A Pál Type \((0, 1; 0)\) Interpolation Process on Laguerre Polynomial

R. SRIVASTAVA1, GEETA VISHWAKARMA2

Department of Mathematics and Astronomy, Lucknow University, Lucknow, INDIA – 226007.

(Received On: 14-06-17; Revised & Accepted On: 12-07-17)

ABSTRACT

In the present paper, we have considered the problem in which \(\{x_i\}_{i=1}^{n} \) and \(\{\xi_i\}_{i=1}^{n} \) be the two sets of interscaled nodal points on the interval \([0, \infty)\). Here we deal with the problem in which one set consists of the nodes of \(L_n^k(x) \) and other consists of the nodes of \(L_n^{k-1}(x) \). We investigate the existence, uniqueness explicit representation of interpolatory polynomial. Estimation of the fundamental polynomials have also been obtained.

Keywords: lacunary Interpolation, Pál - Type Interpolation, Laguerre Polynomial.

MSC 2000: 41 A 05 65 D 32.

1. INTRODUCTION

J. Balázs [2] was the first to give the solution of the problem with the nodes as the zeros of ultra spherical polynomial \(p_n^{(\alpha)}(x) \) \((\alpha > -1)\) and the weight function \((x) = (1 - x^2)^{\frac{1+\alpha}{2}}, \ x \in [-1, 1] \). He proved that generally there do exist any polynomial \(R_n(x) \) of degree \(\leq 2n-1 \) satisfying the conditions:

\[
R_n(x) = g_i^*, \quad (\omega R_n)’(\xi_i) = g_i^{**} \quad \text{for} \ i = 1(1)n
\]

where \(g_i^* \) and \(g_i^{**} \) are arbitrary real numbers. However taking an additional condition

\[
R_n(0) = \sum_{i=1}^{n} a_i x_i^l \tag{1.3}
\]

where 0 is not a nodal point. In 1984, L. Szili [13] studied analogous problem with the nodes as the roots of \(H_n(x) \), the Hermite polynomial and weight function \(\omega(x) = e^{(-x^2)} \). Pál [10] proved that for a given arbitrary numbers \(\{a_i^\prime\}_{i=1}^{n} \) and \(\{\beta_i^\prime\}_{i=1}^{n} \) there exists a unique polynomial of degree \(\leq 2n-1 \) satisfying the conditions:

\[
R_n(x) = a_i^*, \quad \text{for} \ i = 1(1)n \quad (\omega R_n)’(\xi_i) = \beta_i^* \quad \text{for} \ i = 1(1)n - 1, \quad \text{with an initial condition} \quad R_n(0) = 0 \quad \text{where} \ a \ \text{is a given point, different from the nodal points} \ {x_i}_{i=1}^{n} \ \text{and} \ {y_j}_{j=1}^{n} \ \text{. In this paper we study Pál – type interpolational polynomial with} \ \omega_{n+k}(x) = x^k L_n^{(k)}(x) \ \text{. We have determined the existence, uniqueness, explicit representation and estimation of fundamental polynomials of such special kind of mixed type of interpolation on interval} \ [0, \infty) \text{. Let} \ \{x_i\}_{i=1}^{n} \ \text{and} \ \{\xi_i\}_{i=1}^{n} \ \text{be the two sets of interscaled nodal points on the interval} \ [0, \infty) \text{. We seek to determine a polynomial} \ R_n(x) \ \text{of minimal possible degree} \ \leq 3n+k \text{ satisfying the interpolatory conditions:}
\]

\[
R_n(x) = g_i^*, \quad R_n’(x_k) = g_i^{*}\quad \text{, } \quad R_n(0) = g_0^j \quad \text{, } \quad j = 0, 1, \ldots, k \tag{1.3}
\]

where \(g_i^* \), \(g_i^{**} \) and \(g_0^j \) are arbitrary real numbers. Here Laguerre polynomials \(L_n^{(k)}(x) \) and \(L_n^{(k-1)}(x) \) have zeroes \(\{x_i\}_{i=1}^{n} \ \text{and} \ \{\xi_i\}_{i=1}^{n} \ \text{respectively and} \ x_0 = 0 \). We prove existence, uniqueness, explicit representation and estimation of fundamental polynomials.

2. PRELIMINARIES

In this section we shall give some well-known results which are as follows:

As we know that the Laguerre polynomial is a constant multiple of a confluent hypergeometric function so the differential equation is given by

\[
xD^2 L_n^{(k)}(x) + (1 + k - x)DL_n^{(k)}(x) + nL_n^{(k)}(x) = 0 \tag{2.1}
\]

\[
L_n^{(k-1)'}(x) = -L_n^{(k)}(x) \tag{2.2}
\]
Similarly using the identities
\begin{align}
L_n^{(k)}(x) &= l_n^{(k+1)}(x) - L_{n-1}^{(k+1)}(x) \\
xL_n^{(k)}(x) &= nL_n^{(k)}(x) - (n+k)L_{n-1}^{(k)}(x)
\end{align}

We can easily find a relation
\begin{align}
\frac{d}{dx}[x^kL_n^k(x)] &= (n+k)x^{k-1}L_n^{(k-1)}(x)
\end{align}

By the following conditions of orthogonality and normalization we define Laguerre polynomial $L_n^{(k)}(x)$, for $k > -1$
\begin{align}
\int_0^\infty e^{-x}x^kL_n^{(k)}(x)L_m^{(k)}(x)dx &= \Gamma(k+1)\binom{n+k}{n} \delta_{nm}, m = 0, 1, 2, \ldots.
\end{align}

\begin{align}
L_n^{(k)}(x) &= \sum_{\mu=0}^{n} \binom{n+k}{n-\mu} \frac{(-x)^\mu}{\mu!}
\end{align}

The fundamental polynomials of Lagrange interpolation are given by
\begin{align}
l_j(x) &= \frac{l_n^{(k)}(x)}{l_n^{(k)}(x_j)(x-x_j)} = \delta_{ij} \\
l_j'(x) &= \frac{l_n^{(k-1)}(x)}{l_n^{(k-1)}(x_j)(x-x_j)} = \delta_{ij} \\
l_j''(y_j) &= \begin{cases} \frac{l_n^{(k-1)}(y_j)}{l_n^{(k-1)}(y_j)(y_j-y_j)} - \frac{(k-y_j)}{y_j} & i \neq j \\ i = j = 1(1)n \end{cases} \\
l_j'(y_j) &= \frac{1}{(x_j-y_j)} \frac{l_n^{(k)}(y_j)}{l_n^{(k)}(x_j)(y_j-x_j)} - \frac{l_n^{(k)}(y_j)}{l_n^{(k)}(x_j)(x_j-y_j)}, \quad j = 1(1)n
\end{align}

For the roots of $L_n^{(k)}(x)$ we have
\begin{align}
x_k^2 &\sim \frac{k^2}{n} \\
\eta(x)|S_n^{(j)}(x)| &= O(1) \quad \text{where} \ \eta(x) \ \text{is the weight function} \\
|L_n^{(k)}(x_j)| &\sim j^{-k-\frac{3}{2}n+\frac{1}{2}}, \quad 0 < x_j \leq \Omega, \quad n = 1, 2, 3, \ldots.
\end{align}

\begin{align}
|L_n^k(x_j)| &= \begin{cases} x^{-\frac{k-1}{2}} \binom{k-1}{n} \frac{1}{(n+k)^{\frac{4}{2}}}, & cn^{-1} \leq x \leq \Omega \\ 0(n^k), & 0 \leq x \leq cn^{-1} \end{cases}
\end{align}

3. NEW RESULTS

Theorem 1: For $n > 1$ fixed integer let $\{g_i\}_{i=1}^n$, $\{g_i^*\}_{i=1}^n$, $\{g_i^{**}\}_{i=1}^n$ and $\{g_0^{(j)}\}_{j=0}^k$ are arbitrary real numbers then there exists a unique polynomial $R_n(x)$ of minimal possible degree $\leq 3n+k$ on the nodal points (1.1) satisfying the condition (1.2) and (1.3). The polynomial $R_n(x)$ can be written in the form
\begin{align}
R_n(x) &= \sum_{j=1}^n U_j(x)g_j + \sum_{j=1}^n V_j(x)g_j^* + \sum_{j=1}^n W_j(x)g_j^{**} + \sum_{j=0}^k C_j(x)g_0^{(j)}
\end{align}

where $U_j(x)$, $V_j(x)$, $W_j(x)$ and $C_j(x)$ are fundamental polynomials of degree $\leq 3n+k$ given by
\begin{align}
U_j(x) &= \frac{x^{k+1} l_n^{(k)}(x_j) [l_n^{(k)}(x)]^2 [1 - z(x-x_j)]}{x_j^{k+1} l_n^{(k)}(x_j)} \\
V_j(x) &= \frac{x^{k+1} l_n^{(k)}(x_j) [l_n^{(k)}(x)]^2 [1 - z(x-x_j)]}{x_j^{k+1} l_n^{(k)}(x_j) l_n^{(k-1)}(x_j)}
\end{align}
(3.4) \[W_j(x) = \frac{x^{k+1}l_j^r(x)l_n^k(x)^2}{y_j^{k+1}l_n^k(y_j)^2}, \]

(3.5) \[C_j(x) = p_j(x)x^j \left[L_n^{(k-1)}(x) \right]^2 L_n^k(x) x^{k}l_n^k(x) l_n^{(k-1)}(x) \left[\frac{C_j - \frac{i_{n-1}(x)p_j(x)q_j(x)}{x^k-j}}{x^{k-j}} \right], \]

(3.6) \[C_k(x) = \frac{1}{k! l_n^k(0)^2} x^k l_n^{(k-1)}(x) l_n^k(x)^2 \]

where \(p_j(x) \) and \(q_j(x) \) are polynomials of degree at most \(k-j-1 \).

Theorem 2: Let the interpolatory function \(f: \mathbb{R} \rightarrow \mathbb{R} \) be continuously differentiable such that, \(C(m) = \{ f(x) : f \) is continuous in \([0, \infty), f(x) = O(x^m) \) as \(x \rightarrow \infty \); where \(m \geq 0 \) is an integer, then for every \(f \in C(m) \) and \(k \geq 0 \)

\[R_n(x) = \sum_{j=1}^{n} a_j^{**} U_j(x) + \sum_{j=1}^{n} b_j^{**} V_j(x) + \sum_{j=1}^{n} y_j^{**} W_j(x) + \sum_{j=0}^{kb} q_{j=0} q_{j=0}^{(j)} C_j(x) \]

satisfies the relations:

(3.8) \[|R_n(x) - f(x)| = O(1) \omega \left(f, \frac{\log n}{\sqrt{n}} \right), \quad \text{for } 0 \leq x \leq cn^{-1} \]

(3.9) \[|R_n(x) - f(x)| = O(1) \omega \left(f, \frac{\log n}{\sqrt{n}} \right), \quad \text{for } cn^{-1} \leq x \leq \Omega \]

where \(\omega \) is the modulus of continuity.

4. **PROOF OF THEOREM 1**

Let \(U_j(x) , V_j(x) , W_j(x) \) and \(C_j(x) \) are polynomials of degree \(\leq 3n+k \) satisfying conditions (4.1), (4.2), (4.3) and (4.4) respectively.

(4.1) \[
\begin{align*}
&U_j(x) = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} , \\
&U_j'(x) = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} , \\
&U_j(0) = 0 , \\
&i = 1(1)n , \\
&l = 0,1,...,k
\end{align*}
\]

For \(j = 1,2, ..., n \)

(4.2) \[
\begin{align*}
&V_j(x) = 0 , \\
&V_j'(x) = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} , \\
&V_j(0) = 0 , \\
&i = 1(1)n , \\
&l = 0,1,...,k
\end{align*}
\]

For \(j = 1,2, ..., n \)

(4.3) \[
\begin{align*}
&W_j(x) = 0 , \\
&W_j'(x) = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} , \\
&W_j(0) = 0 , \\
&i = 1(1)n , \\
&l = 0,1,...,k
\end{align*}
\]

and for \(l = 0,1,...,k \)

(4.4) \[
\begin{align*}
&C_k(x) = 0 , \\
&C_k'(x) = 0 , \\
&C_k(0) = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} , \\
&i = 1(1)n
\end{align*}
\]

To determine \(W_j(x) \) let

(4.5) \[W_j(x) = C_j x^{k+1} l_j^r(x) [L_n^k(x)]^2 \]

where \(C_j \) is a constant. \(l_j^r(x) \) is defined in (2.8). \(W_j(x) \) is a polynomial of degree \(\leq 3n+k \)
By using (2.9) and (4.3) we determine
\[(4.6) \quad C_1 = \frac{1}{y_{j}^{(k+1)}[y_{j}^{(k)}]^2}\]
Hence we find the third fundamental polynomial \(W_j(x)\) of degree \(\leq 3n+k\)

To find second fundamental polynomial let
\[(4.7) \quad V_j(x) = C_2 x^{k+1} [l_j(x)]^2 L_n^{(k-1)}(x) + C_4 x^{k+1} (x-x_j) [l_j(x)]^2 L_n^{(k-1)}(x)\]
where \(C_2\) is arbitrary constant. By using (2.8) and (4.2) we determine
\[(4.8) \quad C_2 = \frac{1}{x_{j}^{(k+1)}[y_{j}^{(k-1)}(x_j)]}\]
\[(4.9) \quad C_4 = \frac{2}{x_{j}^{(k+1)}[y_{j}^{(k-1)}(x_j)]}\]
Hence we find the second fundamental polynomial \(V_j(x)\) of degree \(\leq 3n+k\)

Again let
\[(4.10) \quad U_j(x) = C_3 x^{k+1} [l_j(x)]^2 L_n^{(k-1)}(x) + C_4 x^{k+1} (x-x_j) [l_j(x)]^2 L_n^{(k-1)}(x)\]
where \(C_3\) and \(C_4\) are arbitrary constant, \(l_j(x)\) is defined in (2.8). \(U_j(x)\) is polynomial of degree \(\leq 3n+k\) satisfying the conditions (4.1) by which we obtain
\[(4.11) \quad C_3 = \frac{1}{x_{j}^{(k+1)}[y_{j}^{(k-1)}(x_j)]}\]
\[(4.12) \quad C_4 = \frac{2}{x_{j}^{(k+1)}[y_{j}^{(k-1)}(x_j)]}\]
Hence we find the first fundamental polynomial \(U_j(x)\) of degree \(\leq 3n+k\)

To find \(C_j(x)\), we assume \(C_j(x)\) for fixed \(j \in \{0,1,\ldots,k-1\}\) in the form
\[(4.13) \quad C_j(x) = p_j(x)x^j[L_n^{(k-1)}(x)]^2 L_n^k(x) + x^j p_j(x) L_n^{(k-1)}(x) g_n(x)\]
Where \(p_j(x)\) and \(g_n(x)\) are polynomials of degree \(k-j+1\) and \(n\) respectively. Now it is clear that \(C_j^{(l)}(0) = 0\) for \(l = 0, \ldots, j-1\) and since \(L_n^{(k)}(x_j) = 0\) and \(L_n^{(k-1)}(y_i) = 0\) we get \(C_j(x_j) = 0\) and \(C_j(y_i) = 0\) for \(i = 1(1)n\).

The coefficient of the polynomial \(p_j(x)\) are calculated by the system
\[(4.14) \quad C_j^{(l)}(0) = \frac{d^k}{dx^l} [p_j(x)x^j[L_n^{(k-1)}(x)]^2 L_n^k(x)]_{x=0} = \delta_{ijj} \quad (l = j, \ldots, k-1)\]

Now from the equation \(C_j^{(k)}(0) = 0\), we get
\[(4.15) \quad c_j = g_n(0) = \frac{-1}{(n+k)! L_n^{(k-1)}(0)} \frac{d^k}{dx^k} [p_j(x)x^j[L_n^{(k-1)}(x)]^2 L_n^k(x)]_{x=0}\]
Now using the condition \(C_j'(x_j) = 0\) of (4.7), we get
\[(4.16) \quad g_n(x_j) = - \frac{x_j^{k-1} p_j(x_j) L_n^k(x_j)}{x_j^{k-j}}\]
where \(q_j(x)\) is a polynomial of degree \(k-j\)

Using (4.12) and (4.14) we obtain \(C_j(x)\) of degree \(\leq 3n+k\) satisfying the conditions (4.4)

5. ESTIMATION OF THE FUNDAMENTAL POLYNOMIALS

Lemma 5.1: Let the fundamental polynomial \(U_j(x)\), for \(j = 1,2,\ldots,n\) be given by (3.2) then we have
\[(5.1) \quad \sum_{j=1}^{n} |U_j(x)| = O(1), \quad \text{for } 0 \leq x \leq cn^{-1}\]
\[(5.2) \quad \sum_{j=1}^{n} |U_j(x)| = O(1), \quad \text{for } cn^{-1} \leq x \leq \Omega\]
where \(U_j(x)\) is given in equation (3.2)

Proof: From (3.2) we have
\[(5.3) \quad |U_j(x)| \leq \frac{|x_j^{k+1} [U_j(x)]^2 L_n^{(k-1)}(x_j)|}{|p_j^{(k+1)}(x_j)| |L_n^{(k-1)}(x_j)|} + \frac{2|x_j^{k+1} |p_j^{(k+1)}(x_j)| |L_n^{(k-1)}(x_j)|}{|p_j^{(k+1)}(x)| |L_n^{(k-1)}(x)|}\]
Proof.

(5.4) \[\sum_{j=1}^{n}|U_j(x)| \leq \sum_{j=1}^{n} \left[\frac{k^{(k+1)}}{x_j} \right] \left[n^{(k-1)}(x_j) \right] + \sum_{j=1}^{n} \left[\frac{k^{(k+1)}}{x_j} \right] \left[n^{(k-1)}(x_j) \right] \]

where \[\zeta_1 = \sum_{j=1}^{n} \left[\frac{k^{(k+1)}}{x_j} \right] \left[n^{(k-1)}(x_j) \right] \]

Thus (6.2) and Lemmas 5.1, 5.2, 5.3 completes the proof of the theorem.

Lemma 3.3.2: Let the fundamental polynomial \(V_j(x) \), for \(j = 1, \ldots, n \) be given by (3.3) then we have

(5.4) \[\sum_{j=1}^{n}|V_j(x)| = O(n^{-1}), \quad \text{for } 0 \leq x \leq cn^{-1} \]

(5.5) \[\sum_{j=1}^{n}|V_j(x)| = O(1), \quad \text{for } cn^{-1} \leq x \leq \Omega \]

where \(V_j(x) \) is given in equation (3.3)

Proof: From (3.3) we have

(5.6) \[\sum_{j=1}^{n}|V_j(x)| \leq \sum_{j=1}^{n} \left[\frac{k^{(k+1)}}{x_j} \right] \left[n^{(k-1)}(x_j) \right] \]

Using (2.16), we get the result.

Lemma 5.3: Let the fundamental polynomial \(W_j(x) \), for \(j = 1, \ldots, n \) be given by (3.4) then we have

(5.7) \[\sum_{j=1}^{n}|W_j(x)| = O(n^{-1}), \quad \text{for } 0 \leq x \leq cn^{-1} \]

(5.8) \[\sum_{j=1}^{n}|W_j(x)| = O(1), \quad \text{for } cn^{-1} \leq x \leq \Omega \]

where \(W_j(x) \) is given in equation (3.4).

Proof: From (3.4) we have

(5.9) \[\sum_{j=1}^{n}|W_j(x)| \leq \sum_{j=1}^{n} \left[\frac{k^{(k+1)}}{x_j} \right] \left[n^{(k)}(x_j) \right] \]

By equations (5.9) and (2.16), we yield the result.

Now we prove our main theorem in § 6.

6. PROOF OF MAIN THEOREM 3.2

Since \(R_n(x) \) given by equation (3.1) is exact for all polynomial \(S_n(x) \) of degree \(\leq 3n+k \), we have

(6.1) \[Q_n(x) = \sum_{j=1}^{n} Q_n(x_j)U_j(x) + \sum_{j=1}^{n} Q_n(x_j)V_j(x) + \sum_{j=1}^{n} Q_n(x_j)W_j(x) + \sum_{j=0}^{n} Q_n(x_0)C_j(x) \]

From equation (3.2.1) and (3.4.1) we get

(6.2) \[|f(x) - R_n(x)| \leq |f(x) - Q_n(x)| + |Q_n(x) - R_n(x)| \]

Thus (6.2) and Lemmas 5.1, 5.2, 5.3 completes the proof of the theorem.
REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]