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ABSTRACT 
In this paper, we discuss the applications of Elzaki Transform [1] for solving RL and RC electrical circuit problems 
which are first order ordinary linear differential equations.  
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1. INTRODUCTION 
 
In order to solve the differential equations, the integral transforms were extensively used. The importance of an Integral 
Transforms is that they provide powerful operational methods for solving initial value problems. There are various 
integral transforms such as Laplace, Fourier, Melin, Sumudu etc. Laplace Transform is very much useful in solving 
ordinary differential equations without finding general solution and particular solution to a initial value problems.  
Elzaki Transform [1] is the new integral transform which is modified form of Sumudu and Laplace Transforms.   
 
Elzaki Transform was introduced by Tarig Elzaki [1] in 2011. We apply this new transform technique for solving the 
problems on RL and RC Circuits. Elzaki Transform defined for function of exponential order, we consider function on 

the set A defined by [ )1 2( ) : , , 0, ( ) , ( 1) 0,j
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 For a given function in 

the set A the constant M must be a finite number, k1 and k2 may be finite or infinite. The Elzaki transform is defined by    
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.The sufficient conditions for the existence of the Elzaki 

transform are that f (t) for 0≥t be piecewise continuous and of the exponential order otherwise Elzaki transform may 
(or) may not exist. 
 
2. ELZAKI TRANSFORM OF SOME FUNCTIONS AND FOR FIRST DERIVATE 
 
Here we consider some standard functions and the first derivative which are mostly occurred in the problems and their 
Elzaki transforms are given below.   
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(iii) Similarly, we get 2( ) !n nE t n v +=              
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2.1 Theorem: Let f(t) be the given function and { } )()( vTtfE = then { } )0()()(1 vf
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3. RL CIRCUITS 
 
In a series circuit containing only a resistor and an inductor, Kirchhoff’s  second law states that the sum of the voltage 
drop across the inductor L and voltage drop across the resistor R is same as the impressed voltage E(t) on the circuit. 

Therefore, for the i(t), the differential equation is )(tERi
dt
diL =+  

 
3.1 Problem-1:  A 12v battery is connected to a simple series circuit in which the inductance is ½ H and the resistance 
is 10Ω . Determine the current I if i(0)=0. 
 
Solution:   From the given data we can draw the circuit diagram shown in Figure-(a). 
 

 
Figure-(a) 

    

 From Kirchhoff’s second law we have )(tERi
dt
diL =+
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Taking Elzaki Transform on both sides of (3.1.1), we get 
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Substituting the initial conditions, if t = 0 current i = 0, we get  
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Taking both sides Inverse Elzaki Transform we get  20 201 1 6 6( ) 2 4 ( )
20 20 5 5

t ti t e i t e− − = − ⇒ = −  
. The graph 

is drawn between the time  and current , which is shown in figure(b).  
 

 
Figure-(b) 

 
3.2 Problem-2: A generator having electromotive force 20cos5t volts are connected with a 10Ω resistor and inductor 
2H. If the switch k is closed at time t=0, obtain the differential equation for the current and determine the current at 
time t. 
 
Solution: Given )(tE =20cos (5t) volts, R=10ohms, L=2 henrys, we can draw the circuit diagram shown in Figure-(c) 

 
Figure-(c) 

 

The differential equation to find the current i(t) in the given circuit is )(tERi
dt
diL =+  
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Taking both side Elzaki Transform 
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Substitute the initial conditions at t=0 current i = 0, we have  
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After simplification, we get,
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Taking Inverse Elzaki Transform on both sides, We get i(t) = sin5t+cos5t-e t5− . The graph is drawn to this problem, time 
vs current, which is shown in figure (d).   

   

 
Figure-(d) 

 
4.  RC CIRCUITS 
 
The basic differential equation governing the amount of charge ‘q’ in a simple RC circuit consisting of a resistance R , 
a capacitor C and an Electromotive force E is  

R
tEq

RCdt
dq )(1

=+  

 
4.1 Problem-3:  A decaying emf E=200e5t is connected in a series with a 20Ω  resistor and 0.01F capacitor. Assuming 
q=0 at t=0. Find the charge q at any time t. 
 
Solution: Given E(t)=200e5t, R=20Ω , C=0.01F. We can draw the circuit diagram shown in Figure-(e) 
 

 
Figure-(e) 
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Taking Elzaki Transform on both sides of above equation, we get
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By taking Inverse Elzaki Transform, we get  

  q(t)= 25 51
3

t te e− −  . The plotted graph is shown in figure (f).   

 

 
Figure-(f) 

4.2 Problem - 4:  A RC circuit has an emf of 300 cos (2t) volts, a resistance of 150ohms and a capacitance of 600
1

 
farads and an initial charge on the capacitor of 5 coulombs. Find the charge on the capacitor at any time t. 

Solution: Given   E(t)=300cos(2t) volts, R= 150 Ohms, C= 600
1

farads. With the help of this data a, circuit diagram is 

drawn and it shown as Figure-(g). 
 

 
Figure-(g) 

 We have,
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Taking both sides Elzaki Transform

{ }

( )( ) ( )v
v

vv
vvqv

v
vvqvv

v
vvq

v

v
vvqvq

v
vq

v
vtqEtqEtEtqtqE

41
5

4141
2)(5

41
2)()41(5

41
2)(41

41
2)(4)0()(

41
2)}({4)}({)}2{cos(2)(4)(

2

2

3
2

2

3

2

2

2

2

2

2
11

+
+

++
=⇒+

+
=+⇒+

+
=






 +⇒

+
=+



 −⇒

+
=+⇒=+

after simplifying, we have, 
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By taking Inverse Elzaki Transform, We get q (t) = tte t 2cos
5
22sin

5
1

5
23 4 ++− . The graph is shown in Figure-(h). 

 

 
Figure-(h) 

 
5. CONCLUSION 
 
In the presented work, we have successfully applied Elzaki Transform for solving the problems on RL and RC 
Electrical circuits.  
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