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ABSTRACT 
The vertex cover Polynomial of a graph G of order n has been already introduced in [3]. It is defined as the 

polynomial, C (G, i) = ( )
|v (G)|

i = β(G)
,  ic G i xΣ , where c (G, i) is the number of vertex covering sets of G of size i and β(G) is 

the  covering number of G.  In this paper, we derived a formula for finding the vertex cover polynomial of  Kn × Kr. 
Aslo we proved that xr - r n  [C(Kn × Kr, x] is log concave. 
 
Key words: Vetex covering set, vertex covering number, vertex cover polynomial. 
 
 
1. INTRODUCTION  
 
Let G = (V, E) be a simple graph.  For any vertex v ∈ V, the open neighborhood of ν is the set N(v) = {u ∈ V/uv ∈ E} 
and the closed neighborhood of v is the set N[v] = N(v)∪{v}. For a set S ⊂V, the open neighborhood of S is             
N(S) = 

v  S∈


N(v) and the closed neighborhood of S is  N[S] = N (S) ∪S.  A set S⊂V is a vertex covering of G if every 

edge uvϵ E is adjacent to at least one vertex in S.  The vertex covering number β(G) is the minimum cardinality of the 
vertex covering sets in G.  A vertex covering set with cardinality β(G) is called a β - set.  Let  C (G , i)  be the family of 

vertex covering sets of G with cardinality  i  and let  c(G , i) = |C(G, i) |.  The polynomial,  C(G, x) = ( )
|v (G)|

i = β(G)
,  ,ic G i xΣ  is 

defined as the vertex cover polynomial of G.  In [3], many properties of the vertex cover polynomials have been studied. 
 
Theorem 2.1: The vertex cover polynomial of   K n × Kr   is  

C(K n × K r , x) = 
r

r n r + i
r  i

i = 0

n!rC   
i!

− 
 −∑ x . 
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Proof: 

 
Figure: 1 

 
Let the vertices of G = Kn × Kr are denoted by 

{v11, v12, v13, . . . , v1n, v21, v22, . . . , v2n ,, . . ., vr1, vr2, . . . , vrn} 
 
Now the vertices of G can be partitioned into r sets are denoted by S1, S2,…,S r  where 
 S1 = {v11, v12, v13, . . . , v1n} 
 S2 = {v21, v22, v23, . . . , v2n} 
 S3 = {v31, v32, v33, . . . , v3n} 
 . . . . 
 . . . . 
 . . . . 
 Sr = {vr1, vr2, vr3, . . . , vr n} 
 
Now each sub graph Hi of G consists the vertices of Si, i = 1, . . . .r  is complete sub graph with n-vertices. That is the 
graph G contains n complete sub graphs Qi, i =1,… , n  whose vertices are 
 Q1 = {v11, v21, v31, . . . , vr1} 
 Q2 = {v12, v22, v32, . . . , vr2} 
 Q3 = {v13, v23, v33, . . . , vr3} 
 . . . . 
 . . . . 
 . . . . 
 Qn = {vin, v2n, v3n, . . . , vr n} 
 
Since each sub graph of G containing the vertices of Si are complete, the maximum independent set of G with 
cardinality of r elements are as follows. Let us take the element v11 ∈ S1, each element {v2j}, j = 2, 3, . . . , n ∈ S2 are 
independent to element v11 ∈ S1. For the fixed element v11, n–1 chances to select one element from S2 which is 
independent to v11. Suppose we select v11 and v22 be the first two elements of our maximum independent set from S1 
and S2, the selected elements v11 ∈ S1 and v22 ∈ S2 are adjacent with v31 and v32 in S3 respectively. 
 
Since H3 is complete, the third element in our independent set from S3 which is independent to v11, v22 are other than the 
elements of v31, v32 ∈ S3. Therefore. n – 2 choices to select one element from S3 which are independent to v11 and v22. 
Similarly, the number of choices to select independent sets to the fixed vertex v11∈S1 are                                                    

 (n – 1) (n – 2) (n – 3) . . . (n − r 1− ) . 
 
Therefore, for all the elements of S1, the number of maximum independent sets with cardinality r are n (n – 1) (n – 2) . . 
. (n − r 1− ). 
 
It is equal to the number of minimum covering sets with cardinality  r n – r. 
 
Therefore, 

c(G,  r n – r) = n(n – 1) (n – 2) . . . (n − 1r − ). 
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To find the number of independent sets with cardinality r – 1, since each sub graph  Gi, i = 1, . . . , r is complete, we can 
choose independent set containing  r – 1 elements from any  r – 1 sub graph of Gi, i = 1, 2, . . . , r. From r – 1 sub graphs 
Gi of G can be chosen in rCr − 1 ways. Let  S1, S2, . . . , Sr-1 be  the  r – 1  sub graphs of G, then a fixed vertex v1i ∈ S1,          
i = 1, ..., n   the vertices v2j ∈ S2, j = 1, . . . , n; i ≠ j are independent v1i ∈ S1. 
 
Similarly for the fixed vertices v1i∈S1 and v2j∈S2, we can choose v3k∈S3, i ≠ j ≠ k; k =1, 2, . . . ,n which are independent 
to both  v1i ∈ S1 and v2j ∈ S2 proceeding this way (n – 1) (n – 2) (n – 3) . . . (n - r 2− ) choices to select an independent 
set, of the fixed vertex v1i ∈ S1 . Therefore, for all vertices v1i ∈ S1, the number of choices are 

n( n – 1 ) (n – 2) . . . (n - 2r − ). 
 
Therefore, the total number of independent sets with cardinality 

 r –1 are     rCr − 1 . n(n – 1) (n – 2) . . . (n − 2r − ). 
 
Therefore, the covering sets with cardinality r n – (r – 1) are 

c(G, r n − r 1− ) = rCr – 1 . n . (n – 1) (n – 2) . . . (n − 2r − ) 
 
The same procedure for the number of independent sets with cardinality r – 2  is, among r sets we can select  r – 2  sets 
in rCr-2 ways and for a fixed element in one set, independent sets with cardinality   r – 2  are  (n – 1) (n – 2) (n – 3) . . . 

(n − r 3− ). 
 
Therefore, for all n elements to a fixed set Si the number of independent set with cardinality r – 2 are  

(n – 1) (n – 2) (n – 3) . . . (n − 3r − ) 
 
Therefore, the total number of independent sets with cardinality (r – 2) of G is same as the covering sets with 
cardinality r n − 2r − . 
 
That is, c(G ,  r n − 2r − ) = rC r − 2 . n(n – 1) (n – 2) . . . (n - 2r − ) 
 
Similarly, 

c(G ,  r n − 3r − ) = rCr − 3 . n(n – 1) (n – 2) . . . (n − 4r − ) 
. . . 
. . . 
. . . 

c(G ,  r n − (r − 2r − )) = r  r  2rC − −   .  n(n – 1) 

c(G ,  r n − (r − 1r − )) = r  r  1rC − −  . n   and 
c(G ,  r n – r + r) = rC r – r. 

 
Therefore, 
 c(G ,  r n – r) = n(n – 1) (n− 2) . . . (n - 1r − ) 
 c(G ,  r n – r + 1) = rCr – 1  . n(n – 1) (n – 2 ) . . . (n - 2r − ) 

 c(G ,  r n – r + 2) = rCr – 2  . n(n – 1) (n – 2 ) . . . (n - 3r − ) 

 c(G ,  r n – r + 3) = rCr – 3  . n(n – 1) (n – 2 ) . . . (n − 4r − ) 
  . . . 
  . . . 
  . . . 
 c(G ,  r n – 2) = rC2   n(n – 1) 
 c(G ,  r n – 1) = rC1 n 
 c(G ,  r n ) = rC0 . nC0 
 
Therefore the vertex cover polynomial 

C(G, x)  =  n(n – 1) (n – 2) . . . (n - 1r −  ) x r n – r     

  +   rCr – 1 n(n – 1) (n – 2) . . . (n - 2r − ) x r n – r +1 

   + rCr – 2  n(n – 1) (n – 2) . . . (n - 3r − ) x r n – r +2   

       + rCr – 3  n(n – 1) (n – 2) . . . (n - 4r −   ) x r n – r +3 + . . . + 
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         + r  r  2rC − −  .n (n – 1) xr n – (r − r 2− ) + r  r  1rC − −  .n  x r n – (r− r 1− )  

           +rCr − r nCo.xr n. 

C (G, x) = 
r

r n  r + i
r  i

i = 0

n!rC  
(n r+i)!

x −
− −∑                                                    (A) 

           
Corollary 2.2: The vertex cover polynomial of Kn × Kn is  

C (K n × K n, x) = 
2n

i = 0

n  n+i
n  i

n!nC   
i!

x −
−∑  

 
Proof: Put  r = n  in equation (A)  we get 

C (K n × K n, x) =
2n

i

n  n + i
n  i

 = 0

n!nC
i!

x −
−∑      

 
Theorem 2.3: The vertex cover polynomial of Kn × K2 satisfies the following identities 

(i) c(Kn × K2,  2n – 2) = n(n − 1)  
(ii) c(Kn × K2,  2n – 1) = 2n  
(iii) c(Kn + 1 × K2,  2n) = c(Kn × K2,  2n – 2) + c(Kn × K2,  2n – 1) 

 
Proof: 

(i) From equation (A) 

C (G, x) = r n  r + i
r

r  i
i = 0

n!rC
(n r+i)!

x −
− −∑   

Put   r = 2   we get  

R.H.S = 2n  2 2n  1 2n 
2 1 0

n! n! n!2C  .  .  +  2C  .  .  + 2C  . 
(n  2)! (n  1)! n!

x x x− −

− −
      

                (*) 

∴ c(Kn  × K2,  2n – 2)  =
n!  

(n 2)!−
 

=
n(n 1) (n 2)!  

(n 2)!
− −

−
 

= n(n − 1) 
 

(ii) From equation (A) 

c(Kn  × K2,  2n – 1) = 2C1.
n!  

(n 1)!−
  

= 2.
n(n 1) !  
(n 1)!

−
−

  

= 2n 
 

(iii) From equation (A) 

c(Kn + 1  × K2,  x) = 
i = 0

r
r(n + 1)  r + i(n + 1)!   

(n + 1  r + i)!
−

−∑ x  

                           = r n + i

i = 0

r (n + 1)!   
(n + 1  r + i)!−∑ x  

 
Put   r = 2 

c(Kn + 1 × K2,  x)  = 2n 2n + 1(n + 1)! (n + 1)!  +   + 
(n  1)! n!−

x x  2n+2(n + 1)!     
(n + 1)!

x                                     (**) 
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From (**) 

c(Kn + 1  × Kn , 2n)  = 
(n+1)!
(n 1)!−

 

                               =
(n+1) (n) (n 1) !

(n 1)!
−

−
 

                               = n (n + 1) 
                               = n (n + 2 − 1) 
                               = n (n − 1) + 2n 
                               = C(Kn × K2,  2n – 2 )   +  C(Kn × K2 ,  2n) . 

             
Theorem 2.4: The vertex cover polynomial x r – r n [C(K n × K r ,  x)] is log-concave. 
 

Proof: By (A), C(G, x) =
r

r n r + i
r i

i = 0

n! rC   
(n r+i)!

x − 
− −∑  

 
We prove this result on induction. 
 
When   r = 2   and  i =  0, 1, 2 
 
We have to prove 

[c(Kn × K2, r n – r +1)]2  ≥  c[Kn × K2, r n – r ] × c[Kn × K2, r n – r +2] 

 
R.H.S = c[K n × K2 ,  r n – r ] × c[K n × K 2, r n – r +2]  

= rCr 
n!

(n  r)!−
rCr - 2  

n!   
(n  r +2)!−

 

= 
n ! n!.

(n  2)! n!−
   [� r = 2] 

=  n(n – 1)                                                                                                       (1) 

L.H.S = [c(K n × K 2, r n – r +1)]2  = r 1

2
n!rC    

(n  r + 1)!−

 
 − 

 

               = 
2

n!r .   
(n  1)!

 
 − 

                 [� r = 2] 

               = (r n)2 

                = r2 n2                                   (2) 
 

 (2) / (1)  ⇒ n n

n n n 2

2[c(K  K , r n  r +1)]   
c(K    K , r n  r) (c(K    K ) , r n  r +2)

× −
× − × −

  =  
2 2r  n  

n(n  1)−
for every n >1 

 
Therefore,  [c(Kn × Kn, r n – r +1)]2 ≥ [c(Kn × Kn, r n – r ) . c(Kn × K2, r n – r +2 ) 
 
Assume the result is true for all r < n  and prove  r = n. 
 
Case-(i): r = n;  i = 0, 1, 2  
 
We have to prove 

[c(K n × K n , n2 – n +1)]2  ≥  c(K n × K n , n2 – n ) . c(K n × K n , n2 – n +2 ) 
 
R.H.S = c(Kn × Kn , n2 – n ) . c(Kn × Kn, n2 – n +2 ) 

= nCn  . 
n!
0!

 . nCn – 2  
n!
2!

 

= n! . nC2 . 
n!
2!

                                                                        (3) 
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L.H.S. = [c(Kn × Kn, n2 – n +1)]2  = n-1

2n!nC
1!

 
  

 

= n2. (n!)2                                                                                                                      (4) 
 

(4) / (3) ⇒    
2 2

2

n (n!)  . 2!
n! nC  n!

 = 
22! n  2!  

n(n  1)−
 

                                         = 
4n

n - 1
  >1 for all    n >1 

 
⇒ [c(Kn × Kn , n2 – n +1)]2  ≥  c(Kn × Kn , n2 – n ) . c(Kn × Kn , n2 – n  + 2 ) 

 
Assume the result is true for i < k and prove for i = k 
 
That is for prove, 

[c(Kn × K , n2 – n +k)]2  ≥  c(Kn × Kn , n2 – n + k-1 ) . c(Kn × Kn , n2 – n + k + 1 ) 
 

R.H.S = c(Kn × Kn , n2 – n +k-1 ) . c(Kn × Kn , n2 – n +k+1 ) 

= nCn – (k – 1) 
n !

(k 1)!−
.  nCn – (k+ 1) 

n !  
(k+1)!

 where   k + 1 ≤ n. 

= nCn – (k – 1) 
n !

(k 1)!−
 .  nCn – (k+ 1) 

n !  
(k+1)!

 

= {nCk-1 . n(n – 1) . . . (n – k+2)} {nCk+1 . n(n-1) . . . (n – k)}                                                           (5) 
 

L.H.S. = [c(K n × K n , n2 – n + k)]2  = n  k

2n!nC
k!−

 
  

 

            = [nCk . n(n – 1) . (n – k + 1)]2                                                (6) 
 

(6) / (5)  ⇒ 
2

n n
2 2

n n n n

2[c(K  K , n n +k)]   
c(K  K , n n+k 1) c(K K , n n+k+1)

× −
× − − × −

 

= 
2

k

k  1 k + 1

[nC  .  n(n 1) . . . (n k+1)]  
{nC  . n(n 1) . . . (n-k+2)} . {nC  . n(n 1) . . . (n k)} −

− −
− − −

 

= k k

k 1 k+2

nC . n(n 1)...(n k+1).nC n(n 1) . . . (n k+1) 
nC .n(n 1)...(n k+2).nC .n(n 1) . . . (n k)−

− − − −
− − − −

 

= k k

k 1 k+1

nC . n(n k+1) nC   
nC  nC (n k)−

−
×

−
 

= 
( )2

k

k 1 k+1

nC n k +1
nC . nC  n k−

− × − 
 ≥ 1  for every n > k. 

 
That is  
⇒ [c(K n × K n , n2 – n + k)]2  ≥  c(K n × K n , n2 – n + k – 1) . c(K n × K n , n2 – n + k + 1) 
 
The result is true for all   i. 
 
Therefore,   x r – r n [C(K n × K n , x)] is log-concave. 
 
Hence the proof. 
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