INTRODUCTION

Dhage [1], [2], [3] has given the foundation of a new structure of D-metric space and proved some basic results concerning topology, completeness and compactness etc, of the D-metric space.

Definition 1.1: A function D on $X \times X \times X$ into R is said to be a D-metric on nonempty set X if it satisfies the following properties

(M1): $D(x, y, z) \geq 0$; for all $x, y, z \in X$ (Non negativity)

(M2): $D(x, y, z) = 0$ if and only if $x = y = z$

(M3): $D(x, y, z) = D(x, z, y) = ...$ (Symmetry)

(M4): $D(x, y, z) \leq D(x, y, a) + D(x, a, z) + D(a, y, z)$, for all $x, y, z, a \in X$ (Rectangle inequality),

A nonempty set X together with a D-metric is called generalized metric space or Dhage metric space or D-metric space and is denoted by (X, D).

We give some examples of D-metrics paces

Example 1.1: Define a function D_1 on X by

$D_1(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\}$ for $x, y, z \in X$, and d is an ordinary metric on X. Then D_1 is D-metric and (X, D_1) is D-metric space.

Example 1.2: Define a function $D_2: X \times X \times X \rightarrow R$ by

$D_2(x, y, z) = d(x, y) + d(y, z) + d(x, z)$, for $x, y, z \in X$ and d is ordinary metric on X. Then (X, D_2) is D-metric space

2. D-CONTRACTION PRINCIPLE

The fundamental and most interesting result in D-metric spaces is D-contraction principle due to Dhage [2] & it is proved by same author that the Banach contraction principle is the particular case of this theorem. Dhage [2] proved the following fixed point theorem for D-contraction mapping in D-metric spaces called D-contraction principle.

Theorem 2.1: Let f be a self mapping of a complete and bounded D-metric space X satisfying

$D(f(x), f(y), f(z)) \leq \alpha \cdot D(x, y, z)$

for all $x, y, z \in X$ and $\alpha < 1$. Then f has a unique fixed point.

The following lemma and theorem of [1] is useful to prove main result.

Lemma 2.1: Let $\{x_n\}$ be a sequence of bounded D-metric space X such that

$D(x_{n+1}, x_{n+2}) \leq \alpha D(x_n, x_{n+1})$

for all $n \in N$, where $0 \leq \alpha < 1$. Then $\{x_n\}$ is D-cauchy.
Theorem 2.2: Let \(f \) be a self-map of a complete and bounded D-metric space \(X \) satisfying
\[
D(fx, fy, fz) \leq \alpha \max \{D(x, fx, fy), D(y, fy, fz)\}
\]
(2.1.3)
For all \(x, y, z \in X \) and \(0 \leq q < 1 \). Then \(f \) has a unique fixed point.

3. MAIN RESULT

Theorem 3.1: Let \(X \) be a Tri-D-metric space with three D-metrics \(D, D_1, D_2 \). Let \(f: X \to X \) be a mapping and suppose that the following conditions hold in \(X \).

(i) \(X \) is bounded w.r.t. \(D \)

(ii) \(D_2(x, y, z) \leq D_1(x, y, z) \leq D(x, y, z) \) for all \(x, y, z \in X \)

(iii) \(X \) is complete w.r.t. \(D_1 \)

(iv) \(X \) is continuous w.r.t. \(D_2 \)

(v) \(f \) satisfies the condition (2.1.3) w.r.t. \(D \).

Then \(X \) has a unique fixed point.

Proof: Suppose \(x = x_0 \in X \) is an arbitrary point and consider a sequence \(\{x_n\} \) in \(X \) defined by
\[
x_0 = x, \quad x_{n+1} = f x_n, \quad n \in \mathbb{N} \cup \{0\}
\]
(3.1.1)
where \(\mathbb{N} \) denotes the set of natural numbers.

If \(x_r = x_{r+1} \) for some \(r \in \mathbb{N} \) then \(x_r = u \) is a fixed point of \(f \). Therefore we assume that \(x_n \neq x_{n+1} \) for each \(n \in \mathbb{N} \), we show that \(\{x_n\} \) is a D-Cauchy sequence in \(X \).

Let \(x = x_0, \ y = x_1, \ z = x_2 \) then by condition (2.1.3) we get
\[
D(fx_0, fx_1, fx_2) \leq \alpha \max\{D(x_0, fx_0, fx_1), D(x_1, fx_1, fx_2)\}
\]
i.e, \(D(x_1, x_2, x_3) \leq \alpha \max\{D(x_0, x_1, x_2), D(x_1, x_2, x_3)\} \)

since, \(D(x_1, x_2, x_3) \leq \alpha \max D(x_1, x_2, x_3) \) is not possible, we have
\[
D(x_1, x_2, x_3) \leq \alpha D(x_0, x_1, x_2) \quad (3.1.2)
\]
Similarly letting \(x = x_1, \ y = x_2, \ z = x_3 \) in condition (2.1.3) we obtain
\[
D(fx_1, fx_2, fx_3) \leq \alpha \max\{D(x_1, fx_1, fx_2), D(x_2, fx_2, fx_3)\}
\]
i.e, \(D(x_2, x_3, x_4) \leq \alpha \max\{D(x_1, x_2, x_3), D(x_2, x_3, x_4)\} \)

since, \(D(x_2, x_3, x_4) \leq \alpha \max D(x_2, x_3, x_4) \) is not possible, we have
\[
D(x_2, x_3, x_4) \leq \alpha D(x_1, x_2, x_3) \quad (3.1.3)
\]
Proceeding in this way by induction we obtain
\[
D(x_n, x_{n+1}, x_{n+2}) \leq \alpha D(x_{n-1}, x_n, x_{n+1}) \quad (3.1.4)
\]
for all \(n, n=1, 2, \ldots \). Then by Lemma (2.1.1) \(\{x_n\} \) is D-Cauchy sequence.

i.e, \(\lim D(x_n, x_m, x_p) = 0 \)

\[m, n, p \to \infty \]

The hypothesis (ii) implies that
\[
\lim D(x_n, x_m, x_p) \leq \lim D(x_m, x_n, x_p) \to 0 \]
\[m, n, p \in \infty \]

This shows that \(\{x_n\} \) is a D-cauchy sequence w.r.t. \(D_1 \), there is a point \(u \in X \) such that
\[
\lim D(x_n, x_m, u) = 0 \]
i.e, \(\lim x_n = 0 \)

\[m, n, \infty \to \infty \]
w.r.t. \(D_1 \). Again \(D_2 \leq D_1 \) on \(X \), we get \(x_n \to u \) w.r.t. \(D_2 \).
\[
u = \lim x_n = \lim f x_n = f \lim x_n = f u \]
\[n \to \infty \]
\[n \to \infty \]
\[n \to \infty \]
showing that \(u \) is a fixed point of \(f \).

To prove uniqueness, let \(v (\neq u) \) be another fixed point of \(f \) then by condition (2.1.3) we obtain
\[
D(u, u, v) = D(fu, fu, fv) \leq \alpha \max\{D(u, fu, fu), D(u, fu, fv)\}
\]
\[= \alpha \max\{D(u, u, u), D(u, u, v)\} \]
\[= \alpha \max\{0, D(u, u, v)\} \]
\[D(u, u, v) \leq \alpha D(u, u, v) \]
Which is contradiction since $\alpha < 1$. Hence $u = v$. Therefore f has a unique fixed point.

Corollary 3.1: Let X be a Tri-D-metric space with three D-metrics D, D_1, D_2. Let $f: X \to X$ be a mapping and suppose that following conditions are satisfied.

(i) The conditions (i) - (iv) of Theorem 3.1

(ii) There exists a positive integer p such that f^p satisfies condition

$$D(f^p x, f^p y, f^p z) \leq \alpha \max \{D(x, f^p x, f^p y), D(y, f^p y, f^p z)\} \quad (3.1.5)$$

For all $x, y, z \in X$ and $0 \leq p < 1$.

Then f has a unique fixed point.

Proof: Let $T = f^p$, then T is continuous no X w. r. to D_2, and since f and consequently f^p is continuous on X w. r. to D_2.

Now by an application of Theorem 3.1 implies that T has a unique fixed point, say u in X. i. e, it is a point such that

$$Tu = f^p u = u$$

But $fu = f(f^p u) = f^p(fu) = T(fu)$, which shows that fu is again a fixed point of T. By uniqueness of u, we get $fu = u$.

Again the uniqueness of u follows from the condition (2.1.3).

This completes the proof.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]