ON WEAKLY SEMI CLOSED SETS IN TOPOLOGICAL SPACES

BASAVARAJ M. ITTANAGI, VEERESHA A SAJJANAR*

Department of Mathematics,
Siddaganga Institute of Technology, Affiliated to VTU,
Belagavi, Tumakuru-03, Karnataka State, India.

*Department of Mathematics,
Sri Krishna Institute of Technology, Bangalore, Karnataka State, India.

(Received On: 27-07-17; Revised & Accepted On: 30-08-17)

ABSTRACT

In this research paper, a new class of closed sets called weakly semi closed sets (ws-closed sets) in topological spaces are introduced and studied. A subset \(A \) of a topological space \((X, \tau) \) is called ws-closed set if \(U \) contains semi closure of \(A \) whenever \(U \) contains \(A \) and \(U \) is w-open set in \((X, \tau) \). This new class of sets lies between the class of all semi-closed sets and generalized semi-pre regular closed sets in topological spaces. Also some of their properties have been investigated.

2010 Mathematics Classification: 54A05, 54A10.

Keywords: Semi-closed sets, w-closed sets, semi pre-closed sets and ws-closed sets.

1. INTRODUCTION

In 1970 N. Levine [18], first introduced the concept of generalized closed sets were defined and investigated. In 2000 M. Sheik John [33], introduced and studied w-closed sets in topological space \(X \). Throughout this paper \(X \) or \((X, \tau) \) represent non-empty topological space. Let \(A \) be subset of a topological space \(X \). \(cl(A), int(A), scl(A), \alpha cl(A) \) and \(spcl(A) \) denote the closure of \(A \), the interior of \(A \), the semi-closure of \(A \), the \(\alpha \)-closure of \(A \) and the semi pre closure of \(A \) in \(X \) respectively.

2. PRELIMINARIES

Definition 2.1: A subset \(A \) of a topological space \((X, \tau) \) is called a

i. Regular open set [32] if \(A = int(cl(A)) \) and regular closed if \(A = cl(int(A)) \)

ii. Semi-open set [19] if \(A \subset cl(int(A)) \) and a semi-closed set if \(int(cl(A)) \subset A \).

iii. \(\alpha \)-open set [20] if \(A \subset int(cl(int(A))) \) and a \(\alpha \)-closed set if \(cl(int(cl(A))) \subset A \).

iv. Generalized semi pre closed set (gspr-closed) [8] if \(spcl(A) \subset U \) whenever \(A \subset U \) and \(U \) is open in \((X, \tau) \).

v. w-closed set [33] if \(cl(A) \subset U \) whenever \(A \subset U \) and \(U \) is semi-open in \((X, \tau) \).

vi. gspr-closed set [10] if \(spcl(A) \subset U \) whenever \(A \subset U \) and \(U \) is regular-open in \((X, \tau) \).

vii. g\#s-closed set [40] if \(scl(A) \subset U \) whenever \(A \subset U \) and \(U \) is g\#s-open in \((X, \tau) \).

viii. rb-closed set [24] if \(cl(A) \subset U \) whenever \(A \subset U \) and \(U \) is b-open in \((X, \tau) \).

ix. g\#s-closed set [41] if \(cl(A) \subset U \) whenever \(A \subset U \) and \(U \) is g\#s-open in \((X, \tau) \).

x. g\#s-closed set [40] if \(scl(A) \subset U \) whenever \(A \subset U \) and \(U \) is g\#s-open in \((X, \tau) \).

xi. g\#s-closed set [17] if \(\alpha cl(A) \subset U \) whenever \(A \subset U \) and \(U \) is g\#s-open in \((X, \tau) \).

Corresponding Author: Veeresha A Sajjanar*, Department of Mathematics, Sri Krishna Institute of Technology, Bangalore, Karnataka state, India.
3. BASIC PROPERTIES OF WS-CLOSED SETS IN TOPOLOGICAL SPACE

Definition 3.1: A subset A of a topological space (X, τ) is called weakly semi closed (ws-closed) set if $\text{scl}(A) \subseteq U$, whenever $A \subseteq U$ and U is w-open set in (X, τ). The family of all ws–closed sets X is denoted by WSC(X). The compliment of ws–closed set is called ws-open set in (X, τ). The family of all ws-open sets in X is denoted by WSO(X).

Example 3.2: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then closed sets in (X, τ) are $X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}$.

Semi-closed sets in (X, τ) are $X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}$.

W-closed sets in (X, τ) are $X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}$.

ws-closed sets in (X, τ) are $X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}$.

ws-open sets in (X, τ) are $X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}$.

We prove that the class of ws-closed sets are properly lies between the class of all semi-closed sets and generalised semi-pre regular closed sets in topological spaces.

Theorem 3.3: Every semi-closed [19] set in X is ws-closed set in X.

Proof: Let A be a semi-closed set in X. Let U be any w-open set in X such that $A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Since A is semi-closed, we have $\text{scl}(A) = A \subseteq U$. Hence A is ws-closed set in X.

Remark 3.4: The converse of the above Theorem 3.3 need not be true as seen from the following Example 3.5.

Example 3.5: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ then the set $A = \{a, b, d\}$ is ws-closed set but not semi-closed in X.

Corollary 3.6: In a topological space (X, τ),

ii) Every closed set in X is ws-closed set in X.

iii) Every α-closed [20] set in X is ws-closed set in X.

iv) Every g^s-closed [37] set in X is ws-closed set in X.

v) Every $^*g\alpha$-closed [41] set in X is ws-closed set in X.

vi) Every g^s-α-closed [40] set in X is ws-closed set in X.

viii) Every \tilde{g}-closed set in X is ws-closed set in X.

ix) Every $g\xi^*$-closed [17] set in X is ws-closed set in X.

Proof:

i) In view of the fact that every regular closed is semi-closed, therefore by 3.3 every regular closed is ws-closed set.

ii) In view of the fact that every closed set is semi-closed, therefore by 3.3 every closed set is ws-closed set.

iii) In view of the fact that every α-closed is semi-closed, therefore by 3.3 every α-closed is ws-closed set.

iv) Let A be g^s-closed set in X. Let U be any w-open set in X s.t $A \subseteq U$. Since A is g^s-closed, we have $\text{cl}(A) = A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Hence A is ws-closed set in X.

v) Let A be $^*g\alpha$-closed set in X. Let U be any w-open set in X s.t $A \subseteq U$. Since A is $^*g\alpha$-closed, we have $\text{cl}(A) = A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Hence A is ws-closed set in X.

vi) Let A be g^s-α-closed set in X. Let U be any w-open set in X s.t $A \subseteq U$. Since A is g^s-α-closed, we have $\text{cl}(A) = A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Hence A is ws-closed set in X.

vii) Let A be rb-closed set in X. Let U be any w-open set in X s.t $A \subseteq U$. Since A is rb-closed, we have $\text{cl}(A) = A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Hence A is ws-closed set in X.

viii) Let A be \tilde{g}-closed set in X. Let U be any w-open set in X s.t $A \subseteq U$. Since A is \tilde{g}-closed, we have $\text{cl}(A) = A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Hence A is ws-closed set in X.

ix) Let A be $g\xi^*$-closed set in X. Let U be any w-open set in X s.t $A \subseteq U$. Since A is $g\xi^*$-closed, we have $\text{cl}(A) = A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Hence A is ws-closed set in X.

x) Let A be agp-closed set in X. Let U be any w-open set in X s.t $A \subseteq U$. Since A is agp-closed, we have $\text{cl}(A) = A \subseteq U$, we have $\text{scl}(A) \subseteq U$. Hence A is ws-closed set in X.

Remark 3.7: The converse of the above Corollary 3.6 need not be true as seen from the following Example 3.8.
Example 3.8: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ then the sets

i. regular-closed sets in (X, τ) are $X, \phi, \{a, c, d\}, \{b, c, d\}$.

ii. closed sets in (X, τ) are $X, \phi, \{a\}, \{c, d\}, \{a, c, d\}$.

iii. $\alpha^\#$ -closed sets in (X, τ) are $X, \phi, \{c\}, \{a, d\}, \{a, c, d\}$.

iv. g^* -closed sets in (X, τ) are $X, \phi, \{d\}, \{a, c, d\}, \{b, c, d\}$.

v. $*g\alpha$ -closed sets in (X, τ) are $X, \phi, \{c\}, \{a, c, d\}$.

vi. $g^\#s$ -closed sets in (X, τ) are $X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}$.

vii. rb -closed sets in (X, τ) are $X, \phi, \{c, d\}, \{a, c, d\}, \{b, c, d\}$.

viii. $g\xi*$ -closed sets in (X, τ) are $X, \phi, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}$.

ix. $g^\# -closed sets in (X, \tau)$ are $X, \phi, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}$.

x. wgs -closed sets in (X, τ) are $X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$.

It is observed that set $A = \{a, b, d\}$ is ws-closed set but not regular closed (closed, $\alpha^\#$ -closed, g^* -closed, $*g\alpha$ –closed, $g^\#s$ –closed, rb -closed, $g\xi*$ -closed, $g^\# -closed$ sets) in X.

Proof: Let A be a ws-closed set in X. Let U be any regular open set in X such that $A \subseteq U$. Since every regular open set is w- open set and A is ws-closed set, we have $sc(A) \subseteq U$. Therefore $sc(A) \subseteq U$. Hence A is regular open in X.

Remark 3.10: The converse of the above Theorem 3.9 need not be true as seen from the following Example 3.11.

Example 3.11: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then the set $A = \{b\}$ is $gspr$ -closed set but not ws-closed set in X.

Corollary 3.12:

ii) Every ws-closed set is rgb-closed [22] set in X.

Proof:

i) Follow from Govindappa Navalagi et al.[8], every $gspr$-closed set is gsp-closed set and then follows from Theorem 3.9.

ii) Let A be a ws-closed set in X. Let U be any regular open set in X such that $A \subseteq U$. Since every regular open set is w- open set and A is ws-closed set, we have $sc(A) \subseteq U$. Therefore $sc(A) \subseteq U$. Hence A is regular open in X. Hence A is rgb -closed in X.

The converse of the Corollary 3.12 is need not be true in general as seen from the following Example 3.13.

Example 3.13: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}\}$. Then the set $A = \{b\}$ is $gspr$ (rgb) -closed set but not ws-closed set in X.

Example 3.15: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ Then

i) closed sets in (X, τ) are $X, \phi, \{a\}, \{c, d\}, \{a, c, d\}$.

ii) ws-closed sets in (X, τ) are $X, \phi, \{a\}, \{c, d\}, \{a, c\}, \{a, c, d\}$.

iii) $\alpha^\#$ -closed sets in (X, τ) are $X, \phi, \{c\}, \{a, c\}$.

iv) g^* -closed sets in (X, τ) are $X, \phi, \{c\}, \{a, c\}$.

v) $wgr\alpha$ -closed sets in (X, τ) are $X, \phi, \{c\}, \{a, c\}$.

vi) $pg\alpha$ -closed sets in (X, τ) are $X, \phi, \{c\}, \{a, c\}$.
vi) \(\text{rg} - \)closed sets in \((X, \tau)\) are \(X, \phi, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\).

vii) \(\text{gprw} - \)closed sets in \((X, \tau)\) are \(X, \phi, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\).

viii) \(\text{rgw} - \)closed sets in \((X, \tau)\) are \(X, \phi, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\).

ix) \(\text{rw} - \)closed sets in \((X, \tau)\) are \(X, \phi, \{d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\).

x) \(\text{rga} - \)closed sets in \((X, \tau)\) are \(X, \phi, \{c\}, \{d\}, \{a, b\}, \{a, c, d\}, \{a, b, d\}, \{b, c\}, \{a, d\}, \{b, c, d\}\).

xi) \(\text{βwg} - \)closed sets in \((X, \tau)\) are \(X, \phi, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, b, d\}, \{b, c\}, \{b, c, d\}\).

Therefore \(\{a\}\) is ws-closed in \(X\) but not \(\text{gpr-closed}\) (resp. \(\text{wgra-closed}, \text{rgw-closed}, \text{rga-closed}, \text{βwg-closed}\)) set in \(X\).

Remark 3.16: The following Example 3.17 shows that ws-closed sets are independent of \(\text{gαb-closed}[39]\) sets, \(\text{βwg-closed}[7]\) sets, \(\text{gα-closed}[41]\) sets, \(\text{Gα-closed}[38]\) sets, \(\text{Gα-closed}[14]\) sets, \(\text{gα-closed}[6]\) sets, \(\text{gα-closed}[28]\) sets, \(\text{gα-closed}[21]\) sets, \(\text{sgb-closed}[13]\) sets, \(\text{pgpr-closed}[12]\) sets, \(\text{gα-closed}[42]\) sets and \(\text{rgα-closed}[34]\) sets.

Example 3.17: Let \(X = \{a, b, c, d\}\), \(\tau_1 = \{X, \phi, \{a\}, \{a, b\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}\). Then

i) \(\text{closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

ii) \(\text{ws-closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

iii) \(\text{gα-closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

iv) \(\text{gα-closed sets in } (X, \tau_2)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

v) \(\text{βwg-closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

vi) \(\text{βwg-closed sets in } (X, \tau_2)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

vii) \(\text{gα-closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

viii) \(\text{gα-closed sets in } (X, \tau_2)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

ix) \(\text{βwg-closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

x) \(\text{βwg-closed sets in } (X, \tau_2)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

xi) \(\text{βwg-closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).

Therefore \(\{b\}\) is ws-closed in \((X, \tau_1)\) but not in \(\text{gα-closed}\) (resp., \(\text{gα-closed}, \text{gα-closed}, \text{βwg-closed}, \text{βwg-closed}, \text{βwg-closed}\) set in \((X, \tau_1)\).

Meanwhile \(\{b\}\) in \(\text{gα-closed}\) (resp., \(\text{gα-closed}, \text{gα-closed}, \text{βwg-closed}, \text{βwg-closed}, \text{βwg-closed}\) set in \((X, \tau_2)\) but not \(\text{ws-closed set in } (X, \tau_2)\).

Remark 3.18: The following Example 3.19 shows that \(\text{ws-closed sets are independent of } \text{sets } g\text{-closed}[18] \text{ sets, } sg\text{-closed}[14] \text{ sets, } ga\text{-closed}[21] \text{ sets, } sgb\text{-closed}[13] \text{ sets, } rg\text{-closed}[12] \text{ sets, } pgr\text{-closed}[1] \text{ sets, } gab\text{-closed}[42] \text{ sets and } rps\text{-closed}[34] \text{ sets.}

Example 3.19: Let \(X = \{a, b, c, d\}\), \(\tau_1 = \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}\). Then

i) \(\text{closed sets in } (X, \tau_1)\) are \(X, \phi, \{d\}, \{c, d\}, \{b, c, d\}\).

ii) \(\text{ws-closed sets in } (X, \tau_1)\) are \(X, \phi, \{a\}, \{b\}, \{c\}, \{d\}\).
iii) g-closed sets in (X, τ_1) are X, ϕ, $\{a, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c\}$.
iv) sg-closed sets in (X, τ_1) are X, ϕ, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

v) $g\alpha$-closed sets in (X, τ_1) are X, ϕ, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$.
vi) $sg\beta$-closed sets in (X, τ_1) are X, ϕ, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

vii) $rg\ast b$-closed sets in (X, τ_1) are X, ϕ, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

viii) $pgpr$-closed sets in (X, τ_1) are X, ϕ, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.
ix) $g\alpha b$-closed sets in (X, τ_1) are X, ϕ, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

x) rps-closed sets in (X, τ_1) are X, ϕ, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$ and also $\{a\}$.

xi) $g\ast$-closed sets in (X, τ_2) are X, ϕ, $\{a, b\}$, $\{c, d\}$.

xii) ws-closed sets in (X, τ_2) are X, ϕ, $\{a, b\}$, $\{c, d\}$.

xiii) g-closed sets in (X, τ_2) are X, ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

xiv) sg-closed sets in (X, τ_2) are X, ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

xv) $g\alpha$-closed sets in (X, τ_2) are X, ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

xvi) $sg\beta$-closed sets in (X, τ_2) are X, ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

xvii) $rg\ast b$-closed sets in (X, τ_2) are X, ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

xviii) $pgpr$-closed sets in (X, τ_2) are X, ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

Therefore $\{a\}$ is ws-closed set in (X, τ_1) but not g-closed (resp. sg-closed, $g\alpha$-closed, $sg\beta$-closed, $rg\ast b$-closed, $pgpr$-closed, $g\alpha b$-closed, rps-closed) set in (X, τ_1).

Meanwhile $\{a\}$ is g-closed (resp. sg-closed, $g\alpha$-closed, $sg\beta$-closed, $rg\ast b$-closed, $pgpr$-closed, $g\alpha b$-closed, rps-closed) set in (X, τ_2) but not ws-closed set in (X, τ_2).

Example 3.21: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}\}$. Then

i) closed sets in (X, τ) are X, ϕ, $\{c\}$, $\{a, c\}$, $\{b, c\}$.
ii) ws-closed sets in (X, τ) are X, ϕ, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, c\}$.
iii) R^*-closed sets in (X, τ) are X, ϕ, $\{c\}$, $\{a\}$, $\{b\}$, $\{a, b\}$.
iv) $rg\beta$-closed sets in (X, τ) are X, ϕ, $\{c\}$, $\{a\}$, $\{b\}$, $\{a, b\}$.
v) $pgpr$-closed sets in (X, τ) are X, ϕ, $\{c\}$, $\{a\}$, $\{b\}$, $\{a, c\}$
vi) rgw-closed sets in (X, τ) are X, ϕ, $\{c\}$, $\{a\}$, $\{b\}$, $\{a, c\}$

Therefore $\{a\}$ is ws-closed set in X but not R^*-closed (resp. $rg\beta$-closed, $pgpr$-closed, rgw-closed, $gprw$-closed) set in X.

Remark 3.22: From the above discussion and results we have the following implications.
A \Rightarrow B means A implies B, but converse is not true.

A \Leftrightarrow B means A and B are independent of each other

Theorem 3.23: The intersection of two ws-closed subsets of X is ws-closed set in X.

Proof: Let A and B be are ws-closed sets in X. Let U be any semiopen set in X such that $(A \cap B) \subseteq U$ that is $A \subseteq U$ and $B \subseteq U$. Since A and B are ws-closed sets then $\text{scl}(A) \subseteq U$ and $\text{scl}(B) \subseteq U$ and we know that $(\text{scl}(A) \cap \text{scl}(B)) = \text{scl}(A \cap B) \subseteq U$. Therefore $A \cap B$ is ws-closed set in X.

Remark 3.24: The union of two ws-closed sets in X is generally not a ws-closed set in X.

Example 3.25: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ then the sets $A = \{a\}$ and $B = \{b\}$ are ws-closed sets in X but $A \cup B = \{a, b\}$ is not a ws-closed set in X.

Theorem 3.26: If a subset A of a topological space X is ws-closed set in X then $\text{scl}(A) - A$ does not contain any non-empty open set in X but converse is not true.

Proof: Let A is an ws-closed set in X and suppose F be an non empty w-closed subset of $\text{scl}(A) - A$.

$F \subseteq \text{scl}(A) - A \Rightarrow F \subseteq \text{scl}(A) \cap (X - A) \Rightarrow F \subseteq \text{scl}(A) \Rightarrow \text{FGX} - A \\
\Rightarrow A \subseteq X - F$ and $X - F$ is w-open set and A is a ws-closed set, $\text{scl}(A) \subseteq X - F$ \\
$\Rightarrow F \subseteq X - \text{scl}(A)$ from equations (1) and (2) we get $F \subseteq \text{scl}(A) \cap (X - \text{scl}(A)) = \emptyset$ \\
$\Rightarrow F = \emptyset$ thus $\text{scl}(A) - A$ does not contain any non-empty w-closed set in X.

Remark 3.27: The converse of the above Theorem need not be true as seen from the following Example 3.28.

Example 3.28: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, b, c\}\}$ then the set $A = \{b\}$, $\text{scl}(\{b\}) = \{b\}$, $\text{scl}(\{A\} - A) = \{b\}$ does not contain any non-empty w-closed set in X but A is not ws-closed set.
Theorem 3.29: If A is a ws-closed set in X and $A \subseteq B \subseteq \text{scl}(A)$ then B is also ws-closed set in X.

Proof: Let A be a ws-closed set in X such that $B \subseteq \text{scl}(A)$. Let U be a w-open set of X such that $B \subseteq U$ then $A \subseteq U$. Since A is ws-closed set, we have $\text{scl}(A) \subseteq U$ and $A \subseteq U$. Now $B \subseteq \text{scl}(A) \Rightarrow \text{scl}(B) \subseteq \text{scl}(\text{scl}(A)) = \text{scl}(A) \subseteq U$. That is $\text{scl}(B) \subseteq U$. Therefore B is a ws-closed set in X.

Remark 3.30: The converse of the above Theorem 3.29 is need not be true as seen from the following Example 3.31.

Example 3.31: Let $X = \{a, b, c \}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, then the set $A = \{a\}, B = \{a, c\}$ such that A and B are ws-closed sets in X but $A \subseteq B \nsubseteq \text{scl}(A)$ because $\text{scl}(A) = \{a\}$.

Theorem 3.32: Let (X, τ) be a topological space then for each $x \in X$ the set $X - \{x\}$ is ws-closed or semi open.

Proof: Let $x \in X$. Suppose $X - \{x\}$ is not a semiopen set. Then there is no semiopen set containing $X - \{x\}$, that is $X - \{x\} \subseteq X \Rightarrow \text{cl}(X - \{x\}) \subseteq \text{cl}(X) \Rightarrow \text{cl}(X - \{x\}) \subseteq X$. Therefore $X - \{x\}$ is ws-closed set in X.

Theorem 3.33: Let X and Y are topological spaces and $A \subseteq Y \subseteq X$. Suppose that A is ws-closed set in X then A is ws-closed relative to Y.

Proof: Let $A \subseteq Y \cap G$, where G is a w-open. Since A is a ws-closed set in X, then $A \subseteq G$ and $\text{scl}(A) \subseteq G$. This implies that $Y \cap \text{scl}(A) \subseteq Y \cap G$ where $Y \cap \text{scl}(A)$ is closed set of A in Y. Thus A is a ws-closed set in Y.

Theorem 3.34: In a topological space X if $\text{SO}(X) = \{X, \emptyset\}$ then every subset of X is a ws-closed set.

Proof: Let X be a topological space and $\text{SO}(X) = \{X, \emptyset\}$. Let A be any subset of X. Suppose $A = \emptyset$. Then \emptyset is ws-closed set. Suppose $A \neq \emptyset$. Then X is the only semiopen set containing A and so $\text{scl}(A) \subseteq X$. Hence A is a ws-closed set in X.

Remark 3.35: The converse of the above Theorem need not be true in general as seen from the following Example 3.36.

Example 3.36: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then every subset of (X, τ) is a ws-closed set in X but $\text{SO} = \{\emptyset, X, \{a\}, \{b, c\}\}$.

Theorem 3.37: If A is regular open and gspr-closed set in X then A is ws-closed set in X.

Proof: Let A be a regular open and gspr-closed in X. Let U be any w-open set in X such that $A \subseteq U$. Since A is regular open and gspr-closed set in X, by definition, $\text{scl}(A) \subseteq A$ then $\text{scl}(A) \subseteq A \subseteq U$. Hence A is ws-closed set in X.

Theorem 3.38: If A is regular open and rgb-closed set in X then A is ws-closed set in X.

Proof: Let A be a regular open and rgb-closed in X. Let U be any w-open set in X such that $A \subseteq U$. Since A is regular open and rgb-closed in X, by definition, $\text{scl}(A) \subseteq A$ then $\text{scl}(A) \subseteq A \subseteq U$. Hence A is ws-closed set in X.

Theorem 3.39: If A is semiopen and swg*-closed then A is ws-closed set in X.

Proof: Let A be a semiopen and swg*-closed in X. Let U be any w-open set in X such that $A \subseteq U$. Since A is semiopen and swg*-closed in X, by definition, $\text{scl}(A) \subseteq A$ then $\text{scl}(A) \subseteq A \subseteq U$. Hence A is ws-closed set in X.

Theorem 3.40: If A is semiopen and swg-closed then A is ws-closed set in X.

Proof: Let A be a semiopen and swg-closed in X. Let U be any w-open set in X such that $A \subseteq U$. Since A is semiopen and swg-closed in X, by definition, $\text{scl}(A) \subseteq A$ then $\text{scl}(A) \subseteq A \subseteq U$. Hence A is ws-closed set in X.

Theorem 3.41: If A is semiopen and sg-closed then A is ws-closed set in X.

Proof: Let A be a semiopen and sg-closed in X. Let U be any w-open set in X such that $A \subseteq U$. Since A is semiopen and sg-closed in X, by definition, $\text{scl}(A) \subseteq A$ then $\text{scl}(A) \subseteq A \subseteq U$. Hence A is ws-closed set in X.

Theorem 3.42: If A is semiopen and sgb-closed then A is ws-closed set in X.

Proof: Let A be a semiopen and sgb-closed in X. Let U be any w-open set in X such that $A \subseteq U$. Since A is semiopen and sgb-closed in X, by definition, $\text{scl}(A) \subseteq A$ then $\text{scl}(A) \subseteq A \subseteq U$. Hence A is ws-closed set in X.
Theorem 3.43: If A is semiopen and \(\alpha_{gs}\)-closed then A is ws-closed set in X.

Proof: Let A be a semiopen and \(\alpha_{gs}\)-closed in X. Let U be any w-open set in X such that \(A \subseteq U\). Since A is semiopen and \(\alpha_{gs}\)-closed in X, by definition, \(scl(A) \subseteq A\) then \(scl(A) \subseteq A \subseteq U\). Hence A is ws-closed set in X.

Theorem 3.44: If A is \(\beta\)-open and \(\beta wg^*\)-closed then A is ws-closed set in X.

Proof: Let A be a \(\beta\)-open and \(\beta wg^*\)-closed in X. Let U be any regular semiopen set in X such that \(A \subseteq U\). Since A is \(\beta\)-open and \(\beta wg^*\)-closed in X, by definition, \(gcl(A) \subseteq A\) then \(gcl(A) \subseteq A \subseteq U\). Hence A is ws-closed set in X.

Theorem 3.45: If A is both open and g-closed then A is ws-closed set in X.

Proof: Let A be open and g-closed set in X. Let U be any regular open set in X such that \(A \subseteq U\). By definition, \(cl(A) \subseteq A \subseteq U\) and \(gcl(A) = A\). This implies that \(cl(A) \subseteq gcl(A) \subseteq A \subseteq U\). Hence A is ws-closed set.

Theorem 3.46: If A is regular semiopen and \(rw\)-closed then A is ws-closed set in X.

Proof: Let A be a regular semiopen and \(rw\)-closed set in X. Let U be any w-open set in X such that \(A \subseteq U\). Now \(A \subseteq A\) by hypothesis \(cl(A) \subseteq A\) then we know that \(cl(A) \subseteq scl(A) \subseteq A\). Hence \(scl(A) \subseteq U\) therefore A is ws-closed set in X.

Theorem 3.47: If A is regular semiopen and \(R^*\)-closed then A is ws-closed set in X.

Proof: Let A be a regular semiopen and \(R^*\)-closed set in X. Let U be any w-open set in X such that \(A \subseteq U\). Now \(A \subseteq A\) by hypothesis \(cl(A) \subseteq A\) then we know that \(cl(A) \subseteq scl(A) \subseteq A\). Hence \(scl(A) \subseteq U\) therefore A is ws-closed set in X.

Theorem 3.48: If A is regular semiopen and \(gprw\)-closed then A is ws-closed set in X.

Proof: Let A be a regular semiopen and \(gprw\)-closed set in X. Let U be any w-open set in X such that \(A \subseteq U\). Now \(A \subseteq A\) by hypothesis \(cl(A) \subseteq A\) then we know that \(cl(A) \subseteq scl(A) \subseteq A\). Hence \(scl(A) \subseteq U\) therefore A is ws-closed set in X.

Theorem 3.49: If A is regular semiopen and \(rgw\)-closed then A is ws-closed set in X.

Proof: Let A be a regular semiopen and \(rgw\)-closed set in X. Let U be any w-open set in X such that \(A \subseteq U\). Now \(A \subseteq A\) by hypothesis \(cl(A) \subseteq A\) then we know that \(cl(A) \subseteq scl(A) \subseteq A\). Hence \(scl(A) \subseteq U\) therefore A is ws-closed set in X.

REFERENCES

39. M. K. R. S. Veerakumar, g*-pre closed sets Acta Ciencia Indica (Mathematics) Meerut,
41. M. Vigneshwaran and A. Singaravelan, Applications of **ga-closed sets in Topological Spaces, IJMA-5(10), 2014, 139-150.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]