International Journal of Mathematical Archive-8(9), 2017, 140-150
@§mAvailable online through www.ijma.info ISSN 2229 - 5046

FIXED POINT RESULTS IN SOFT G-METRIC SPACES

SHINJINI SOLANKI?, BASANT KUMAR SINGH!, RAMAKANT BHARDWAJ*2
AND ANURAG CHOUBEY?

1Research Scholar of Mathematics, 1*Department of Mathematics,
AISECT University Bhopal - (M.P.), India.

zDepartment of Mathematics, 3Department of Computer Science,
TIT Group of Institutes Bhopal - (M.P.), India.

(Received On: 12-06-17; Revised & Accepted On: 22-08-17)

ABSTRACT

Inthe present chapter, we prove fixed point results of mapping defined on soft G-metric space which generalize many
well known results.

2. INTRODUCTION & PRELIMINARIES

In the year 1999, Molodtsov [8] initiated a novel concept of soft sets theory as a new mathematical tool for dealing with
uncertainties. A soft set is a collection of approximate descriptions of an object. Soft systems provide a very general
framework with the involvement of parameters. Since soft set theory has a rich potential, applications of soft set theory
in other disciplines and real life problems are progressing rapidly. Maji et al. [5, 6] worked on soft set theory and
presented an application of soft sets in decision making problems.

Guler et. al. [4] introduced the concept of soft G-metric space according to a soft element and obtained some of its
properties. Then, they defined soft G-convergence and soft G-continuity, they proved existence and uniqueness of fixed
pints in soft G-metric spaces.

Our aim of this article is to present a fixed point theorems in soft G-metric space satisfying a new rational contractive
condition.

Definition 2.1: Let X be an initial universe set and E be a set of parameters. A pair (F, E) is called a soft set over X if
and only if X is a mapping from E into the set of all subsets of the set X,i.e. F: E = P(X), where P(X) is the power set
of X.

Definition 2.2: The intersection of two soft sets (F, A) and (G, B) over X is the soft set (H,C), where C = An B and
Ve € C,H(e) = F(e) N G(&).This is denoted by (F,A) n (G,B) = (H, C).

Definition 2.3: The union of two soft sets (F, A) and (G, B) over X is the soft set, where C = AU B and Ve € C,
F(e), ife€e A—B
H(s) =< G(e), ifeeB—A
F(e) UG(e), ce€EANB
This relationship is denoted by (F,A) U (G,B) = (H,C).
Definition 2.4: The soft set (F, A) over X is said to be a null soft set denoted by @ if forall e € 4,F(e) = ¢ (null set)
Definition 2.5: A soft set (F, A) over X is said to be an absolute soft set, if for all ¢ € A, F(¢) = X.

Definition 2.6: The difference (H, E) of two soft sets (H,E) and (H, E) over X denoted by (H, E)\(H, E), is defined
asH(e) = F(e)\G(e)foralle € E.
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Definition 2.7: The complement of a soft set (F, A) is denoted by (F, A)€ and is defined by (F,A)¢ = (F¢, A) where
F€: A - P(X) is mapping given by F¢(a) = X — F(a),Va € A.

Definition 2.8: Let R be the set of real numbers and B($R) be the collection of all nonempty bounded subsets of R and
E taken as a set of parameters. Then a mapping F: E — B(R) is called a soft real set. It is denoted by (F,E). If
specifically (F, E) is a singleton soft set, then identifying (F, E) with the corresponding soft element, it will be called a
soft real number and denoted 7, 3, £ etc.

0,1 are the soft real numbers where 0(e) = 0,1(e) = 1 for all e € E, respectively.

Definition 2.9: For two soft real numbers
(i) 7<3,if #(e) <3(e), foralle € E.
(i) #=3,if #(e) = 5(e), foralle € E.
(iil) 7 < 3, if 7#(e) < §(e), forall e € E.
(iv) # > §,if #(e) > §(e), forall e € E.

Definition 2.10: A soft set over X is said to be a soft point if there is exactly one e € E, such that P(e) = {x} for some
x € Xand P(e") = ¢,ve' € E\{e}. It will be denoted by %,.

Definition 2.11: Two soft points %,, 7, are said to be equal if e = ¢’ and P(e) = P(e') i.e. x = y. Thus
X, Vo x+yore+e'.

Definition 2.12: A mapping d: SP(X) x SP(X) — R(E)*, is said to be a soft metric on the soft set X if d satisfies the
following conditions:

(M1) d(%,,,9.,) S 0forall %,,,7,, €X,

(M2) d(%,,,9.,) =0ifandonly if %, = 7.,,

(M3) d(%,,,5.,) = d(F.,, %, ) forall %, , 3., € X,

(M4) d(%,,,2.,) < d(%,,5e,) + d(Fe,, 2, ) for all %, 5.,, Z., € X.

The soft set X with a soft metric d on X is called a soft metric space and denoted by (X,d, E).

Definition 2.13 (Cauchy Sequence): A sequence {J?M}n of soft points in ()? d, E) is considered as a Cauchy sequence
in X if corresponding to every &£ = 0,3m € N such that d(%y;, %,;) S &V i,j = m,ie. d(%;,%,;) > 0,asi,j > oo.

Definition 2.14 (Soft Complete Metric Space): A soft metric space ()? d, E) is called complete, if every Cauchy
Sequence in X converges to some point of X.

Definition 2.15[4]: Let X be a nonempty set and E be the nonempty set of parameters.

Let G: SE(X) x SE(X) x SE(X) - R(E)" be a function satisfying the following axioms:
(G,) Gxy,2)=0if x=§=2
(G,) G(x,%,5) >0 forall ¥=7€SE(X)withx =7
(G;) G(x,%75) <G% 7,2 forall %7,7€SE(X)withy + z
(G,) G(%95,2)=GC%25)=GF2x) =" (Symmetry in all three variables)
(G5) G(%,7,2) <G a,a)+G(a 7 z)foral %72 a€eX (Rectangle inequality)

Then the function G is called a soft generalized metric or soft G-metric on X and (X, G, E) is called a soft G-metric
space.

Definition 2.16: Let (X, G, E) be a soft G-metric space, let {X, }be a sequence of soft points of X, a soft point % € X is
said to the limit of the sequence {%,,}, if lim,_,., G (&, %, %) = 0. Then {%,} is G-convergent to X.

Proposition 2.17[4]: Let (X' G, E) be a soft G-metric space, then for a sequence {%,} € X and a soft point ¥ € X. The
following are equivalent

(i) {x,}is soft G-convergent to X.

(i) G(&,, %, %) > 0asn —> oo

(iii) G (%, %,%) - 0asn — oo

(iv) G (%, %,, %) > 0asm,n - oo,
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Definition 2.18: Let ()? G, E) be a soft G-metric space, then the sequence {%,,} is said to be soft G-Cauchy if for every
£ > Othere exists a positive integer N such that G(%,,%,, %) <e for all n,m,l >N ie. G(x, %y, x)— 0 as
n,m,l — oo,

Definition 2.19: A soft G-metric space ()? G, E) is said to be soft G-complete space if every soft G-Cauchy sequence
in (X,G,E) is G-convergent in (X, G, E).

Proposition 2.20[4]: Let (X,G,E), (X', G',E") be two soft G-metric spaces, then a function f:X — X' is soft G-
continuous at a soft point % € SE(X) if and only if it is soft G-sequentially continuous at ¥ € SE(X); i.e. whenever
{%,} is soft G-convergent to %, {f (%,)} is soft G-convergent to f (X).

3 MAIN RESULTS
Our main results of this article are as follows.

Theorem 3.1: Let (X,G,E) be a soft G-metric space and T:(X,G,E) —» (X,G,E) be a mapping that satisfies the
following condition
a,G(%, T, TX)G(X, Ty, TY)G(§,T7,T7) + a6 (5, Ty, T9)G(§,TX, TX)G (%, T2, TZ)
G Ty, TG, Tz TZ) + C(H, TX,TX)G (X, T TZ)
b1G(XTXTX)G(F,TXTX)G(ZTY,TY)+byG($,TY,TH)G(XTHTH)G(ZTXTX)
+ (3.1.1)
Gy, TXTX)G(ZTY TY)+G(X Ty, TY)G(ZTXTX)

G(TX,Ty,T2) <

Forall %,, 7 € SE(X)
G Ty, TG, T2, TZ) + G, TX, TZ)G(X,TZTZ) # 0 and
Gy, TxTX)G(Z Ty, TY) + G Ty, T)G(2,T%Tx) = 0
Where a;,b; = 0 (i = 1,2) and a; + a, + b; + b, < 1. Then T has a unique fixed point & and T is G-continuous at .

Proof: Let %, € SE()?) be an arbitrary soft element and define the sequence {%,} by
Tfo = fl‘ Tfl = fz, sz = £3, far s wen e Tfn = £n+1

Here we may assume that %, # X4, for eachn € N U {0}.
Consider,

G (xn' Xn+1» xn+1) =G ngn—lr Txn' Txn)~ B B B B
< 16 (En-1,T¥n—1,T%n-1)G (Fn—1,T%n,TXn) G (Xn,TEn,TEn) +a26 (X, TXn, TEn) G (Fn, Txn—1,TXn—1)G (Fn—1,TEn,TEn)

G(Xp—1,THn, T0) G (X, TR TXn)+G (X, TRy —1,TXy—1) G (X —1,T X0, TXy)
b1G(Xn—1,T¥n-1,T%n-1)C Fn.TEn—1TFn—1)G (Fn,TXn,T¥n) +b2 G (Fn, TXn,T¥n) G (Fn—1,T %0, TEn) G (X, T¥n—1,T¥n—1)
G, Txp—1,TEn—1)G (X, Txn, TXy) +G (Xy—1,TX, TXn) G (X, TRy —1,T X —1)
a16 (Fn—1%n0,%n) 6 Fn-1.8n+1.%n+1)G TnFnt1.8n+1)+026 FnFn+1.8n+1) 6 FnfnFn) 6 Fn—1.8n+1.%n+1)

B G141 8n41)6 En Zns 1 Ene 1) +6 EnXn En)G (Bn—1 Ty 1.8n41)
b1G(Xn—1,%n,%n) G (FnInTn) G (EnIn+1.8n+1) D26 (EnIn+1.8n+1)6 Fn—1.8n+1.8n+1) G (TnTn.n)

G (X I Xn) G (X Tn+1.8n+1)+6 (Xn—1,%n+1.%n+1)G FnXn,%n)

N+

+

G(fn' fn+1'55n+1) < alé(fn—ltfn' fn) (3-1-2)

On further decomposing we can write
G(fn—l' inrjzn) < alG(fn—Z'fn—l' in—l) (313)

By combination of (3.1.2) and (3.1.3) we have
G(fn' fn+1'55n+1) = a%G(fn—z' f11—1'5571—1)

On continuing this process n times
G(%n Xni1, Xny1) < afG(Xo, %y, %)

Then, foralln,m € N,n < m we have
G(fn' fm'f‘m) < G(fn'fn+1'£n+1) + G(fn+1'fn+2'£n+2) + et G(fm—lﬁfm' fm)

< (@ +att + -+ a6 (R, Xy, %)

a

< —— G (%, %y, %)
-

Therefore {%,} is soft G-Cauchy sequence. Since (X,G,E)is soft G-complete, there exists @& € SE(X) such that
{%,,} soft G-converges to .
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Form (3.1.1) we have
G (%, T, Tii) = G(T%,_,, Tii, Ti)
< a16G(Xp—1,T¥n—1,TFn-1)G (Fn—1, TELTE)G(ATALTR)+a,G W TUTE)G (W TXy—1,Txn—1)G(Xp—1,TALTE)
- G(Xp—1,TATE)G (ATUTH)+G (U TEp—1,Txp—1)G (Xy—1, TH,T)
b1G(Xp—1,Txn—1,TXn—1)G (AT Xn_1,T¥n—1)G (WTUTE)+b, G (WUTUTE)G (Xp—1,TLTE)G (W,TEp—1,TXn—1)
G(UTE—1,TRn—1)G(@TAUTR)+G (Xy—q, TUTH)G (AT Xy —1, TR —1)

Taking the limit of both sides of above asn — o vyields
G(@, T, Ti) < 0

Which implies that
G(@, T, Ti) =0
and hence @i = T

To prove uniqueness: suppose that @ and ¥ are two fixed point for T. Then
G(ii, 7, 7)) = G(Tw, TD, TD)
< a1 G@TATR)G(ATY,TY)G(®,TY,TH)+a,6(@,T9,T9)G (B, THTR)G (AT, TD)
- GATH,TH)G(D,TY,TH)+G(®,TUTH)G (ATH,TD)
b1 G(W,TU,TE)G (B, TUTR)G(B,TP,TP)+b,G(H,T,TD)G TP, TP)G (B, T TE)
G(B,TUTH)G(B,TH,T9)+G6 (W,TH,TP)G (D, TUTE)

+

G, 7,7) <0
=6, 7,7)=0
>U=7

To show that T is soft G-continuous at ii. Let {§,} be a sequence of soft elements in X such that {¥,,} — & then we can
deduce that
G(L, T T9) = G(TLT5, TH) ) ) )
< a1 GATELTE)G (T TIn,TIn) G FnTInTIn)+a26 (FnTInTIn)G Gn TLTE) G (T,Tn,TIn)
- ~ ~5(ﬁ:Tyn'Tyn)G(yn'Tyanyn)"'Q(yn‘TﬁrTﬁ)G(ﬁlTyn‘Tyn) ~
b1 G(ATUTL)G (I, TUTH) G (I, TInTIn)+b26 InTInTIn) G (W TInTIn) G (Fn TETE)
G (I, TUTE)G T, TIn TIn)+G @Tn,TIn) G (Fn, TUTE)

+

Taking the limit as n — oo from which we see that G (i, T¥,, T#,) — 0 and so, by proposition (2.17) we have that the
sequence T, is G — convergent to T#i = ii therefore proposition (2.20) implies that T is G-continuous at .

Theorem 3.2: Let (X,G,E) be a soft G-metric space and T:(X,G,E) —» (X,G,E) be a mapping that satisfies the
following condition for all %, 7, % € SE(X)
G(T%,T§,T?) < a,G(%, 7, %) + ay max {G(%, T%, T%), G G, T3, TH)}
+as; max{G(% Tz T2),G(X, Ty, Ty}
+a, max{G(%,7,2), G(%,T%,T%), G (5, Ty, Ty), S 2D EEIETD) (3.2.1)
Where a,,a,,as,a, = 0and 0 < a;, + a, + 2a; + 2a, < 1. Then T has a unique fixed point & and T is G-continuous
at .

Proof: Let x, € SE()?) be an arbitrary soft element and define the sequence {%,} by
Tfo = fl’ Tfl = fz, sz = 23, T Tfn = fn+1

Here we may assume that %, # X4, for eachn € N U {0}.
Consider

G(fn'f‘rwl' Xps1) = G’(Tfn—lﬁTfn'Tfn) B B
< alG (fn—lﬁ f‘ru fn) + a; max {G(fn—l' Tfn—lﬁ Tﬁn—l)' G (fn' szn' szn)}
+as max{G (%1, T%,, T%p), G(Xp_y, T%y, TX,)}
G(fn—lﬁ f‘ru fn)' G(fn—lﬁ Tfn—l' szn—l)' G(fn' Tﬁn' Tﬁn)'
+a, max G(Zpy, T, T%,) + G(Xp—y, T, TX,)
2
alé(fn—ll fzu in) + a; max~{6(fn—1' in' fn)r G‘:(fn' in+1' fn+1)}+a36(fn—1' in+1' fn+1)
+a4 maX{G (fn—l' in' fn)' G (fn' in+1' fn+1)' G(fn—ll fn+1' in+1)}
alé(fvl—lﬁ f‘ru fn) + az m~ax{6(fn—1' fn' fn)' G(fn' fn+1' fn+1)}
+a3{6(fn:1'fn'55n) + G(’En' fn+1'fn+1)} _ _
+a4 maX{G (fn—l' in' fn)' G (fn' in+1' fn+1)' G(fn—ll fn' fn) + G(fnr fn+1' in+1)}

IA

IA
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If G(fn' in+1' fn+1) > G(fn—l' in' fn)' then
G (X, X1, Xnar) < (ag + az + 2a3 + 2a4) G (X, Xy1, K1)

Which is a contradiction and therefore
~ B a, +a, +az+a,
G(xn' xn+1ﬁxn+1) < ( 1— a3 _ a4

G(fn' fn+1' fn+1) < kﬁ(fn—lﬁ f‘rv fn)

) E(fn—lﬁ f‘ru fn)

ajtaztaztay

Letk = <1

1-az—ay
Repeated n times, we get
G(fn' fn+1' fn+1) < k™ G(fo' f1' 521)

Then, for all n,m € N,n < m we have
G(fn' fmﬁjzm) < G(fnﬁfn+1'£n+1) + G(fntlﬁfn+2'£n+2) + -t G(fm—lﬁfm' fm)
< (KM kM 4+ K™D G (R, Xy, F)
n

< 1 ké(fo'fpfﬂ

Therefore {%,} is soft G-Cauchy sequence. Since (X,G,E)is soft G-complete, there exists @ € SE(X) such that
{%,} soft G-converges to .

Form (3.2.1) we have
G(Xp4q, Til, Ti1) = G(TX,, T, Ti)
< a,G(%,, %, @) + a, max {G(%,, T, T%,), G(%, T, Tii)}
+a; max{G (%, T%, T%), G(%,, T, TH)}

+a, max {G (%, 1, 1),G(%,, TX,, T%,), G(ii, T#, T1),

G (X, TU,TH)+G (J?n,Tﬁ,Tﬁ)}
2

Taking the limit as n — oo, and using the fact that the function G is continuous on its variable then we have
G (@, TiL, Ti) < (a, + az + a,)G (i, T, Til)

This contradiction implies that @ = T

To prove uniqueness, suppose that i and ¥ are two fixed points of T. Then by inequality (3.2.1) we have
G(@L,¥,7) = G(TH, T?, TH)
< a,G (i, 7, ) + a, max {G (@1, T4, T), G(D, TD, TH)}
+as max{G (&, T¥,TP),G(&,T?,TV)}

+a, max {6 (@, 7, 9), G (@, T, T), G(5, T, TD),

GALTD,TD)+G (ﬁ,Tf;,Tf;)}
2

= G(i,7,7) < (a; + as + a,)G(#, B, ¥)
=G, 7,9) =0
Which implies that @i = 7.

To show that T is soft G-continuous at . Let {§,} be a sequence of soft elements in X such that {¥,} — & then we can
deduce that
G (@, Ty, THy) = G (TT, TFy, TFy) i i
< a,G(i, }7,1,3711) + a, max {G~(ﬁ, T, Ti), Gy, TPn, TH)}
+as max{G (&, TF,, ), G(@& TH,, T9,)}

+a, max {5 (@ Jny ), G (@, T, T), G Gy T, TFn),

< alé(ﬁ' 3711' j?:n) + a 6(57.,}: Tyn' Tyn)+a3 Q(ﬁ' Tyn' Tyn)
+aq max{G (@ Jn, In), G Gy T, TPn), G (@ T, T5)} (322)

G (@, T, TF) + G(@, TFn, Tin)}
2

Now following three cases are arise:
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Case-1: If max{G (& $,, 7,), G G, THn, TH), G (&L, TH,, TH,)} = G (&, $,, 3,) then condition (3.2.2) reduces to
~ s ~ (a1+a4)G (@0, In)+a2 6 (Fn &,0)
G0, TYn, TPy) < eytan)

Taking the limitas n — oo from which we see that
G(@, TPy, TPn) — 0

Case - 11: If max{G (&, , $), GG, TPy, TH,), G (@, THn, TFn)} = G (Fn, THn, TF,) then condition (3.2.2) reduces to
JUR G(@ynyn)+( )G (I, B 10)
G(@ TP, Tn) < = 1):(a2+a;:+a:4) =

Taking the limit as n — oo from which we see that
G(@, TFn, THn) — 0

Case - 11: 1f max{G (& $,, $,), G G, THn, TH), G (&L, TH,, TH,)} = G (&, TH,, TF,) then condition (3.2.2) reduces to

~ s ~ a1 G (& Jn,In)+0a2G (T, 0,00)
<
G (&, Ty, TH,) < e aratan

Taking the limit as n — oo from which we see that
G, T9n, THn) — 0

Taking the limit as n — oo from which we see that G (4, T¥,, T#,) — 0 and so, by proposition (2.17) we have that the
sequence T, is G — convergent to T# = ii therefore proposition (2.20) implies that T is G-continuous at .

Theorem 3.3: Let (X,G,E) be a soft G-metric space and T:(X,G,E) —» (X,G,E) be a mapping that satisfies the
following condition for all %, 7, Z € SE(X)
G Ty, Ty) + G(%, T2 T?)

G(TX,Ty,T?) < a

+ﬁ G(X,Ty TG (J?,T37,7:372+Ci(9?,~7'2,712)~+G})?,TJ?,TJ?)+G(Z,T)?,Tf)] (331)
2[6(X,Ty,TY)+G(F,TXTX)]

Where 0 < (a + B) < % . Then T has a unique fixed point & and T is G-continuous at .

Proof: Let x, € SE()?) be an arbitrary soft element and define the sequence {%,} by
Tio = fl’ Tfl = fz, sz = f3, TR Tfn = fn+1

Here we may assume that %, # X, 4, foreachn € N U {0}.

Consider

G (fn' fn+1' in+1) =G (Tfn—lr Tin' Tin)
<a G(Xn—1,TXn,TE)+G(Xn—1,TZn,TXy)

2
+,B G (Xn—1,TEn,TXn)[G (Xpn—1,TXn,THn)+G6 (Xn—1,TXn,Tn) +6 (X, Tn—1,Txn—1)+6 (Xn,TXn—1,Txn—1)]
K } 2[G(Rp—1,T X, TXp) +G (X, T —1,Txn—-1)]
a G(En—1.%n+1%n+1)+6 Fn—1.8n+1.8n+1)

+8 G(En—1%n+1%n+1)[6 En—1.Fn+1.%Fn+1)+6 Fn—1.8n+1.Fn+1)+6 FnInFn) +G (FnFnXn)]
~ 3[G(fn—1rfn+1‘fn+1)+G~(fnrfnrfn)]
< C(G (xn—l' Xn+1 xn+1) + .BG (xn—l' Xn+1 xn+1)

(1 —a— ﬁ)é(fnrfn+1' in+1) < (6( + ﬁ)é(fn—llfn' in)

Rre o~ ~ (@+B) Ao~ = =
G(xn' xn+1rxn+1) < mG(xn—lrxn' xn)

G(fn' in+1' fn+1) < Ké(fn—l' in' fn)

Let K = = (33.2)

On further decomposing we can write
G(fn—l' inrjzn) = KG(fn—Z'in—lrfn—l) (333)

By combination of (3.3.2) and (3.3.3) we have
G(xn' Xn+1 xn+1) < KZG(fn—Z' fn—lﬁ fn—l)
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On continuing this process n times
G(%n Xni1, Xny1) < K'G (%o, %1, %1)

Thenforalln,m € N,n < m we have
G(fn' fm' f‘m) < G(fn' fn+1' fn+1) + G(£n+1' J_Ctn+2' fn+2)+- . +G(5Em—1' f‘rm fm)
S K"+ K" 4 L+ K™DYG (%, %, %)

K" ~. . . .
< EG(xO'xl'xl)

Therefore {%,} is soft G-Cauchy sequence. Since (X,G,E)is soft G-complete, there exists @& € SE(X) such that
{%,} soft G-converges to .

Form (3.3.1) we have
“G(%,, T, Tii) = G(TX,_,, T, Til)
- G(Xp_y, Til, TT) + G (%,_4, TT, TiL)
sa

n ﬁ G(&pn—1,TALTD)[G(Xp—1, TELTE)+G (X1, TLTE)+G (W THp—1,TEn—1)+G6 (A,TXn—_1,Txn—_1)]
2[G(Rp—1,TLTL)+GATXn—1,T¥n-1)]
a G(Xp—1,TATR)+G (Xy—1,TUTE)

2
G (®p—1, TUTI)[G (Xn—1, TUTH)+G (X1, TUTE) +G (U,Xn,%n) +G6 (U, X0, %n)]
2[G (R —1, TH,TU)+G (T, %, %n)]

+B

Taking the limit of both sides of above as n — oo yields
G(@, TiL, Ti) < (a + B)G (@1, T, TiL)

This contradiction implies that @ = T1i.

To prove uniqueness, suppose that @i and ¥ are two fixed point for T. Then
G(@, 7, 7) = G(Ta, T?, TD)
< G(&,TD,TP)+G (LT TH) ny G(&LTH,TH)[G(W,T,TH)+GWTD,TD)+G6(B,TLTE)+G(P,TELTE)]
=a 2 2[G(T,TH,TH)+G (P, TUTH)]

G(@L, 7, %) < aG (@, 7, ) + BG (i, B, ¥)
G, ¥, %) < (a + B)G(@L, D, D)
= G(@,7,9) =0

Since (e +p) <1
SU=7

To show that T is soft G-continuous at . Let {§,} be a sequence of soft elements in X such that {¥,} — & then we can
deduce that
G TP, TPn) = G(T, TFn, TH)
< GCATInTIn)+G6ATInTIn)
sa 2
+ﬁ G@,TIn,TIn)[GALT I, TIn)+G(UTIn,T¥n)+G (I, TUTU)+G (Jn, T, T)]
2[G(TTInTIn)+G (Fn, TUTH)]

G (@, TH, TH) < (a + B)GC @, TP, TH,)
G, TP, TH,) <0

Taking the limit as n — oo from which we see that G (i, T¥,, T#,) — 0 and so, by proposition (2.17) we have that the
sequence T, is G — convergent to T# = ii therefore proposition (2.20) implies that T is G-continuous at .

Theorem 3.4: Let (X,G,E) be a soft G-metric space and T:(X,G,E) —» (X,G,E) be a mapping that satisfies the
following condition for all %, 7,z € SE(X)
G(T%,T9,TZ) < amin{G(X,T% T%),C(¥,Ty,T9),6(2TzT%),G(%,7,2)}
e @4
Where @, = 0 and ¢ + 38 < 1 Then T has a unique fixed point & and T is G-continuous at .
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Proof: Let x, € SE()?) be an arbitrary soft element and define the sequence {%,} by
Tfo = fl‘ Tfl = fz, sz = £3, far s wen e Tfn = £n+1

G (fn' in+1' fn+1) =G (Tfnzlr Tfn' Tfn) ~ _ ~
< amin{G(&p_y, TEn—1, T¥y_1), G (%, T, T%y), G (%, T, T%p), G (%—y, Fn, %) }
+ﬁ [G(%n—erfn—linn—l)"'GEfanfn—1‘T’?n—1)+5~(9?n—1r7‘fnr7‘fn)
1+§ (fn—irTfn—lvan—i) G, Txn-1,Txn-1) g(fn—lvaanfn) 5
a min{G (fn—lt fn' fn)' G (fn' fn+1' fn+1)' G (fn' fn+1' f‘n+1)' G (fn—lt fn' f‘n)}
+ﬁ [5(9?71—1rfnrfn)+G~(fnrfn‘fn)+6~(fn—1rfn+1‘fn+1)

1+G (Xn—1,%n.%n) G (Xn%nXn) G (Fn—1.%n+1.%n+1)

IA

sa min‘l{g(fn—lt fn' fn)' (?:(fn' fn+1' fn+1)}
+ﬁ [G(fn—llfn' in) + G(fn—llfn+1' in+1)] (342)
Here two cases are arise
Case — I: If min{G(%,—1, %n, %n), G (Fn, Fns1, ¥nr1)} = Gy, %, %)

Then condition (3.4.2) reduces to
G (fn' in+1' fn+1) < aG(fn—l' in' fn) + .8 [G (fn—ll fn' in) + G (fn—l' in+1' fn+1)]

(1 - ﬁ)é(fn'f‘rwlt fn+1) < ((X + Zﬁ)g(fn—l'fn' fn)

~ B (a+2pB) . _ o
G(xn' xn+1ﬁxn+1) < —G(xn—l'xnﬁxn)

- a=-m
G(fn' in+1r3zn+1) =< Ké(fn—lrfnrfn)

_ (a+2B)
LetK = .

On continuing this process n times
G(%n Xni1, Xny1) < K'G (%o, %y, %1)

Case — I1: If min{G(%,_1, %, %), G (X, Xy 1, Xpy1)} = G(Z, Fni1) Fnir)

Then condition (3.4.2) reduces to
G (fn' in+1' fn+1) < aG(fn' in+1' fn+1) + .8 [G (fn—l' in' in) + G (fn—l' in+1' fn+1)]

(1 —a-— ﬁ)é(fnrfn+1' in+1) < 2:3 G(fn—llfn' in)

2B
a—=p)

G(fn' fn+1'55n+1) < (1 _ G(fn—lﬁfn' fn)

G(fn' fn+1' fn+1) < Ké(fn—lﬁ fn' fn)

2B

LetK = el

On continuing this process n times
G(fn' in+1r3zn+1) < KnG(iOrflrfl)

Then for alln,m € N, n < m we have
G(fn' imr fm) < G(fnr fn+1' in+1) + G(fn+1' )En+2' in+2)+- . +G(fm—1' fm' im)
S (K" + K" 4 L+ K™ DG (%, %, %)

K" ~. . . .
< EG(xo'xpxﬂ

Therefore {%,} is soft G-Cauchy sequence. Since (X,G,E)is soft G-complete, there exists @ € SE(X) such that
{%,} soft G-converges to .
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Form (3.4.1) we have
G (i, T, Tit) = G(%,, T, Tit) = G(T%,_,, T1i, TiL)

< amin{G(X,_y, TFn_1, T%y_1), G(@& T, TR), G(&, T TH), G(Xp_y, @, %)}
G(&py, TRy_1, TRy 1) + G(i, T p_1, TRy_1) + G (%_q, Ti, TiL)
[1 + G(Xp1, Tp_1, TRy_1) G(il, TXp_1, TRy_1) G (%p_q, Til, TiL)

< amin{G(X,_y, %, %), G(&, T, TH), G (@&, TH TH), G(%,_q, %, @)}
G(Zpoq, Xn, &) + G (T, %, %) + G(%,_y, T, TT)

g [1 + G (Fpy_q, X, %) G (T, %, %) G(Xpy_q, T, THH)

Taking the limit as taking the limitas n — oo
G(@, T4, Ta) < BG(&, TH, TiL)

Since g < 1.

Which implies that
G, T, Ti) =0

And hence @ = T1i.

To prove uniqueness suppose that % and ¢ are two fixed point for T. Then
G(#,7,7) = G(TiL, TP, TY)
< amin{G(@, T#, TH),C(®,T?,TV),G(#,T?,T), G(& 7, 7)}
,8 [G”(ﬁ,Tﬁ,Tﬁ)+G ®,T4TR)+G(WTD,TD)
1+G6 (W,T8,TH) G(¥,TUTE) G1LTD,TD)

< BG(®,4,10)

1]

()]

(@, 7, %) < 2BG(u, 7,v)
a contradiction. Therefore, G(ii, ¥, 7) = 0
Henceti = ¥

To show that T is soft G-continuous at . Let {§,} be a sequence of soft elements in X such that {§,} —  then we can
deduce that

Using (3.4.1)
"G, Ty, TYp) = G(TT, T5,, TFy)
< amin{G (@, T, TR), G G, T9n, TFn), G G T, Tn), G (@ Fr In)}
G(@, T, T) + G (Fp, TR, TR) + G (&, TFp, TH)
1+ G(@, T, TR)G (§, T, TG (&, TFp, TF0)
< BIG G @, 10) + G (@, Ty, )]

G TTn TTn) < 1256 &, D)

Taking the limit as n — oo from which we see that G (4, T¥,, T#,) — 0 and so, by proposition (2.17) we have that the
sequence T, is G — convergent to T# = ii therefore proposition (2.20) implies that T is G-continuous at .

Theorem 3.5: Let (X,G,E) be a soft G-metric space and T:(X,G,E) - (X,G,E) be a mapping that satisfies the
following condition for all %, 7,7 € SE(X)
G(TX,Ty,T%) < aG(%,9,2) + B[G(X, Ty, T9) + G(%, TZ,T2)|
4y EEIDULCETITI | 5[5(f,T37:T37){7(37~,T37,T37) (35.1)
1+G(X,TZTZ) G(ZTyTY)
Where e, 8,7y, 6 =2 0anda+48+y+25 <1

Then T has a unique fixed point % and T is G-continuous at .

Proof: Let x, € SE ()?) be an arbitrary soft element and define the sequence {X,} by
Tio = fl’ Tfl = fz, sz = f3, TR Tfn = fn+1

Here we may assume that X,, # X,
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Consider,
G (fn' Xn+1r fn+1) = GSTfn—lﬁ Tx,, Tfn) B B
< aG(Fp_y, %n, %n) + PG Xy, TR, TE,) + G (%y_q, TR, TH,)]
+ G(Xp—1,%n %) 146 (K1, T%n,TZn)] +5 [G(fn—1‘Tfanfn)-G(fanfn‘Tfn) ]
14 1+G (X1, T %0, TXn) G (&n, TEn,TXy)
< aG(fn—lﬁ f‘ru fn) + B[G (fn—lt fn+1' fn+1) + G(fn—lﬁ fn+1' fn+1)]
+y G (Xn—1.%n ) [1+6 (Fn—1.8n+1.%n+1)] +68 [5(fn—1'fn+1rfn+1)-5(fn'fn+1rfn+1)
5 146 (Fn-1.8n+1,5n+1) G(XnFn+1.8n+1)
<aG (%n—l' in' fn) + ZﬁGgfn—lr fn+1' in+1)
'tyG (fn—l' in' fn) + 59()?71_1, fn+1' in+12
< aG (fn—lt fn' fn) + Zﬁ [G (fn—lﬁ f‘ru fn) + G (fn' fn+1' fn+1)]
+}/G (fn—l' in' fn) + 6[G(fn—1' in' fn) + G(fn' in+1' fn+1)]

(1 - 2.3 - S)G(anfn+1' in+1) < (6( + 2:3 + Y + 6)G(fn—1' inrjzn)
< a+2f+y+6

= 1-28-6 G(fn—lt fn' fn)

= G(fnﬁfn+1' fn+1) < Ké(fn—lt f11'55n)

a+2f+y+8
Let Tps - K
On continuing this process n times

G(fn' in+1' fn+1) < Kné(fm fll fl)

Then for all m,n € N,n < m we have
G(fn' imr fm) S G(fnr fn+1' in+1) + G(fn+1' )En+2' in+2)+- . +G(fm—1' fm' im)
S K"+ KM+ L+ K™Y G (R, X, %)

K" ~ . . .
< EG(xo'xpxﬂ

Therefore {%,} is soft G-Cauchy sequence. Since (X,G,E)is soft G-complete, there exists @ € SE(X) such that
{%,} soft G-converges to .

Form (3.5.1) we have
G, T, TH) = G(%,, TH, Ti) = G(TX,_q, T, Tii)
< aG(Fny, 0,0 + B[G(Fyoy, TH, TH) + G(Xy_y, T, T)]
+y G(J?n_l,ﬁ,l?)[1+5(fn_1,Tﬁ,Tﬁ)] 5 [G(fn_1,Tﬁ,Tﬁ).G(ﬁ,Tﬁ,Ti1)
1+G (%p—1,THTIL) G (1L, T, TT)

Taking the limit as taking the limitas n — oo
G(@, T, Ti) < (28 + 6)G (i, T, TiL)

Since(2+6) <1
G(@, T, Ti) =0

And hence @i = T

To prove uniqueness suppose that % and ¥ are two fixed point for T. Then
G(@, ¥, %) = G(T#i, TD, TH)
<aG(@,9,9) + B[GE,TD, TP) + G(@, TH, TH)|
G@, 7,91+ GC@,T?, TH)] G, To,T).G(D,T?, TH)
1+ G@L, To, TY) G, TH,TH)

=G, 7,7) < (a+2B8+y+8)G(#L, 7, D)
Since (a+28+y+6) <1
= G4, 7,7) =0

To show that T is soft G-continuous at . Let {§,} be a sequence of soft elements in X such that {§,} —  then we can
deduce that
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Using (3.5.1)
G0, TYn, TPn) = G(TT THn, THy)
< aG (@, Jn, Fn) + BIG (&, TP, THr) + G(@, TFy, TH,)]
+ G InIn)[1+6 @ TIn,Tn)] 5 [G (@&TInTIn)-G FnTInTIn) ]
1+G(@TY,TIn) GC(FnTInTIn)

a+y

= G(iL, TV, Ty,) < ReerIv G (T, Yo )

Taking the limit as n — oo from which we see that G (%, T¥,, T#,) — 0 and so, by proposition (2.17) we have that the
sequence T, is G — convergent to T4 = i therefore proposition (2.20) implies that T is G-continuous at i.
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