{i}}
$$

Proof: Put $\mathrm{r}=\mathrm{n}$ in equation (A) we get

$$
\mathrm{C}\left(\mathrm{~K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{n}}, x\right)=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{nC}_{\mathrm{n}-\mathrm{i}} \frac{\mathrm{n}!}{\mathrm{i}!} x^{\mathrm{n}^{2}-\mathrm{n}+\mathrm{i}}
$$

Theorem 2.3: The vertex cover polynomial of $K_{n} \times K_{2}$ satisfies the following identities
(i) $\mathrm{c}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{2}, 2 \mathrm{n}-2\right)=\mathrm{n}(\mathrm{n}-1)$
(ii) $c\left(K_{n} \times K_{2}, 2 n-1\right)=2 n$
(iii) $c\left(\mathrm{~K}_{\mathrm{n}+1} \times \mathrm{K}_{2}, 2 \mathrm{n}\right)=\mathrm{c}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{2}, 2 \mathrm{n}-2\right)+\mathrm{c}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{2}, 2 \mathrm{n}-1\right)$

Proof:

(i) From equation (A)
$C(G, x)=\sum_{i=0}^{r} r C_{r-i} \frac{n!}{(n-r+i)!} x^{r n-r+i}$
Put $\mathrm{r}=2$ we get
R.H.S $=2 C_{2} \cdot \frac{n!}{(n-2)!} \cdot x^{2 n-2}+2 C_{1} \cdot \frac{n!}{(n-1)!} \cdot x^{2 n-1}+2 C_{0} \cdot \frac{n!}{n!} x^{2 n}$

$$
\begin{align*}
\therefore c\left(K_{n} \times K_{2}, 2 n-2\right) & =\frac{n!}{(n-2)!} \tag{*}\\
& =\frac{n(n-1)(n-2)!}{(n-2)!} \\
& =n(n-1)
\end{align*}
$$

(ii) From equation (A)

$$
\begin{aligned}
c\left(K_{n} \times K_{2}, 2 n-1\right) & =2 C_{1} \cdot \frac{n!}{(n-1)!} \\
& =2 \cdot \frac{n(n-1)!}{(n-1)!} \\
& =2 n
\end{aligned}
$$

(iii) From equation (A)

$$
\begin{aligned}
c\left(K_{n+1} \times K_{2}, x\right) & =\sum_{i=0}^{r} \frac{(n+1)!}{(n+1-r+i)!} x^{r(n+1)-r+i} \\
& =\sum_{i=0}^{r} \frac{(n+1)!}{(n+1-r+i)!} x^{r n+i}
\end{aligned}
$$

Put $r=2$
$\mathrm{c}\left(\mathrm{K}_{\mathrm{n}+1} \times \mathrm{K}_{2}, x\right)=\frac{(\mathrm{n}+1)!}{(\mathrm{n}-1)!} x^{2 \mathrm{n}}+\frac{(\mathrm{n}+1)!}{\mathrm{n}!} x^{2 \mathrm{n}+1}+\frac{(\mathrm{n}+1)!}{(\mathrm{n}+1)!} x^{2 \mathrm{n}+2}$

From (**)

$$
\begin{aligned}
c\left(K_{n+1} \times K_{n}, 2 n\right) & =\frac{(n+1)!}{(n-1)!} \\
& =\frac{(n+1)(n)(n-1)!}{(n-1)!} \\
& =n(n+1) \\
& =n(n+2-1) \\
& =n(n-1)+2 n \\
& =C\left(K_{n} \times K_{2}, 2 n-2\right)+C\left(K_{n} \times K_{2}, 2 n\right) .
\end{aligned}
$$

Theorem 2.4: The vertex cover polynomial $x^{\mathrm{r}-\mathrm{r} \mathrm{n}}\left[\mathrm{C}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{r}}, x\right)\right]$ is log-concave.
Proof: By (A), C(G, $x)=\sum_{i=0}^{r} r_{r-i} \frac{n!}{(n-r+i)!} x^{r n-r+i}$
We prove this result on induction.
When $\mathrm{r}=2$ and $\mathrm{i}=0,1,2$
We have to prove

$$
\begin{align*}
{\left[c \left(K_{n}\right.\right.} & \left.\left.\times K_{2}, r n-r+1\right)\right]^{2} \geq c\left[K_{n} \times K_{2}, r n-r\right] \times c\left[K_{n} \times K_{2}, r n-r+2\right] \\
\text { R.H.S } & =c\left[K_{n} \times K_{2}, r n-r\right] \times c\left[K_{n} \times K_{2}, r n-r+2\right] \\
& =r C_{r} \frac{n!}{(n-r)!} r C_{r-2} \frac{n!}{(n-r+2)!} \\
& =\frac{n!}{(n-2)!} \cdot \frac{n!}{n!} \quad[\square r=2] \\
& =n(n-1) \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { L.H.S }=\left[c\left(K_{n} \times K_{2}, r n-r+1\right)\right]^{2}=\left[\mathrm{rC}_{r-1} \frac{n!}{(n-r+1)!}\right]^{2} \\
& =\left[r \cdot \frac{n!}{(n-1)!}\right]^{2} \quad[\square r=2] \\
& \begin{array}{l}
=(r n)^{2} \\
=r^{2} n^{2}
\end{array} \tag{2}
\end{align*}
$$

(2) $/(1) \Rightarrow \frac{\left[c\left(K_{n} \times K_{n}, r n-r+1\right)\right]^{2}}{c\left(K_{n} \times K_{n}, r n-r\right)\left(c\left(K_{n} \times K_{2}\right), r n-r+2\right)}=\frac{r^{2} n^{2}}{n(n-1)}$ for every $n>1$

Therefore, $\left[c\left(K_{n} \times K_{n}, r n-r+1\right)\right]^{2} \geq\left[c\left(K_{n} \times K_{n}, r n-r\right) . c\left(K_{n} \times K_{2}, r n-r+2\right)\right.$
Assume the result is true for all $\mathrm{r}<\mathrm{n}$ and prove $\mathrm{r}=\mathrm{n}$.
Case-(i): $\mathrm{r}=\mathrm{n}$; $\mathrm{i}=0,1,2$
We have to prove

$$
\begin{align*}
{\left[c \left(K_{n}\right.\right.} & \left.\left.\times K_{n}, n^{2}-n+1\right)\right]^{2} \geq c\left(K_{n} \times K_{n}, n^{2}-n\right) \cdot c\left(K_{n} \times K_{n}, n^{2}-n+2\right) \\
\text { R.H.S } & =c\left(K_{n} \times K_{n}, n^{2}-n\right) \cdot c\left(K_{n} \times K_{n}, n^{2}-n+2\right) \\
& =n C_{n} \cdot \frac{n!}{0!} \cdot n C_{n-2} \frac{n!}{2!} \\
& =n!\cdot n C_{2} \cdot \frac{n!}{2!} \tag{3}
\end{align*}
$$

$$
\begin{align*}
\text { L.H.S. } & =\left[\mathrm{c}\left(\mathrm{~K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{n}}, \mathrm{n}^{2}-\mathrm{n}+1\right)\right]^{2}=\left[\mathrm{nC}_{\mathrm{n}-1} \frac{\mathrm{n}!}{1!}\right]^{2} \\
& =\mathrm{n}^{2} .(\mathrm{n}!)^{2} \tag{4}
\end{align*}
$$

(4) $/(3) \Rightarrow \frac{n^{2}(n!)^{2}}{n!n C_{2} n!} \cdot 2!=\frac{2!n^{2} 2!}{n(n-1)}$

$$
=\frac{4 n}{n-1}>1 \text { for all } n>1
$$

$$
\Rightarrow\left[c\left(K_{n} \times K_{n}, n^{2}-n+1\right)\right]^{2} \geq c\left(K_{n} \times K_{n}, n^{2}-n\right) \cdot c\left(K_{n} \times K_{n}, n^{2}-n+2\right)
$$

Assume the result is true for $\mathrm{i}<\mathrm{k}$ and prove for $\mathrm{i}=\mathrm{k}$
That is for prove,

$$
\begin{align*}
{\left[c \left(K_{n}\right.\right.} & \left.\left.\times K, n^{2}-n+k\right)\right]^{2} \geq c\left(K_{n} \times K_{n}, n^{2}-n+k-1\right) \cdot c\left(K_{n} \times K_{n}, n^{2}-n+k+1\right) \\
\text { R.H.S } & =c\left(K_{n} \times K_{n}, n^{2}-n+k-1\right) \cdot c\left(K_{n} \times K_{n}, n^{2}-n+k+1\right) \\
& =n C_{n-(k-1)} \frac{n!}{(k-1)!} \cdot n C_{n-(k+1)} \frac{n!}{(k+1)!} \text { where } k+1 \leq n . \\
& =n C_{n-(k-1)} \frac{n!}{(k-1)!} \cdot n C_{n-(k+1)} \frac{n!}{(k+1)!} \\
& =\left\{n C_{k-1} \cdot n(n-1) \ldots(n-k+2)\right\}\left\{n_{k+1} \cdot n(n-1) \ldots(n-k)\right\} \tag{5}
\end{align*}
$$

$$
\text { L.H.S. }=\left[c\left(K_{n} \times K_{n}, n^{2}-n+k\right)\right]^{2}=\left[n C_{n-k} \frac{n!}{k!}\right]^{2}
$$

$$
\begin{equation*}
=\left[\mathrm{nC}_{\mathrm{k}} \cdot \mathrm{n}(\mathrm{n}-1) \cdot(\mathrm{n}-\mathrm{k}+1)\right]^{2} \tag{6}
\end{equation*}
$$

(6) / (5) $\Rightarrow \frac{\left[c\left(K_{n} \times K_{n}, n^{2}-n+k\right)\right]^{2}}{c\left(K_{n} \times K_{n}, n^{2}-n+k-1\right) c\left(K_{n} \times K_{n}, n^{2}-n+k+1\right)}$

That is
$\Rightarrow\left[\mathrm{c}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{n}}, \mathrm{n}^{2}-\mathrm{n}+\mathrm{k}\right)\right]^{2} \geq \mathrm{c}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{n}}, \mathrm{n}^{2}-\mathrm{n}+\mathrm{k}-1\right) . \mathrm{c}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{n}}, \mathrm{n}^{2}-\mathrm{n}+\mathrm{k}+1\right)$
The result is true for all i.
Therefore, $x^{\mathrm{r}-\mathrm{rn}}\left[\mathrm{C}\left(\mathrm{K}_{\mathrm{n}} \times \mathrm{K}_{\mathrm{n}}, x\right)\right]$ is log-concave.
Hence the proof.

$$
\begin{aligned}
& =\frac{\left[\mathrm{nC}_{k} \cdot n(n-1) \ldots(n-k+1)\right]^{2}}{\left\{\mathrm{nC}_{\mathrm{k}-1} \cdot n(\mathrm{n}-1) \ldots(\mathrm{n}-\mathrm{k}+2)\right\} \cdot\left\{\mathrm{nC}_{\mathrm{k}+1} \cdot \mathrm{n}(\mathrm{n}-1) \ldots(\mathrm{n}-\mathrm{k})\right\}} \\
& =\frac{n C_{k} \cdot n(n-1) \ldots(n-k+1) \cdot n C_{k} n(n-1) \ldots(n-k+1)}{n C_{k-1} \cdot n(n-1) \ldots(n-k+2) \cdot n C_{k+2} \cdot n(n-1) \ldots(n-k)} \\
& =\frac{\mathrm{nC}_{\mathrm{k}} \cdot n(\mathrm{n}-\mathrm{k}+1)}{\mathrm{nC}_{\mathrm{k}-1}} \times \frac{\mathrm{nC}_{\mathrm{k}}}{\mathrm{nC}_{\mathrm{k}+1}(\mathrm{n}-\mathrm{k})} \\
& =\frac{\left(\mathrm{nC}_{\mathrm{k}}\right)^{2}}{\mathrm{nC}_{\mathrm{k}-1} . \mathrm{nC}_{\mathrm{k}+1}} \times\left(\frac{\mathrm{n}-\mathrm{k}+1}{\mathrm{n}-\mathrm{k}}\right) \geq 1 \text { for every } \mathrm{n}>\mathrm{k} \text {. }
\end{aligned}
$$

REFERENCES

1. Alikhani. S and Peng. Y.H. Introduction to Domination Polynomial of a Graph. Ar.Xiv:09052241v1[math.co] 14 May 2009.
2. Alikhani. S and Peng. Y.H. Domination Sets and Domination polynomials of cycles. Global Journal of Pure and Applied Mathematics, Vol. 4, No. 2, 2008.
3. Dong. F.M, Hendy M.D, Teo K.L. Little. C.H.C. The vertex - cover polynomial of a graph, Discrete Mathematics 250 (2002) 71-78.
4. Douglas B. West, Introduction to Graph Theory.
5. Frucht. R and Harary. F, Corona of two graphs, A equations. Math. 4 (1970), 322-324.
6. Gary Chartrand and Ping Zhang; Introduction to Graph Theory.
7. A. Vijayan, B. Stephen John, On Vertex-Cover Polynomials on some standard graphs, Global Journal of Mathematical Sciences: Theory and Practicals, 2012, ISSN No. 0974 - 3200, Volume 4, Number 2, pp 177-193.
8. A. Vijayan, B. Stephen John On the Coefficient of Vertex-Cover Polynomials of Paths, International Journal of Mathematical Sciences and Applications, 2012, ISSN, No. 2230 - 9888, Volume 2, Number 2, pp 509-516.
9. A. Vijayan, B. Stephen John On the Coefficients of Vertex-Cover Polynomials of Cycles, Advantages and Applications in Discrete Mathematics, 2012, Volume 10, Number 1, 2012, pp 23-38.
10. A. Vijayan, B. Stephen John On the Coefficient of Vertex-Cover Polynomials of Wheels, Journal of Computer and Mathematical Sciences, 2012, ISSN 0976 - 5727, Volume 3, Number 2, pp 145-158.
11. A. Vijayan, B. Stephen John On the Vertex-Cover Polynomials of Gear Graphs, Journal of Computer and Mathematical Sciences, 2012, ISSN 0976 - 5727, Volume 3, Number 2, pp 197-205.
12. B.Stephen John, A. Vijayan, Vertex Cover Polynomial of Generalized Wheel International Journal Macthematical Archieve 5(8), 2014, 146-150, ISSN 2229-5046.
13. B. Stephen John, A. Vijayan, Vertex Cover Polynomial of $K_{n} \times K_{2}$ International Journal of Macthematics and Computer Research Volume 2 issue 10 October 2014, Page no 670-673 ISSN 2320-7167.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

[^0]: Corresponding Author: B. Stephen John*1
 Associate Professor, Department of Methematics,
 Annai Velankanni College, Tholayavattom, Kanyakumari District, Tamil Nadu, India-629157.

