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ABSTRACT 
In this paper, we prove that - 
(1) In the definition of an incline algebra K  with zero element 0 , the conditions  
   (i) aa =+ 0  for all Ka∈  and (ii) 000 =∗=∗ aa  for all Ka∈  are equivalent and hence any one of them  
        can be deleted.     
(2) "Every irreducible ideal of an incline algebra is not prime" is shown by giving an example.  
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0. INTRODUCTION 
 
Sun Shin Ahn, young bae Jun and Hee Sik Kim [1] introduced and studied the concepts - Sub incline, ideal, quotients 
of an incline algebras, prime ideal, irreducible  ideal and maximal ideal of an incline algebra and their properties. 
 
1. PRELIMINARIES  
 
Definition 1.1: [1]. Incline algebra: A system ( )∗+ ,,K , where K  is a non empty set ""+  and ""∗  are binary 
operations on K  satisfying the following axioms is called an incline algebra. 

(i) xyyx +=+  ( + is commutative)  

(ii) ( ) ( )x y z x y z+ + = + +  (+  is associative)  

(iii) ( ) ( ) zyxzyx ∗∗=∗∗  (∗  is associative)  

(iv) ( ) ( ) ( )zxyxzyx ∗+∗=+∗  (∗  is left distributive)  

(v) ( ) ( ) ( )y z x y x z x+ ∗ = ∗ + ∗  (∗   is right distributive)  
(vi) x x x+ =  (+  is idempotent)  

(vii) ( ) xyxx =∗+  

(viii) ( ) yyxy =+ *  for all Kzyx ∈,,   
 
Definition 1.2: [1]. Let ( )∗+ ,,K  be an incline algebra. 

(i) K  is called commutative if  
xyyx *=∗  for all ,x y K∈ . 

(ii) An element K∈0  is called a zero element if  
xx =+ 0 and 0*00* == xx  for all Kx∈  

(iii) An element K∈1 is called a multiplicative identity if  
xxx == *11* for all Kx∈  
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Clearly, every distributive lattice ( )∧∨ ,,K  is an incline algebra ( )∗+ ,,K  with ∨=+  and ∧=* . Every incline 
algebra is not a distributive as the following example shows 
 
Example 1.3: Consider the system ( )∗+ ,,K where { }1,0=K  and the binary operations +  and ∗  are given by 
 

+  0 1 
0 0 1 
1 1 1 

 
This system is an incline algebra but not a distributive lattice since 110 ∧= (by the definition of  ∧ ) 1≠ . 
 
Note 1.3.1: Let ( )∗+ ,,K  be an incline algebra. From axioms (i), (ii), (vi), ( )+,K  is a semi lattice and hence the 
binary relation ≤  on K , defined by "" yyxyx =+⇔≤  is a partial ordering on K , such that for any 

{ }yxbulyxKyx ,..,, =∨∈  exists and yxyx +=∨ . 
 
Definition 1.4: [1]. A sub incline of an incline (algebra) ( )∗+ ,,K  is a non empty subset M of K   which is closed 
under the operations  +  and ∗  

i.e., " , , * ".x y M x y M x y M∈ ⇒ + ∈ ∈  
 
Definition 1.5: [1]. A sub incline M of an incline algebra ( )∗+ ,,K  is called an ideal if " , , "x M y K y x y M∈ ∈ ≤ ⇒ ∈  
 
Note 1.5.1: An ideal M  of an incline algebra K  is called proper if KM ≠ . By the definition, every ideal of an 
incline algebra is a sub incline.  Converse is not true as the following example shows. 
 
Example 1.6: Consider the incline algebra ( )∗+ ,,K  where { }aK ,1,0=  the binary operations +  and ∗  are given 
by 

+  0 1 a 
0 0 1 a 
1 1 1 a 
a a a a 

 
Here { }aM ,0=  is clearly, a sub incline of K . Clearly a≤1 (since aa =+1 ), ,a M∈ but M∉1 . So, M  is 
not an ideal of K . 
 
Definition 1.7: [1]. A proper ideal I  of an incline algebra ( )∗+ ,,K  

(i) prime if 
 "*,," IborIaIbaKba ∈∈⇒∈∈   

(ii) maximal ideal if  
N" is an ideal of K , ", KNorNINI ==⇒⊆  

(iii) an irreducible ideal if 
"" IBorIAIBA ==⇒=∩ for any ideals A  and B  of K  

 
Theorem 1.8: [1]. Let I  be a proper ideal of an incline algebra K . The following statements are equivalent. 

(a) I  is an irreducible ideal.  
(b) I  is prime.  
(c)  IBorIAIBA ⊆⊆⇒⊆∩  for any ideals  A  and B  of K  

 
2. MAIN RESULTS OF THE PAPER 
 
We begin with the following 
 
Theorem 2.1: Let ( ), ,K + ∗  be an incline algebra. For any ,x y K∈ , x y∗  is a lower bound of  { },x y   

i.e., , .x y x x y y∗ ≤ ∗ ≤  
 

∗  0 1 
0 0 0 
1 0 0 

∗  0 1 a 
0 0 0 0 
1 0 0 0 
a 0 0 0 
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Proof: Let ,x y K∈ . Now, x x y x+ ∗ =  (by (vii) of def 1.1)  

⇒ x y x x∗ + =  (by (i)of def1.1) 
⇒  x y x∗ ≤  
       y x y y+ ∗ =  (by (viii) of def 1.1) 
⇒ x y y y∗ + =  (by (i) of def 1.1) 
⇒ x y y∗ ≤  

Hence, x y∗  is a lower bound of { },x y . 
 
Note 2.1.1: Interchanging x  and y  in theorem 2.1, we have that for any ,x y K∈ , y x∗  is also a lower bound of 

{ },x y . 
 
Theorem 2.2: Let K  be an incline algebra.  Let 0 K∈ . Then, the following statements are equivalent. 

(i) 0a a+ =  for all a K∈ : 
(ii) 0  is the least element of K  i:e, 0 a≤  for all a K∈  
(iii) 0 0 0a a∗ = = ∗  for all a K∈  

 
Proof:  
(i)  ⇒  (ii): Trivial by the definition of  ≤  .  
 
(ii) ⇒  (iii): Assume (ii). Let a K∈ . By theorem 2.1, 0 0 , 0 0a a∗ ≤ ∗ ≤ . Since 0  is the least element of K,  
                      We have 0 0a≤ ∗  and 0 0 a≤ ∗ .  
 
Hence 0 0 0a a∗ = = ∗ .  
 
(iii) ⇒  (i): Assume (iii) .  For any a K∈ ,  

0a a a= + ∗ (by (vii) of definition 1.1)  
    0a= +  (by our assumption). 
 

Hence the theorem. 
 
Note 2.2.1: Since (i) and (iii) are equivalent in theorem 2.2, we can retain any one of " 0a a+ =  for all "a K∈  
and " 0 0 0a a∗ = ∗ =  for all "a K∈  in the definition 1.2 (ii) of zero element in the preliminaries. 
 
Theorem 2.3: Let I  be a proper ideal of an incline algebra K . Consider the following statements. 

(a) I  is an irreducible ideal.  
(b) I  is prime.  
(c) A B I A I∩ ⊆ ⇒ ⊆ or B I⊆  for any ideals A  and B  of K  Then, (b) ⇒  (c) ⇒  (a) holds.  

 
Proof: 
(b) ⇒  (c): Assume (b). Suppose (c) fails i.e., there exist ideals ,A B  of K such that ,A I B I⊄ ⊄  and A B I∩ ⊆ . 
So, there exist elements ,x y  in K  suchthat ,x A I y B I∈ − ∈ − . By theorem 2.1, x y x∗ ≤  and x y y∗ ≤ . 
Since A  and B  are ideals, x y A B∗ ∈ ∩ . Since A B I∩ ⊆ , we have that x y I∗ ∈ . 
 
Since I  is prime (by our assumption), either x I∈  or y I∈ , a contradiction. Hence (c) holds. 
 
(c) ⇒  (a): Trivial. 
 
Note 2.3.1: In [1], it is prove that the statements (a),(b) and (c) of theorem 2.3 are equivalent(see theorem 1.8. in the 
preliminaries). But this is not true as the following example shows. 
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Example 2.4: Consider the incline algebra ( ), ,K + ∗ of the example 1.6. Clearly, { }0I = and { }0,1J = are the 

only proper ideals of K . Clearly, I and J  are irreducible ideals of K . I  is not a prime ideal since a I∉ and 
0a a I∗ = ∈ . Similarly, J  is not a prime ideal. 
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