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ABSTRACT
The vertex cover Polynomial of a graph G of order n has been already introduced in [3]. It is defined as the
Y ©] .
polynomial, C (G, i) = 2 C(G, i)XI , where ¢ (G, i) is the number of vertex covering sets of G of size i and S(G) is
i=B(G)

the covering number of G. In this paper, we derived a formula for finding the vertex cover polynomial of K, x K.
Aslo we proved that X" "" [C(K,, x K, X] is log concave.
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1. INTRODUCTION

Let G = (V, E) be a simple graph. For any vertex v € V, the open neighborhood of v is the set N(v) = {u € V/uv € E}
and the closed neighborhood of v isthe set N[v] = N(v)u{v}. For a set S <V, the open neighborhood of S is

N(S) = U N(v) and the closed neighborhood of S is N[S] =N (S) US. A set ScV is a vertex covering of G if every
edge uv.\sIEESis adjacent to at least one vertex in S. The vertex covering number 3(G) is the minimum cardinality of the
vertex covering sets in G. A vertex covering set with cardinality (G) is called a § - set. Let C (G, i) be the family of
vertex covering sets of G with cardinality i and let ¢(G, i) =|C(G, i) |. The polynomial, C(G, X) = lv§)| C(G, i)Xi, is
defined as the vertex cover polynomial of G. In [3], many properties of the vertex cover polynomialsI ;a[iis)been studied.

Theorem 2.1: The vertex cover polynomial of K, x K, is
I

n! i
C(KnxKpx)= Y 1C,_, = xtnoren
i=0 I!
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Let the vertices of G = K;, x K, are denoted by
{Vlll V121 V131 sy Vln: V211 V221 EC ,V2n,, Ceny Vrl: Vr2: ce 1VI'|"|}
Now the vertices of G can be partitioned into r sets are denoted by S;, S,,...,S ; where
S1={Vi1, Viz, Vaz, « + o, Van}
Sy = {Va1, Voo, Vg, + + .+, Von}
S3={Va1, Va2, Vag, . . ., Van}
Sr: {Vrl, Vi2s Vigy -2 oy Vi n}
Now each sub graph H; of G consists the vertices of S;, i =1, . .. .r is complete sub graph with n-vertices. That is the
graph G contains n complete sub graphs Q;, i =1,... , n whose vertices are
Q1={Va1, Vo1, Va1, + .+ -, Vi}
Q2={V12, V22, Vaz, . . ., Vi2}
Q3={Vi3, Vo3, Vaz, . . . , Via}
Qn: {Vini V2n: V3|"|i CEEREY Vrn}

Since each sub graph of G containing the vertices of S; are complete, the maximum independent set of G with
cardinality of r elements are as follows. Let us take the element v;; € S; each element {v5},j=2,3,...,n¢e S;are
independent to element vy; € S; For the fixed element vy;, n-1 chances to select one element from S, which is
independent to vy;. Suppose we select vy; and vy, be the first two elements of our maximum independent set from S;
and S, the selected elements vi; € S; and vy, € S, are adjacent with vs; and v, in S respectively.

Since Hs is complete, the third element in our independent set from Sz which is independent to vy, vy, are other than the
elements of vg, V3, € S3. Therefore. n — 2 choices to select one element from S; which are independent to v;; and vs,.
Similarly, the number of choices to select independent sets to the fixed vertex vi; €S, are

(h-1)(-2)(n=3)...(n-T—1).

Therefore, for all the elements of Sy, the number of maximum independent sets with cardinality raren (n—1) (n-2) ..
.(n-r-=1).

It is equal to the number of minimum covering sets with cardinality rn-r.

Therefore, L
G, rn=r=nn-1)(n=-2)...(n-r=1).
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To find the number of independent sets with cardinality r — 1, since each sub graph G;,i=1,...,riscomplete, we can
choose independent set containing r — 1 elements fromany r— 1 sub graph of G;,i=1,2,...,r. Fromr -1 sub graphs
G; of G can be chosen in rC,_; ways. Let S;, Sy, ..., S.1be the r—1 sub graphs of G, then a fixed vertex vy; € S;,
i=1,..n theverticesvye Sy, j=1,...,n;i=]areindependentvy; € S;.

Similarly for the fixed vertices vi;€S; and v,€S,, we can choose VaeSs, i # j # K; K=1, 2, ... ,n which are independent

to both v4; € Sy and vy € S, proceeding this way (n— 1) (n—2) (n—3) ... (n- r —2) choices to select an independent
set, of the fixed vertex vq; € S; . Therefore, for all vertices vy; € S;, the number of choices are

n(n-1)(n-=2)...(n-r—=2).

Therefore, the total number of independent sets with cardinality
r-lare rC,_,.nn-1)(n-2)...(n—r—2).

Therefore, the covering sets with cardinality r n — (r — 1) are

G rn—-r-1=rC_;.n.n-D)(n=-2)...(n-r—2)
The same procedure for the number of independent sets with cardinality r — 2 is, among r sets we can select r— 2 sets
in rC,, ways and for a fixed element in one set, independent sets with cardinality r—-2 are (h—-1)(nh-2) (n-3)...
(n-r=3).

Therefore, for all n elements to a fixed set S; the number of independent set with cardinality r — 2 are

(h-1)(-2)(n=3)...(n-r—3)

Therefore, the total number of independent sets with cardinality (r — 2) of G is same as the covering sets with

cardinalityrn— r—2.

That is, ¢(G, rn—ﬁ)ﬂcr_z.n(n—l) (n-2)...(n- E)

Similarly, L L
¢G, rn-r=3)=rC,_z.nn-1)(n-2)...(n-r—4)

c(G, rn—(r—m)): rC,_+— . n(n-1)

G, rn-(r-r-1)=rC, _~—5 .n and
c(G, rn=r+rn=rC,_.

Therefore,
c(G, rn—r):n(n—l)(n—2)...(n-m)
c(G, rn—r+1)=rCr_1.n(n—l)(n—2)...(n—E)
c(G, rn—r+2)=rCr_2.n(n—l)(n—Z)...(n—m)
c(G, rn—r+3):rCr_3.n(n—l)(n—2)...(n—m)

¢(G, rn-2)=rC, n(n-1)
¢(G, rn=1)=rCyn
¢(G, rn)=rCqy.nCy
Therefore the vertex cover polynomial
CG,x) =nn-1)(n-=2)...(n-r=1)x™""
+ 1C_inn-1)(n-2)...(n-r—=2)x" "
+1C_on(n=1)(n=2)...(n-r=3)x"""*

+1C_zn(n-1)(n-2)...(n-r—=4 )x" "3+ +
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+1Cr =5 .n (h-1)x"" "2 4 rC
+rC,_, nCo.X"".
. n! rn-r+i

x=Yrc ——
CE0= 2 1C

Corollary 2.2: The vertex cover polynomial of K, x K is

s nt 2.
CKyxKpx)= ¥ nC, . — x"—
( n X n ) IZO n-—i i!

Proof: Put r =n inequation (A) we get

2

C N e nsi
C(KnxKn,x)=ZnCn7in” !
— !

r-r-1

Theorem 2.3: The vertex cover polynomial of K;, x K; satisfies the following identities

(i) c(KyxKy 2n=2)=n(n-1)
(i) c(Kyx Ky 2n=1)=2n
(iii) c(Kh+1x Ky, 2n) =c(K, x Ky, 2n—=2) + ¢(K, x K3, 2n-1)

Proof:
(i) From equation (A)
L n!

cGn=SNrc . ——
©0= 2, C i e

Put r=2 we get

rn—r+i

n! n-2 4 o n!
(n - 2)!° - 1)
*)

n!
(n=2)!
_n(n-1) (n-2)!
 (n-2)!
=n(n-1)

RHS=2C, .

Le(Ky x Ky, 2n=-2) =

(ii) From equation (A)
n!
C(Kn x Ky, 2n-— 1) =2C;. m
s n(n-1) !
(n=1)!
=2n

(iii) From equation (A)

! n+1)! i
C(Kn+1 x Ky, X) = z ( ) X+ -—r+i

= (n+1 —r+1i)!
i (n+1)| Xrn+i

S (n+1 —r+i)!

Put r=2

C(Kn+1>< Ks, X) =
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n!
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From (**)
(n+1)!
(n=1)!
_(n+1) (n) (n-1) !
(n=1)!
=n(n+1)
=n(n+2-1)
=n(n-1)+2n
=C(Kn><K2, 2n—2) + C(KnXKz, Zn)

c(Knh+1 x Ky, 2n) =

Theorem 2.4: The vertex cover polynomial x "~"" [C(K , x K ;, X)] is log-concave.

n! ,i
Proof: By (A), C(G, X) = Z rc . ——— x'nr*i

~ T (n=r+i)!
We prove this result on induction.
When r=2 and i=0,1,2

We have to prove
[c(Kn x Ky, rn—r+1)]* > c[Knx Ky, rn=r]xc[Kyx Ky, rn—r+2]

RHS=c[K,xKy, rn=r]xc[K,xK,rn-r+2]

- nt . n!
_nt nl B
_MF [Or=2]
=n(n-1) o
2
LH.S=[c(K,x Ko rn—r+1)]? |:rC o r|+ 5 }
2
{r (n - 1)I } [Dr=2]
= rn2
=r’n? -
@1Q) = [c(K,x K, rn = r+DP? e

c(K, x K,rn—-r)(c(K, x K,),rn—r+2) B n(n — 1) foreveryn>1
Therefore, [c(Kn x Kq, rn—=r+1)]?>[c(Kyx Ko, rn=r).c(Kyx Ky rn—r+2)

Assume the result is true for all r <n and prove r =n.

Case-(i):r=n; i=0,1,2

We have to prove
[c(KoxKp,n?—n+D)]P? > ¢(K,xK,,n°=n).c(K,xK,,n"—n+2)

RH.S=c(K,x Ky, n?=n) . c(K,x Ky, " =n+2)

n! n!
=nC,.— .nC,_, —
ol 2!
nl
.nGC,. 2| 3)
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2
|
L.H.S. = [c(Kn x Ky, n2=n +1)]* = ‘:ncn-l &}

1!
=n? (n!)? 4)
2 2 2
@)/ @) - n“(n!) o1 - 2! n° 2!
n! nC, n! n(n — 1)

4n
= >] forall n>1
n-1

= [e(Ky x Ky, 2 =n+1)]? > ¢(K, x Ky, n?=n) . c(K, x Ky, n*=n +2)
Assume the result is true for i < k and prove for i =k

That is for prove,
[c(Knx K, n?=n+K)]* > c(Kyx Ky, nP=n+k-1).c(Kyx Ky, n?=n+k+1)

RH.S=c(K, x Ky, n?=n+k-1) . c(K, x Ky, n* = n +k+1)

n! nl
_nCn_(k_l) m nCn_(k+1) W where k+1<n.
nt nlt
=nCh_.1y ——— . NCy_(s1) ————
T e T e
={nCy1.n(n=1)...(n=k+2)} {nCys;.n(n-1) ... (n-Kk)} (5)

2
|
LHS. =[c(K,xK,, P =n+Kk)]? = |:nCn—k n}

k!
=[nCx.n(n-1). (n-k + 1) (6)
616 = [c(K, x K,, n®—n +K)T’
c(K,x K,, n?=n+k-1) ¢(K, xK_, n* —n+k+1)

[nC, . n(n-1) ... (n—k+1)]

“{nC, _,.n(n -1)...(n-k+2)} . {nC,,,.n(n-1)...(n—Kk)}
nC,.n(n-1)...(n-k+1).nC,n(n-1) . .. (n—k+1)
nC,,.n(n-1)...(n-k+2).nC,,.n(n-1) . . . (n—K)

_nC,.n(n—-k+1) y nC,

nC,, nC,.,(n—k)
(nC, )’ (n—k +lj
= X >1 foreveryn>k.
nC,,. nC,,, n—k

That is
=[e(Kox Ky, nP=n+ K] = o(Kyx Ky, n?=n+k=-1).¢(K,xK,,nP=n+k+1)

The result is true for all .
Therefore, x " ""[C(K ,x K, X)] is log-concave.

Hence the proof.
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