
International Journal of Mathematical Archive-8(9), 2017, 107-114 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 8(9), Sept. – 2017                                                                                                              107 

 
DIFFERENT TYPES OF MEASURES  

ON MEASURABLE SPACE AND THEIR INTER-RELATIONSHIP 
 

S. C. P. HALAKATTI*1 

1Department of Mathematics Karnatak University, Dharwad, India. 

 
SOUBHAGYA BADDI2 

2Research Scholar, Department of Mathematics, Karnatak University, Dharwad, India. 
 

(Received On: 29-07-17; Revised & Accepted On: 13-09-17) 
 

 
ABSTRACT 
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1. INTRODUCTION 

 
The mathematical notion of a measure is intended to represent concepts such as length, area, volume, mass, weight, 
electric charge, etc., in measuring the sizes of various structures / objects of the physical word. The objects to be 
measured are represented by subsets and a measure is an additive function of subsets. These are non-negative values 
attached to certain elementary figures such as intervals, rectangles, spheres or balls. When the objects are more abstract, 
then we assign the corresponding numerical values by approximating them, whenever possible with the above types of 
figures. More abstract structures appear in real problems. They are measured and assigned suitable numerical values. 
This leads to analysis of objects which are composed of elementary figures in the sense of using sums (unions), 
differences (intersections) and other operations. These ideas motivate an abstraction and use of set theoretical 
operations on them, to analyse new and abstract figures. A class of subsets can be measured to study their volumes, 
areas and their extensions for figures defined by various functions. Both measurable classes of subsets and functions 
depend on the measuring instrument for measuring length, area, volume, mass, density, etc., prescribed by the problem 
being investigated. Measure functions or measures will provide measures for the simplest figures with a certain 
additivity property. These measures are studied on measurable spaces. 
 
Measures are the generalizations of volume. Fundamental example is the Lebesgue measure on 𝑅𝑛. Measures are 
important because of their intrinsic geometrical significance and also allow us to define integrals [46][50][53][60]. 
 
2. HISTORICAL DEVELOPMENT  
 
In the end of the 19th century, E. Borel introduced a notion of measure on the real line and in 1898 he extended the 
notion of length of intervals to a measure called Borel measure on a wide class of subsets called Borel subsets on the 
real line. Lebesgue extended the definition of Borel measure and developed a theory of integration and differentiation. 
Since an open subset is the union of a disjoint sequence of intervals he defined the measure of an open subset as the 
sum of the lengths of these intervals. Since a closed subset is the complement of an open subset, he defined the measure 
of a closed subset as one minus the measure of its complement. Then he defined the outer measure of any subset as the 
infimum of the measures of open subsets containing it and the inner measure of the subset as the supremum of the 
measures of closed subsets contained in it. If the inner and outer measures of a set coincide, then the exact measure of 
subset is obtained. He extended Borel measure to the whole real line and in Euclidean spaces of higher dimensions. 
Then he defined the integral of a positive function on the real spaces. 
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In 1904, he turned his attention to differentiation. A statement holds almost everywhere if the set of points at which it 
does not hold has measure zero. He first proved that a monotone function, and hence the sum or difference of two 
monotone functions, is differentiable almost everywhere. Soon the field had explosive growth and wider applications of 
these ideas to other branches of mathematics. The need to construct measures is to solve problems arising in all fields 
within and outside mathematics. Construction of measure for some specific purpose frequently motivated by problems 
in another field. Therefore, methods for constructing measures are of great importance. Hausdorff developed the theory 
of measures called as Hausdorff measures. They play a significant role in differential geometry where line and surface 
integrals are frequently used. 
 
In 1910, Lebesgue extended the fundamental Theorem of calculus from the real line to Euclidean spaces of higher 
dimensions. In 1913 it was extended by J. Radon to other measures on Euclidean spaces and in 1915 M. Frechet 
replaced Euclidean space by any abstract space. 
 
In 1933, S. Bochner initiated the study of measures which assigns to each set a vector in Banach space instead of a 
number. Such measures are studied in physics and differential geometry where the Banach space is finite dimensional 
which is Euclidean space. 
 
In 1940, A. Haar has extended the theory and constructed a translation invariant measure called Haar measure on a 
metric group and then to any locally compact group. 
 
In 1940's and 1950's, the work of H. Witney and others have given rise to a field known as geometric measure theory. 
Its methods are more related to ideas in differential geometry like shape, holes, direction, orientation, etc [53][60].  
 
In 1958, V. S. Varadarajan [61] had discussed weak convergence of measures on separable metric spaces. Every purely 
non-atomic measure (Radon measure) defined on a 𝜎-compact space is extended to a measure on a countably compact 
spaces. In 1964, Kenneth A. Ross and Karl Stromberg [54] have studied Baire sets and Baire measures on 𝜎-compact, 
locally compact space in particular to all locally compact topological groups. 
 
In 1967, W. Moran [49] have examined how certain properties of completely regular spaces are preserved under 
mappings and products. Also studied the transformation of measures from one space to another by means of Baire 
measurable mappings on measure compact space and strongly measure-compact spaces. In 1969 and 1972, Chandra 
Gowrisankaran [23][24] have studied Quasi-Invariant Radon measures on Groups and a real valued Radon measures on 
Hausdorff topological group which is locally compact. In 1971, Peter Ganssler [22] have studied the compactness and 
sequentially compactness in spaces of measures. In 1975, Casper Goffman and George Pedrick [25] have given a proof 
that non-atomic Lebesgue-Stieltjes measure on n-dimensional space, for which open sets have positive measure, that is, 
homeomorphic with Lebesgue measure. 
 
Some authors have studied different types of measures on manifold. Based on Neumann-Oxtoby-Ulam Theorem [51] 
which states that given two good measures 𝜇 and  𝜗 on 𝑀𝑛, there exists a homeomorphism of a compact connected 
manifold 𝑀𝑛 such that ℎ∗𝜇 = 𝜗. In 1980, A. Fathi [15] have made a comprehensive study on topological and algebraic 
properties of groups of measure-preserving homeomorphisms of compact n-manifolds. In 2003, R. Berlanga [5] has 
extended this work to the non compact manifolds. In 2006, 2007 and 2010, Tatsuhiko Yagasaki [64][65][66][67] using 
R. Berlanga's results obtained results on topological properties of groups of Radon measure-preserving 
homeomorphisms of non compact 2-manifolds and Groups of measure-preserving homeomorphisms and volume-
preserving Diffeomorphisms of non compact manifolds and mass flow toward ends. In 2011, H. N. Mhaskar studied 
Marcinkiewicz-Zygmund measures on manifolds and Florian Stampfer studied on pull back of measures on 
Riemannian manifolds. 
 
In 2010, Stan Gudder [26] had discussed a generalization called finite quantum measure spaces and also discussed 
more general spaces called super-quantum measure spaces and he had presented some basic properties of a quantum 
measure space [27][28]. Compatibility of sets with respect to a quantum measure is studied and the centre of a quantum 
measure space is characterised in terms of signed product measures. Also, super-quantum measure space is introduced 
and shown that quantum measure is useful for computing and predicting elementary particle masses. In 2011, Sumati 
Surya [58] had discussed the extension of vector valued measures on finite time events to a measure over infinite time, 
or equivalently, covariant events. Fay Dower, Steven Johnston and Sumati Surya [57][58], had worked on the extension 
of the quantum measures to applications in physics and proposed an appropriate generalisation, the quantum cover, 
which in addition to being a cover in Quantum measure theory. In 2012, S. Gudder [27][28] had shown that quantum 
measures and integrals appear naturally in any 𝐿2 −Hilbert space. In 2013, Yongjian Xie-Aili Yang and Fang Ren [62] 
had studied on the properties of the super quantum measures. In 2014 and 2015, Yongjian Xie-Aili Yang [63] had 
studied Quantum measures on finite effect algebra with the Riez Decomposition properties and in 2015, Gregg Jaeger 
had studied measurement and fundamental process in Quantum.  
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In the next section, we discuss some of the concepts and results on different types of measure structures on measurable 
space. 
 
3. SOME RESULTS ON DIFFERENT TYPES OF MEASURES ON MEASURABLE SPACE 
 
We use the following basic concepts and results to construct different measure structures on measure manifold: 
 
Definition 3.1: 𝝈-algebra [46][53][59][60] 
A 𝜎-algebra Σ on a topological space (𝑅𝑛, 𝜏) is a collection of subsets of (𝑅𝑛,  )  such that, 

(i) ∅,𝑅𝑛 ∈ Σ, 
(ii) 𝐴 ∈ Σ, then 𝐴𝐶 ∈ Σ, 
(iii)  If 𝐴𝑖 ∈ Σ, for 𝑖 ∈ 𝑁, then ⋃ 𝐴𝑖∞

𝑖=1  ∈ Σ, ⋂ 𝐴𝑖∞
𝑖=1 ∈ Σ. 

       The triplet (𝑅𝑛, 𝜏, Σ)  is called a measurable space. 
 
Definition 3.2: 𝐆𝛅-set [46][53][59][60] 
A subset 𝐴 ⊆ 𝑅𝑛 is called 𝐺𝛿-set if it is the countable intersection of open sets. That is, 𝐴 = {⋂ 𝐴𝑖∞

𝑖=1 : 𝐴𝑖 ∈ 𝜏}. 
  
Definition 3.3: 𝑭𝝈-set [46][53][59][60] 
A subset 𝐸 ⊆ 𝑅𝑛 is called 𝐹𝜎-set if it is the countable union of closed sets. That is, = {⋃ 𝐸𝑖∞

𝑖=1  : 𝐸𝑖 ∈ 𝜏𝑐}. 
 
Definition 3.4: Borel 𝝈 -algebra [46][53][59][60] 
The Borel 𝜎 -algebra ℬ(𝑅𝑛) on (𝑅𝑛, 𝜏) is the smallest 𝝈 -algebra generated by the open sets belonging to 𝜏 such that 
ℬ(𝑅𝑛) = Σ(𝜏 (𝑅𝑛)). A set that belongs to the 𝝈 -algebra is called a Borel set. 
 
Definition 3.5: Measurable Topological Space [19][20] 
The space (𝑅𝑛, 𝜏, Σ) is called a measurable topological space if the space (𝑅𝑛, 𝜏) is a topological space equipped with 𝜎 
-algebra where the members of  𝜏 which belongs to 𝜎-algebra Σ are the Borel subsets in (𝑅𝑛, 𝜏, Σ). 
 
Definition 3.6: Measurable Hausdorff Space [19][20] 
The space (𝑅𝑛, 𝜏, Σ) is called a measurable Hausdorff space provided that if 𝑥 and 𝑦 are distinct members of (𝑅𝑛, 𝜏, Σ) 
then, ∃ disjoint Borel open subsets 𝐴 and 𝐵 such that 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.  
 
Definition 3.7: Measure Space [46][53][59][60] 
A measure 𝜇 on a measurable space (𝑅𝑛, 𝜏, Σ) is a function 𝜇 ∶ Σ ⟶  [0, ∞] such that, 

(i)   𝜇(∅) = 0, 
(ii) If {𝐴𝑖 ∈ Σ : 𝑖 ∈ 𝑁} is a countable disjoint collection of subsets in Σ, then  
      𝜇(⋃ 𝐴𝑖∞

𝑖=1 ) = ∑ 𝜇(𝐴𝑖)∞
𝑖=1    (𝜎-additivity property) 

Therefore the space (𝑅𝑛, 𝜏, Σ, 𝜇) is called a topological measure space. 
 
Definition 3.8: Compact Support of a function [46][53][59][60] 
Compact support of a function 𝑓 is the closure of the set {𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) ≠ 0}. It is denoted by suppf. 
 
Definition 3.9: Locally Finite Measure on (𝑹𝒏, 𝝉, 𝚺) [46][53][59][60] 
The measure 𝜇 is locally finite if every point 𝑥 of  (𝑅𝑛, 𝜏, Σ, 𝜇) has a neighbourhood 𝐴 of  𝑥 for which  𝜇(𝐴) < ∞. 
 
Definition 3.10: Inner Regular Measure on (𝑹𝒏, 𝝉, 𝚺)  [46][53][59][60] 
Let 𝜇 ∶ Σ ⟶  [0, ∞] be a measure on (𝑅𝑛, 𝜏, Σ). The measure 𝜇 is called inner regular if, for any Borel open set 𝐴, 
𝜇(𝐴) = sup{ 𝜇(𝐾𝑖): 𝑖 ∈ 𝐼; 𝐾𝑖  ⊆ 𝐴; 𝐾𝑖  compact}. 
 
Definition 3.11: Outer Regular Measure on (𝑹𝒏, 𝝉, 𝚺) [46][53][59][60] 
Let 𝜇 ∶ Σ ⟶  [0, ∞] be a measure on (𝑅𝑛, 𝜏, Σ). The measure 𝜇 is called outer regular if, for any Borel open set 𝐴,  
𝜇(𝐴) = inf{ 𝜇(𝑈𝑖) : 𝑖 ∈ 𝐼; 𝑈𝑖 ⊇ 𝐴; 𝑈𝑖  open}. 
 
Definition 3.12: Regular Measure on (𝑹𝒏, 𝝉, 𝚺) [46][53][59][60] 
A regular measure on (𝑅𝑛, 𝜏, Σ) is a measure 𝜇 for which every Borel subset can be approximated from above by an 
open measurable subsets and from below by a compact measurable subset, that is, a measure is called regular if it is 
outer regular and inner regular. 
 
Definition 3.13: Borel measure [46][53][59][60] 
A Borel measure on (𝑅𝑛, 𝜏, Σ) is a measure 𝜇 which is defined on ℬ(𝑅𝑛) and satisfies {∀ 𝐾 ⊂ 𝑅𝑛 compact: 𝜇(𝐾) < ∞}. 
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Definition 3.14: Radon Measure on (𝑹𝒏, 𝝉, 𝚺) [46][53][59][60] 
A Radon Measure  𝜇𝑅 on a measurable space (𝑅𝑛, 𝜏, Σ) is a positive Borel measure 𝜇𝑅 : ℬ ⟶  [0, ∞] which is finite on 
compact Borel subsets and is inner regular in the sense that for every Borel subsets  𝐴 ⊂ (𝑅𝑛, 𝜏, Σ) we have, 

(i) 𝜇𝑅(𝐴) = sup{ 𝜇𝑅(𝐾) : 𝐾 ⊆ 𝐴 ; 𝐾 ∈  𝒦},                                                                                 (1) 
where 𝒦 denote the family of all compact Borel subsets and  𝜇𝑅 is outer regular if for every 𝐴 ⊂ (𝑅𝑛, 𝜏 , Σ) 
we have,  

(ii) 𝜇𝑅(𝐴) = inf{ 𝜇𝑅(𝑂) : 𝑂 ⊇ 𝐴 ; 𝑂 ∈  𝒪},                                                                                                (2) 
where 𝒪 denote the family of all open Borel subsets. 

 
Example 3.1: Lebesgue measure on 𝑅𝑛 is a Radon measure. 
 
Definition 3.15: Locally compact topological Space [19][20] 
A topological space (𝑅𝑛, 𝜏) is locally compact if for all 𝑥 ∈  𝑅𝑛  there exists an open neighbourhood 𝑉 ⊂ 𝑅𝑛 of 𝑥 such 
that 𝑉 is compact. (Alternatively, this is equivalent to requiring that to each 𝑥 ∈  𝑅𝑛 there exists a compact 
neighborhood 𝑁𝑥 of 𝑥. 
 
Definition 3.16: Locally compact Hausdorff topological space [19][20] 
A topological space is locally compact Hausdorff, if for all 𝑝 ≠ 𝑞, ∃ open neighbourhoods 𝐴 and 𝐵 belonging to (𝑅𝑛, 
𝜏), 𝐴 ⊂ 𝐴̅ and 𝐵 ⊂ 𝐵�  where 𝐴̅ and 𝐵�are compact subsets belonging to (𝑅𝑛, 𝜏), such that 𝑝 ∈  𝐴̅, 𝑞 ∈  𝐵�  and 𝐴̅ ∩ 𝐵 � = ∅. 
 
Definition 3.17: Locally compact Hausdorff regular measurable space [35][36] 
A topological space is locally compact Hausdorff regular measurable space, if for all 𝑝 ∈ 𝐴̅, ∃ open Borel 
neighbourhoods 𝐴 and 𝐵 belonging to (𝑅𝑛, 𝜏, Σ) such that 𝐴 ⊂ 𝐴̅ and 𝐵 ⊂ 𝐵�  where 𝐴̅ and 𝐵�  are compact subsets 
belonging to (𝑅𝑛, 𝜏, Σ), and ∃  closed Borel subset 𝐹 ⊂ 𝐵�  such that 𝐴̅ ∩ 𝐵 � = ∅. 
 
Definition 3.18: Measurable Normal space (e-Normal)[35][36][40] 
A measure space (𝑅𝑛, 𝜏, Σ, 𝜇) is said to be e-normal measure space (or e-normal) if each pair of disjoint 𝐹𝜎 − 𝑠𝑒𝑡𝑠 𝐴 
and 𝐵 in (𝑅𝑛, 𝜏, Σ, 𝜇), ∃ a pair of disjoint 𝐺𝛿 − 𝑠𝑒𝑡𝑠 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈, 𝐵 ⊂ 𝑉. 
 
Proposition 3.1: [19][20] 
Suppose that (𝑅𝑛, 𝜏) is a Hausdorff topological space, 𝐾 ⊂ (𝑅𝑛 , 𝜏) and 𝑥 ∈ 𝐾𝑐. Then there exists 𝑈,𝑉 ∈ (𝑅𝑛 , 𝜏) such 
that 𝑈 ∩ 𝑉 = ∅, 𝑥 ∈ 𝑈 and 𝐾 ⊂ 𝑉. In particular, 𝐾 is closed (so compact subsets of Hausdorff topological spaces are 
closed). More generally, if 𝐾and 𝐹 are two disjoint compact subsets of (𝑅𝑛 , 𝜏), there exists disjoint open sets          
𝑈,𝑉 ∈ (𝑅𝑛, 𝜏) such that 𝐾 ⊂ 𝑉 and 𝐹 ⊂ 𝑈. 
 
Definition 3.19: Measurable Functions [46][53][59][60] 
Let (𝑅𝑛 , 𝜏1, Σ1) and (𝑅𝑚, 𝜏2, Σ2) be measurable spaces. A map 𝐹 ∶  (𝑅𝑛 , 𝜏1, Σ1) ⟶ (𝑅𝑚, 𝜏2, Σ2) is measurable if for all 
𝐵 ∈ Σ2, the set 𝐹−1(𝐵) ∈ Σ1. 
 
Definition 3.20: Invariant Measure [46][53][59][60] 
Let (𝑋, Σ) be a measurable space and let 𝑓 be a measurable function from 𝑋 to itself. A measure 𝜇 on (𝑋, Σ) is said to 
be invariant under 𝑓 if, for every measurable set 𝐴 in Σ, 𝜇�𝑓−1(𝐴)� = 𝜇(𝐴). 
 
Theorem 3.1: [46][53][59][60] 
The composition of two measurable functions is measurable. 
 
Proposition 3.2: [19][20] 
Let (𝑅𝑛 , 𝜏1, Σ1, 𝜇1) be a complete locally determined measure space, (𝑅𝑚, 𝜏2, Σ2, 𝜇2) be a measure space and                
𝑓 ∶  𝑅𝑛 ⟶ 𝑅𝑚 be a function. Suppose that 𝐾 ⊆ Σ2 such that, 

(i)    𝜇2 is inner regular with respect to 𝒦, 
(ii)   𝑓−1(𝐾) ∈ Σ1 and 𝜇1𝑓−1(𝐾) = 𝜇2(𝐾) for every 𝐾 ∈ 𝒦; 
(iii) whenever 𝐸 ∈ Σ1 and 𝜇(𝐸) > 0 there is a  𝐾 ∈ 𝒦 such that 𝜇2(𝐾) < ∞ and 𝜇1�𝐸 ∩ 𝑓−1(𝐾)� > 0. 
      Then 𝑓 is inverse-measure-preserving for 𝜇1 and 𝜇2. 

 
Definition 3.21: Lebesgue measure [46][53][59][60] 
Let (𝑅𝑛 , 𝜏, Σ) be a measurable space. There is the Lebesgue measure '𝜆′ which assigns to the rectangle its usual              
n-dimensional volume: 

𝜆([𝑎1, 𝑏1] × … × [𝑎𝑛 , 𝑏𝑛]) = (𝑏1 − 𝑎1) … (𝑏𝑛 − 𝑎𝑛) 
 
This measure '𝜆′ should also assign the correct volumes to the usual geometric figures, as well as for all the other 
subsets in Σ. Volume of any measurable subset can be approximated by the volume of many small rectangles. 
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Example 3.2: [46][53][59][60] 
Any closed interval [𝑎,b] of real numbers is Lebesgue measurable. 
 
Definition 3.22: Regular Measure on (𝑹𝒏, 𝝉,𝚺) [46][53][59][60] 
A regular measure on (𝑅𝑛 , 𝜏, Σ) is a measure for which every Borel subset can be approximated from above by an open 
measurable subset and from below by a compact measurable subset , that is, a measure is called regular if it is outer 
regular and inner regular. 
 
Definition 3.23: Borel regular measure [46][53][59][60] 
A Borel measure on (𝑅𝑛 , 𝜏, Σ) is said to be regular if 𝜇(𝐸) = sup {𝜇(𝐾):𝐾 ⊂ 𝐸,𝐾 𝑐𝑜𝑚𝑝𝑎𝑐𝑡} for all Borel subsets 𝐸. 
 
Example 3.3: [46][53][59][60] 
The Lebesgue outer measure on (𝑅𝑛 , 𝜏, Σ) is an example of a Borel regular measure. 
 
Definition 3.24: Counting measure [46][53][59][60] 
Let (𝑅𝑛 , 𝜏, Σ) be a measurable space. A measure 𝜇 ∶ Σ ⟶ [0,∞] defined by 

𝜇(𝐴) = �
|𝐴|, 𝑖𝑓𝐴 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡,

    ∞, 𝑖𝑓 𝐴 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡,
� 

is called the counting measure. 
 
Definition 3.25: Quasi-Radon measure [46][53][59][60]  
A quasi-Radon measure space is a topological measure space (𝑅𝑛 , 𝜏, Σ, μ) such that, 

(i) (𝑅𝑛 , 𝜏, Σ, μ) is complete and locally determined, 
(ii) 𝜇 is 𝜏- additive, inner regular with respect to the closed subsets and effectively locally finite. 

 
Remark 3.1: The Borel measure agrees with the Lebesgue measure on those subsets for which it is defined. 
 
Definition 3.26: Push forward Measure [46][53][59][60] 
Let (𝑅𝑛 , 𝜏1, Σ1, 𝜇1) be a measure space and  (𝑅𝑚 , 𝜏2, Σ2) be a measurable space, and 𝑓: 𝑅𝑛 ⟶ 𝑅𝑚 be a measurable 
map. Then the following function 𝜇2 on Σ2 is a measure such that 𝜇2(𝐵) = 𝜇1�𝑓−1(𝐵)� 𝑓𝑜𝑟 𝐵 ∈ Σ2 . 
 
Definition 3.27: Complete Measure [46][53][59][60] 
Let (𝑅𝑛 , 𝜏, Σ) be a measurable space. A complete measure is a measure space in which every subset of every null set is 
measurable (having measure zero). More formally (𝑅𝑛 , 𝜏, Σ, μ) is complete if and only if  𝑆 ⊆ 𝑁 ∈ Σ and 𝜇(𝑁) = 0 
implies 𝑆 ∈ Σ. 
 
Definition 3.28. Trivial measure [46][53][59][60] 
The trivial measure on any measurable space (𝑅𝑛 , 𝜏, Σ, μ) is the measure 𝜇 which assign zero measure to every 
measurable subset. That is, 𝜇(𝐴) = 0 for all 𝐴 ∈ Σ. 
 
Definition 3.29: Hausdorff measure [46][53][59][60] 
A Hausdorff measure is a type of outer measure that assigns a number in [0,∞] to each Borel subset in (𝑅𝑛 , 𝜏, Σ, μ) or 
more generally in any metric measure space. Let  (𝑅𝑛 ,𝜌, Σ) be a metric measure space. For any Borel subset              
𝑈 ⊂ (𝑅𝑛 ,𝜌, Σ), let 𝑑𝑖𝑎𝑚𝑈 denote its diameter, that is, 𝑑𝑖𝑎𝑚𝑈 = sup {𝜌(𝑥,𝑦)/𝑥,𝑦 ∈ 𝑈}, 𝑑𝑖𝑎𝑚∅ = 0. 
 
Let 𝑆 be any Borel subset of (𝑅𝑛 ,𝜌, Σ), and 𝜌 > 0 is a real number then define 

 𝐻𝛿𝑑(𝑆) = inf {∑ (𝑑𝑖𝑎𝑚𝑈𝑖)𝑑:⋃ 𝑈𝑖 ⊇ 𝑆,𝑑𝑖𝑎𝑚𝑈𝑖 < 𝛿}∞
𝑖=1

∞
𝑖=1 . 

 
The infimum is over all countable covers of 𝑆 by Borel subsets 𝑈𝑖 ⊂ (𝑅𝑛 ,𝜌, Σ) satisfying 𝑑𝑖𝑎𝑚𝑈𝑖 < 𝛿. 
 
Definition 3.30: Tangent measure [46][53][59][60] 
Tangent measures are used to study the local behavior of Radon measures, in much the same way as tangent spaces are 
used to study the local behavior of differentiable manifolds. 
 
Consider a Radon measure 𝜇𝑅 defined on Borel subset 𝐴 of measurable space  (𝑅𝑛 , 𝜏, Σ) and let ′𝑎′ be any arbitrary 
point in 𝐴. Let us consider a Borel open ball of radius 𝑟 around 𝑎, 𝐵𝑟(𝑎) via the transformation 𝑇𝑎,𝑟(𝑥) = 𝑥−𝑎

𝑟
 which 

enlarges the ball of radius 𝑟 about 𝑎 to a ball of radius 1 centered at 0. 
 
Now, 𝜇 behaves on 𝐵𝑟(𝑎) by push-forward measure defined by, 

𝑇𝑎,𝑟#𝜇(𝐴) = 𝜇(𝑎 + 𝑟𝐴) where 𝑎 + 𝑟𝐴 = {𝑎 + 𝑟𝑥: 𝑥 ∈ 𝐴}. 
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Definition 3.31: Haar measure [46][53][59][60] 
Haar measure is a way to assign an "invariant volume" to subsets of locally compact topological groups and 
subsequently define an integral for functions on those groups. Let 𝐺 be a topological group. A left Haar measure (resp. 
right Haar measure) on 𝐺 is a non zero regular Borel measure 𝜇 on 𝐺 such that 𝜇(𝑔𝐴) = 𝜇(𝐴) (resp. 𝜇(𝐴𝑔) = 𝜇(𝐴))  
for all 𝑔 ∈ 𝐺 and all measurable subsets 𝐴 of 𝐺. 
 
In the similar way other types of measure structures are studied on different patterns of Borel subsets on different 
measurable spaces. 
 
Definition 3.32: Quantum measure space/q-measure space [26][27][28][57][58] 
A measurable space is a pair (𝑋,𝒜) where 𝑋 is a nonempty set and 𝒜 is a σ-algebra of subsets of 𝒜. A (finite) 
measure on  𝒜 is a map 𝜇: 𝒜 → 𝑅+ satisfying the following conditions: 

(1) 𝜇(𝐴∪𝐵) = 𝜇 (𝐴) + 𝜇 (𝐵)                                 (additivity) 
(2) If 𝐴𝑖 ∈ 𝒜 is an increasing sequence, then 

𝜇(∪𝐴𝑖) = lim 𝜇(𝐴𝑖)                                         (continuity)  
Conditions (1) and (2) together are equivalent to 
𝜇(∪𝐴𝑖) =  ∑𝜇(𝐴𝑖)                                          (σ-additivity) 
It follows from (2) that  

(3) If 𝐴𝑖 ∈ 𝒜 is a decreasing sequence, then 𝜇(∩𝐴𝑖) = lim 𝜇(𝐴𝑖)   
(4) 𝜇(𝐴∪𝐵∪𝐶) = 𝜇(𝐴∪𝐵) + 𝜇(𝐴∪𝐶) + 𝜇(𝐵∪𝐶) − 𝜇(𝐴) − 𝜇(𝐵) − 𝜇(𝐶).  

condition (4) is called grade-2 additivity and condition (1) is called grade-1 additivity.  
 
If 𝜇: 𝒜 → 𝑅+ is grade-2 additive and satisfies conditions (2) and (3), we call 𝜇 a quantum measure/q-measure. If 𝜇 is a 
q-measure on 𝒜, then (𝑋,𝒜, 𝜇) is a quantum measure space/q-measure space. 
 
4. INTER-RELATIONSHIP BETWEEN DIFFERENT TYPES OF MEASURES ON MEASURABLE SPACE 
 
A Borel measure 𝜇 is inner regular if and only if for every 𝜀 > 0 there is a compact set 𝐾𝜀 such that |𝜇(𝑋\𝐾𝜀| < 𝜀. It is 
clear that any measure on a compact space is inner regular. If  (𝑅𝑛 , 𝜏, Σ, μ) is a metric measure space, then every Borel 
measure 𝜇 on (𝑅𝑛 , 𝜏, Σ, μ) is regular. If (𝑅𝑛 , 𝜏, Σ, μ) is compact and separable, then the measure 𝜇 is Radon. Thus, Borel 
measure which is positive gives raise to a unique extension to a Radon measure. Every Radon measure on a measurable 
Hausdorf topological space (𝑅𝑛 , 𝜏, Σ, μ) is regular and inner regular. If a Borel measure is regular and inner regular then 
it is Radon measure, since the intersection of a compact set and a closed set is compact. Borel measure has a unique 
extension to a Radon measure. On complete separable metric space all Borel measures are Radon. Radon measures are 
the important class of measures for applications. A Radon measure is by definition a regular Borel measure. Further 
Radon measure is extended to a Haar measure if the space is locally compact topological group [1] [6] [7] [8] [9] [18] 
[19] [20] [23]. 
 
5. CONCLUSION 
 
Recently the measure structure has been introduced in 2014 by S. C. P. Halakatti on measure manifolds [29]-[45]. Also 
the Radon measure structure on measure manifold has been introduced and studied extensively in [35]-[39]. This study 
is potential enough to study the Radon measure manifold, Quotient Radon measure manifold and Network Radon 
measure manifold and its generated different categories. It has lot of applications in field of engineering, life science, 
cosmology, quantum physics and brain science. 
 
Different measures as discussed above can be used to generate different measure structures on measure manifolds. 
Such a study opens a new branch in the field of applications. In our study the measure functions are not only used to 
quantify but they induce measure structures [29]-[45] on measure manifolds that describe the real world situations. 
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