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ABSTRACT 
In this some fixed point  theorems  for  the  contraction mappings in  a  D-metric  space  with  three  D-metrics  called  
Tri –D-metric space on  the lines initiated by Maia [ 6 ] and Dhage [  1] have been established. 
 
 
1. INTRODUCTION 
 
Dhage [1], [2], [3] has given the foundation of a new structure of D-metric space and proved some basic results 
concerning topology, completeness and compactness etc, of the D- metric space. 
 
Definition1.1: A function D on X x X x X   into R is said to be a D-metric on nonempty set X if it satisfies the 
following properties 

(M1): D(x, y, z) ≥ 0; for all x, y, z Є X (Non negativity) 
(M2): D(x, y, z) = 0 if and only if x = y = z 
(M3): D(x, y, z) = D(x, z, y) =….    (Symmetry) 
(M4): D(x, y, z) ≤ D(x, y, a) + D(x, a, z) + D(a, y, z), for all x, y, z, a Є X  (Rectangle inequality), 

 
A nonempty set X together with a D- metric is called generalized metric space or Dhage metric space or D-metric space 
and is denoted by (X, D). 
 
We give some examples of D-metrics paces 
 
Example 1.1: Define a function D1 on X By 

D 1(x, y, z) = max{d(x, y), d(y, z), d(x, z)}  for x, y, z Є X, and d is an ordinary metric on X. Then D1 is D- 
metric and (X,D) is  D-metric   space. 
 
Example 1.2: Define a function D2: X x X xX R by  

D2(x, y, z) = d(x, y) + d(y, z) + d(x, z), for x, y, z Є X and d is ordinary metric on X. Then (X, D2) is D- metric 
space 
 
2. D-CONTRACTION PRINCIPLE 
 
The fundamental and most interesting result in D- metric spaces is D-contraction principle due to Dhage [2] & it is 
proved by same author that the Banach contraction principle is the particular case of this theorem. Dhage [2] proved the 
following fixed point theorem for D-contraction mapping in D-metric spaces called D-contraction principle. 
 
Theorem 2.1: Let f be a self mapping of a complete and bounded D-metric space X satisfying  

D(fx, fy, fz)  ≤  α  D (x, y, z)                                                                                                          (2.1.1) 
for all x, y, z ЄX and α<1.Then f has unique fixed point. 
 
The following lemma and theorem of [1] is useful to prove main result. 
 
Lemma 2.1: Let {x r} be a sequence of bounded D-metric space X such that  

D(xn, xn+1, xn+2) ≤ q D(xn-1, xn, xn+1)                                                                                              (2.1.2) 
for all n є N, where  0 ≤ q < 1. Then {x r} is D- cauchy. 
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Theorem 2.2: Let   f be a self-map of a complete and bounded D-metric space X satisfying  

D(fx, fy, fz) ≤  α  max {D(x, fx, fy), D(y, fy, fz)}                                                                          (2.1.3) 
 
For all x, y, z Є X and 0 ≤ q < 1. Then f has a unique fixed point. 
 
3. MAIN RESULT 
 
Theorem 3.1: Let X be a Tri-D-metric space with three D-metrics D, D1, D2. Let f: X  X be a mapping and suppose 
that the following conditions hold in X. 

(i) X is bounded w.r.to D 
(ii) D2 (x, y, z )≤ D1(x, y ,z) ≤ D(x, y, z)  for all x, y, z ЄX 
(iii) X is complete w. r. to   D1 
(iv) X  is  continuous  w. r. to  D2 
(v) f satisfies  the condition  (2.1.3) w. r. to D. 

Then X has a unique fixed point. 
 
Proof: Suppose x = x0 Є X is an arbitrary point and consider a sequence {xn} in X defined by  

x 0 = x, xn+1 = f x n, n Є N U{0}                                                                                                      (3.1.1) 
where N denotes the set of natural numbers. 
 
If xr = xr+1 for some r Є N then xr = u is a fixed point of f. Therefore we assume that xn ≠ xn+1 for each n Є N, we show 
that {x n} be a D-Cauchy sequence in X. 
 
Let x = x0, y = x1, z = x2 then by condition (2.1.3) we get  

       D(fx0, fx1, fx2) ≤ α max{D(x0, fx0, fx1), D(x1, fx1, fx2)} 
i .e, D(x1, x2, x3) ≤ α  max {D(x0, x1, x2), D(x1, x2, x3)} 

 
since,             D(x1,x2,x3) ≤ α max D(x1, x2, x3)  is not possible, we  have 
                      D(x1, x2, x3) ≤ α D(x0, x1, x2)                                                                                                                 (3.1.2) 
 
Similarly letting x = x1, y = x2, z = x3 in condition (2.1.3) we obtain 

       D(fx1, fx2, fx3) ≤ α max{D(x1, fx1, fx2), D( x2, fx2, fx3) 
i.e,  D(x2, x3, x4) ≤ α  max{D(x1, x2, x3), D(x2, x3, x4)} 

 
since,            D(x2, x3, x4) ≤ α  max D(x2, x3, x4) is not possible, we  have 

       D(x2, x3, x4) ≤ α D(x1, x2, x3)                                                                                                                (3.1.3) 
 
Proceeding in this way by induction we obtain 

 D(xn, xn+1, xn+2) ≤ α D(xn-1, xn, xn+1)                                                                                                       (3.1.4) 
for all n, n=1, 2,…   .Then by Lemma (2.1.1) {xn} is D- Cauchy sequence.  

i.e,  lim D(x n, xm, xp) = 0 
       m, n, p → ∞ 

 
The hypothesis (ii) implies that   

       lim D(xn, xm, xp) ≤ lim D(x m, xn, xp) 0 
       m, n, p∈∞              m, n, p→∞ 

 
This shows that {x n} is a D-cauchy sequence w,r,t. D1, there is a point u Є X  such that  

 lim D1(xm, xn, u) = 0 
i.e,  lim xn = 0 

                     m, n, → ∞ n∈∞ 
w.r.to D1. Again D2 ≤ D1   on   X3, we get x n  u  w.r.to  D2. 

  u = limxn+1 = lim fxn = f lim xn = fu 
n→∞       n→∞         n→∞ 

 showing that u is a fixed point of f. 
 
To prove uniqueness, let v (≠ u) be another fixed point of  f  then by condition (2.1.3)  we obtain 

D(u, u, v) = D(fu, fu, fv) 
 ≤ α max{D(u fu, fu), D(u, fu, fv)} 
 = α max{D(u, u, u), D(u, u , v)} 
 = α max{0, D(u, u, v)} 
 

D(u, u, v) ≤ α D(u, u, v) 
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Which is contradiction since α < 1. Hence   u = v. Therefore f has a unique fixed point. 
 
Corollary 3.1: Let X be a Tri-D- metric space with three D-metrics D, D1, D2. Let f: X  X be a mapping and suppose 
that following conditions are satisfied. 

(i) The conditions (i) - (iv) of Theorem 3.1  
(ii) There exists a positive intiger p  such that f p  satisfies condition  

D(fpx, fpy, fpz) ≤ α  max{D(x, fpx, fpy), D(y, fpy, fpz)                                                                    (3.1.5) 
 
For all x, y, z ∈X and 0 ≤ p <1. 
 
Then f has a unique fixed point. 
 
Proof: Let T = f p, then T is continuous no X w .r. to D2, and since f and consequently f p is continuous on X w. r. to D2. 
 
Now by an application of Theorem 3.1 implies that T has a   unique fixed point, say u in X. i. e, it is a point such that    
Tu = f pu = u 
 
But fu = f(fpu) = f p(fu) = T(fu), which shows that fu is again a fixed point of T. By uniqueness of u, we get fu = u. 
Again the uniqueness of u follows from the condition (2.1.3). 
 
This completes the proof. 
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