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ABSTRACT 
The concept of pseudo-complementation *  on an almost semilattice(ASL) with 0  is introduced and proved some 
elementery properties of the pseudo-complementation * . Also, proved that pseudo-complementation * on an ASL is 
equationally definable. A one-to-one correspondence between the pseudo-complementations on an ASL L  with 0  and 
maximal elements of L  is obtained. It is also proved that }:{= **** LaaL ∈  is a Boolean algebra which is 
independent(up to isomorphism) of the pseudo-complementation *  on L .  
 
Key Words: Almost Semilattice, Pseudo-complementation, Unimaximal element, Maximal element, Equationally 
definable class, Boolean algebra. 
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1. INTRODUCTION 
 

It is well known that for any pseudo-complementation * on a semilattice L , }:{= **** LaaL ∈  becomes a 
Boolean algebra. In [1], Frink, O. proved that any pseudo- complemetation on a semilattice is equationally definable. In 
[4], Swamy, U.M., Rao, G.C. and Nanaji Rao, G. introduced the concept of pseudo-complemetation *  on an Almost 
Distributive Lattice(ADL) and proved that this pseudo - complemetation is equationally definable. Also, proved that a 
one-to-one correspondece between the pseudo-complementations on an ADL L with 0  and maximal elements of L . 
They proved that if L  is an ADL with 0  and *  is a pseudo-complementation on L  then }:{= ** LaaL ∈  is a 

Boolean algebra which is independent(upto isomorphism) of the pseudo-complementation *  on L . In this paper, we 
introduce the concept of pseudo-complementation *  on an ASL with 0  and prove some basic properties of this 
pseudo-complementation. We prove that the pseudo-complementation on an ASL  is equationally  definable.  It is 
observed that an ASL with 0  can have more than one pseudo-complemetation. In fact, if there is a 
pseudo-complementation *  on an ASL with 0  and *  elements commutes then we prove that each maximal element 
of L  gives rise to a pseudo-complementation and that this correspondence is one-to-one. For any pseudo 
-complementation *  on an ASL with 0  and *  elements commutes, we prove that the set }:{= **** LaaL ∈  is a 
Boolean algebra, which is independent(upto isomorphism) of the pseudo-complementation * .  
 
2. PRELIMINARIES 
 

In this section we collect a few important definitions and results which are already known and which will be 
used more frequently in the text. 
  
Definition 2.1 [2]: Let ),( ≤P  be a poset. If P  has least element 0  and greatest element 1, then P  is said to be a 
bounded poset.  
 
If ),( ≤P  is a bounded poset with bounds 0,1 , then for any Px∈ , we have 10 ≤≤ x .  
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Definition 2.2 [2]: Let ),( ≤P  be a poset. Then P  is said to be lattice ordered set if for any Pyx ∈, , },{.. yxbul  

and },{.. yxblg  exists in P .  
  
Definition 2.3 [2]: Let L  be a non-empty set and ∧∨,  be two binary operations on L . Then the triplet ),,( ∧∨L  is 
called lattice if it satisfies the following conditions: 

(1) xyyx ∨∨ =  and xyyx ∧∧ = .                                          (Commutative Law) 
(2) )(=)( zyxzyx ∨∨∨∨  and )(=)( zyxzyx ∧∧∧∧ .      (Associative Law) 
(3) xyxx =)( ∧∨  and xyxx =)( ∨∧ , for all Lyx ∈, .          (Absorption Laws)  

  
Lemma 2.4 [2]: Let ),,( ∧∨L  be a lattice. Then for any Lx∈ , xxx =∧  and xxx =∨ .  
  
Theorem 2.5 [2]: ),( ≤L  be a lattice ordered set. For any Lyx ∈, , if we define yx ∧  is the },{.. yxblg  and 

yx ∨  is the },{.. yxbul , then ),,( ∧∨L  is a lattice.  
  
Theorem 2.6 [2]: Let ),,( ∧∨L  be a lattice. If we define a relation ≤  on L , by yx ≤  if and only if yxx ∧= , 
(or equivalently yyx =∨ ), then ),( ≤L  is a lattice ordered set.  
 
Note that, by theorems 2.5 and 2.6 together imply that the concepts of lattice and lattice ordered set are same. We refer to 
it as a lattice in future.  
 
Theorem 2.7 [2]: In any lattice ),,( ∧∨L , the following are equivalent: 

(1) )()(=)( zxyxzyx ∧∨∧∨∧  
(2) )()(=)( zyzxzyx ∧∨∧∧∨  
(3) )()(=)( zxyxzyx ∨∧∨∧∨  
(4) )()(=)( zyzxzyx ∨∧∨∨∧ .  

 
Definition 2.8 [2]: A lattice ),,( ∧∨L  is called a distributive lattice if it satisfies any one of the four conditions, in 
theorem 2.7 
  
Theorem 2.9 [2]: Let ),,( ∧∨L  be a lattice. Then for any Lzyx ∈,, , the following conditions are equivalent: 

(1) )()(=)( zxyxzyx ∨∧∨∧∨  
(2) )()(=)( zxyxzyx ∧∨∧∨∧  
(3) )()( zyxzyx ∧∨≤∧∨ .  

  
Definition 2.10 [2]: Let ),,( ∧∨L  be a lattice. Then L  is said to be bounded lattice if L  is bounded as a poset.  
 
It can be easily seen that if ),,( ∧∨L  is a bounded lattice with bounds 10, , then for any Lx∈ , 0=0=0 ∧∧ xx
, xxx =0=0 ∨∨ , xxx =1=1 ∧∧  and 1=1=1 xx ∨∨ .  
 
Definition 2.11 [2]: A bounded lattice ),,( ∧∨L  with bounds 0  and 1 is said to be complemented if to each Lx∈
, there exists Ly∈  such that 0=yx ∧  and 1=yx∨ .  
  
Definition 2.12 [2]: A complemented distributive lattice is called a Boolean algebra.  
  
Definition 2.13 [2]: A ring R  is called a regular ring if, to each Ra∈ , there exists Rx∈  such that aaxa = .  
  
Definition 2.14 [1]: A semilattice is an algebra ),( ∗S  where S  is non-empty set and ∗  is a binary operation on S , 
satisfies the following conditions:   
    1.  zyxzyx ∗∗∗∗ )(=)(           (Associative Law)  
    2.  xyyx ∗∗ =                      (Commutative Law)  
    3.  xxx =∗ , for all Szyx ∈,, .     (Idempotent)  
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Definition 2.15 [1]: Let S  be a meet semilattice with 0  in which each element a  has a pseudo-complement *a  
such that 0=xa ∧  if and only if *ax ≤ .  
 
Definition 2.16 [3]: An almost semilattice(ASL) is an algebra ),( L  where L  is a non-empty set and   is a binary 
operation on L , satisfies the following conditions:  
    1.  )(=)( zyxzyx           (Associative Law)  
    2.  zxyzyx  )(=)(          (Almost Commutative Law)  
    3.  xxx = , for all Lzyx ∈,, .   (Idempotent)  
 
Definition 2.17 [3]: An ASL  with 0  is an algebra ,0),( L  of type (2,0)  satisfies the following conditions:  
    1.       )(=)( zyxzyx      (Associative Law) 
    2.             )(=)( zxyzyx  (Almost Commutative Law) 
    3.                            = xxx      (Idempotent) 
    4.  0=0 x , for all Lzyx ∈,, .  
  
Definition 2.18 [3]: Let L  be a non-empty set. Define a binary operation   on L  by yyx = , for all Lyx ∈, . 
Then ),( L  is an ASL and is called discrete ASL.  
  
Theorem 2.19 [3]: Let ),( L  be an ASL. Define a relation ≤  on L  by ba ≤  if and only if aba = . Then ≤  is 
a partial ordering on L .  
  
Theorem 2.20 [3]: Let ),( L  be an ASL. Then for any Lba ∈,  with ba ≤  we have cbca  ≤  and 

bcac  ≤ , for all Lc∈ .  
  
Theorem 2.21 [3]: Let ),( L  be an ASL. Then for any Lba ∈, , we have the following:   
    1. bba ≤ .  
    2. abba  =  whenever ba ≤ .  
  
Theorem 2.22 [3]: Let ),( L  be an ASL with 0 . Then for any Lba ∈, , we have the following:  
    1. 0=0a .  
    2. 0=ba   if and only if 0=ab  .  
    3. abba  =  whenever 0=ba  .  
 
Definition 2.23 [3]: Let ),( L  be an ASL. Then an element Lm∈  is said to be unimaximal if xxm = , for all 

Lx∈ .  
  
Definition 2.24 [2]: Let 21   BandB  be two Boolean algebras. A mapping 21: BBf →  is said to be Boolean 
homomorphism if it is a lattice homomorphism and preserves complementation. That is, for any 1, Bba ∈ . 

)(  )(=)( bfafbaf ∨∨ , )(  )(=)( bfafbaf ∧∧  and '))((=)'( afaf .  
It can be observed that if f  is a lattice homomorphism from 1B  to 2B  such that 0=(0)f  and 1=(1)f , then 
f  becomes a Boolean homomorphism. A Boolean isomorphism is a Boolean homomorphism which is a bijection.  

 
3. DEFINITION AND INDEPENDENCY OF THE AXIOMS 
 

In this section, we introduce the concept of the pseudo-complementation on an almost semilattice and we 
establish the independency of the conditions in the definition. Further, we give few examples of pseudo-complemented 
almost semilattice.  
Definition 3.1: Let ,0,( L ) be an almost semilattice with zero. Then a unary operation *aa  on L  is said to be 

pseudo-complementation on L  if, for any Lba ∈, , it satisfies the following conditions: 

1. bbaba =0= *
 ⇒  

2. .0=*aa    



G. Nanaji Rao1
, S. Sujatha Kumari*2 / Pseudo - Complemented Almost Semilattices / IJMA- 8(10), Oct.-2017. 

© 2017, IJMA. All Rights Reserved                                                                        97  

 
For brevity, in future, we will refer an Almost Semilattice as ASL and to this Pseudo - Complemented Almost 

Semilattice as PCASL. Now, we give examples to exhibit independency of the conditions in the above definition.  
 
Example 3.2: Let ),( L  be an ASL with zero with atleast two elements and define a unary operation *  on L  by 

0=*a , for all La∈ . 
 
Here the algebra ),( L  satisfies (2)  but, it fails to satisfies (1) . Because, for any 0≠b , we have 0=0 b . But, 

bbb ≠0=0=0*
 .  

  
Example 3.3: Let L  be a meet semilattice with least element 0  and greatest element 1 . Now, define a unary 
operation *  on L  by 1=*a , for all La∈ . 
 
Here the algebra ),( L  satisfies (1) but, it fails to satisfies (2). Because for any La ∈≠ 0 , 0=1=* ≠∧∧ aaaa   
 
Now, we give some examples of PCASL.  
 
Example 3.4: Every pseudo - complemented semilattice is a pseudo-complemented almost semilattice.  
 
In the case of semilattices, if pseudo-complementation exists then it is unique. But, in the case of ASL, there are several 
pseudo-complementation. For, consider the following examples.  
 
Example 3.5: Let ),( L  be a discrete ASL with zero and fix Lx ∈0 . Now, define a unary operation *  on L  by  



 ≠

.0=aif
0aif0

=
0

*

x
a  

Then *  is a pseudo-complementation on L , and to each Lx ∈0 , we get a pseudo - complementation on L .  
 
Example 3.6: Let L = { a, b, c, 0 }. Now, define binary operation   on L  as follows:  

  
  0 a b c 
0 0 0 0 0 
a 0 a a a 
b 0 a b c 
c 0 a b c 

 
Then cleary, ),( L  is an ASL. Now, define b=0* , 0=*x  for all 0≠x . Then clearly *  is a 
pseudo-coplementation on L , and hence L  is a PCASL.  
 
Note that, we define c=0*  and 0=*x  for all 0≠x , then it can be eaily seen that L  is a PCASL.  
 
Example 3.7: Let L = { a, b, c, 0 }. Now, define binary operation   on L  as follows:  

  

  0 a b c 

0 0 0 0 0 

a 0 a b c 

b 0 a b c 

c 0 c c c 
 

Then cleary, ),( L  is an ASL. Now, define a=0* , 0=*x  for all 0≠x . Then clearly *  is a 

pseudo-coplementation on L  and hence L  is a PCASL.  
 
Note that, we define b=0*  and 0=*x  for all 0≠x , then it can be eaily seen that L  is a PCASL . 
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Example 3.8: Let .),,( +R  be a commutative regular ring with unity 1 . Let 0a  be the unique idempotent element in 

R , such that RaaR 0= . Now, for any Rba ∈, , define operations on R  as follows: baba 0=  and 
0* 1= aa − . Then clearly ),( R  is an ASL and *  is a pseudo - complementation on R .  

 
Example 3.9: Let A  be a non-empty set with atleast two elements, and let B  any set and BAp ∈0 . Now, for any 

BAba ∈, , define  

0

0 0

( ) if a(t) p (t)
( )( ) =

( ) if a(t)=p (t).
b t

a b t
p t

≠



  

Then ),,( 0pAB
  is an ASL with 0p  as zero element. Now, let BAp∈  such that )()( 0 tptp ≠  for all Bt∈ . 

For any BAa∈ , define  

0 0

0

( ) if a(t) p (t)
( ) =

( ) if a(t)=p (t).
p p t

a t
p t

≠



 

Then paa  is a pseudo-complementation on BA  and conversely, if *aa  is a pseudo-complementation on 
BA , then there exists BAp∈  such that )()( 0 tptp ≠  for all Bt∈  and Paa =*  for all BAa∈ (take *

0= pp ).  
 
In the following we prove some basic properties of PCASL.  
 
Lemma 3.10: Let L  be a PCASL. Then for any Lba ∈, , we have the following:  

    1. aa =0*
   

    2. *0  is unimaximal  
    3. *0  is maximal  
    4. aaa =**

   
    5. 0=***aa    
    6. ******* = aaa    
    7. aaa =****

   
    8. *** = bbaba ⇒≤   
    9. a  is unimaximal ⇒  0=*a   
    10. 0=0 **   
    11. **a  is unimaximal 0=*a⇔   
    12. 0=0= **aa ⇔   
    13. *** =)( aaba    

    14. *** =)( bbba   
 
Proof:  

1.  Since 0=0 a  for all La∈ , we have ,=0* aa  for all La∈ . 
2.  Proof follows by condition (1). 
3.  Let Lx∈  such that x≤*0 . Then xx =0=0 **

  since *0  is unimaximal. Thus *0  
is  maximal. 
4.  Since 0=* aa  , we have aaa =**

 . 
5.  By (4), we have aaa =**

 . Now, consider ************* )(=)(= aaaaaaaa   

    .0=0=)( *****
 aaaa=  

6.  By (5), 0=***aa  , it follows that .= ******* aaa   
7.  By (5), 0=***aa  . Hence 0=*** aa  . It follows that aaa =****

 . 
8.  Supose ba ≤ . Then ** bbba  ≤ . Hence 0=*ba  . It follows that *** = bba  . 
9.  Suppose a  is unimaximal. Then tta =  for all Lt∈ . Now, ** ==0 aaa  . Thus .0=*a  
10. We have ***** 0=00=0   since *0  is unimaximal. Thus 0=0 ** . 
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11. Suppose **a  is unimaximal. Then 0=***a  since by (9). Now, consider 0=0== ****** aaaa  .   
    Therefore 0=*a . Conversely, suppose 0=*a . Then *** 0=a  which is unimaximal. 
12. Suppose 0=a . Then 0=0= ****a . Conversely, suppose 0=**a . Consider 0=0== ** aaaa  .   
    Thus 0=a . 
13. We have 0=)( *aba  . Therefore *** =)( aaba  . Similarly, we can prove (14). 
 
    Next, we prove some equivalent conditions in PCASL. 

 
Theorem 3.11: Let L  be a PCASL.Then for any Lba ∈, , the following are equivalent:   
    1. 0=ba    
    2. 0=** ba    
    3 0=**ba    
    4. 0=**** ba   
  
Proof:  
(1) (2) :⇒  Suppose 0=ba  . Then bba = *

 . Now consider ) (= ***** baaba 
 .0=0=)(= *** bbaa   

:(1)(2) ⇒ Suppose 0=** ba  . Now, consider * *= ( )a b a a b   .0=0=)(=)(= ****
 abaabaa

Therefore 0=ba  . (3)(1) ⇒  : Suppose 0=ba  .  

Then 0=ab  . Therefore aab =*
 . Now, consider ***** )(= babba  abba =)(= ***



.0=0=)( ***
 abb  Thus .0=**ba    

(4)(3)⇒ : Suppose .0=**ba  Then ***** = bba  . Now , consider  

             )(= ********* baaba  .00)(= *** == ∗∗∗∗ bbaa  Thus .0=**** ba   
(4) (1) :⇒  Suppose .0=**** ba   Now, consider  

             

∗∗∗∗∗∗ = baabbaaba (()()(= ** ))b * * * *= (( ) )a a b b   = (( ) )a b a b∗ ∗ ∗ ∗
    

             ( ( )) ( ) ( ) 0 ( )a b a b a b a b a b∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= = =        .0=  Thus 0=ba  .  
 
Corollary 3.12: Let L  be a PCASL. Then for any Lba ∈, , we have the following: ********** =)( bababa 

. 
  
Proof: We have 0=)( *baba  . Therefore by theorem 3.11, we get 0=)( *** baba  . This implies 

.0=)( *baab 

∗∗  Again, by theorem 3.11, we get 0=)( ***** baab  . It follows that ***)( aba 

.0=**b Therefore ********** =)( bababa  .  
 
In the following, we prove that pseudo-complementation *  on an ASL L is equationally definable.  
 
Theorem 3.13: Let L  be an ASL with 0 . Then a unary operation LL →∗ :  is a pseudo - complementation on L  if 
and only if it satisfies the following conditions: 

(1) bbaba 

** )(=  

(2) aa =0*
  

(3) 0=0 **   
 
Proof: Suppose *  is a pseudo-complementation on L . Then we have 0=)( *baba  .  

Therefore *** )(=)( babbaba 

. This implies bbabbbaba 

*** )(=)( . Hence 

bbabbaa 

*** )(=)( . Therefore bbababa 

*** )(=)( . Hence bbaba 

** )(=  since 

0=)()( * baba  . Proofs of conditions (2) and (3) follows by lemma 3.10. Conversely, suppose *  satisfies the 

given conditions. Let Lba ∈,  such that 0=ba  . Now, from (1) we get .=0=)(= *** bbbbaba   

Therefore bba =*
 . Again, consider 

*** )(0= aaa .0=0=0 aaa 

∗∗= It follows that 0=*aa  . 
Thus *  is a pseudo-complementation on .L   
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Remark: Whether * elements commutes are not, is not known so far in pseudo-complementated ASL with 
pseudo-complementation * . Investigations are still going on. 
 
Definition 3.14: Let ,0),( L  be a pseudo-complemented almost semilattice, with pseudo - complementation * . Then 

L  is said to be * - commutative if **** = abba  , for all Lba ∈, . 
  
Next, we prove that, for any * - commutative PCASL L the set }:{= **** LaaL ∈  becomes a Boolean algebra. It is 
remarked that an ASL with 0  can have more than one pseudo - complementation and examples were given to this 
effect. In fact, we prove that if L  is an ASL with a pseudo-complementation * , then to each maximal element m  in 
L , we obtain a pseudo-coplementation m*  and this correspondence between maximal elements of L  and 

pseudo-complementation on L  is one-to-one. Also prove that the Boolean algebra **L  is independent (upto 
isomorphism) of the pseudo-complementation * . For, this, first we need the following.  
 
Theorem 3.15: Let L  be a * - commutative PCASL. Then for any Lba ∈, , we have the following:  

1. ** abba ≤⇒≤  
2. ** 0≤a  
3. **** = aa  
4. ****** abba ≤⇔≤  
5. ** )( aba ≤  and ** )( bab ≤  

 
Proof:  

1. Suppose ba ≤ . Then 
** bbba  ≤ . Therefore 0=*ba  . It follows that 

*** = bba  . Hence      
*** = bab  . We get 

** ab ≤ . 
2. Since 0=0 *a . It follows that *** =0 aa . Hence *** =0 aa  . Therefore ** 0≤a . 
3. We have 0=*** aa   and hence ***** = aaa  . On the other hand, we have 0=***aa   since by    
   lemma 3.10(5). Therefore ******* = aaa  . Hence by * -commutative we get 

**** = aa . 
4. Suppose ** ba ≤ . Then **** ab ≤  since by (1). Conversely, suppose **** ab ≤ . Then again by (1), we get   
  ****** ba ≤ . This implies ** ba ≤  since by (3). 
5. We have bba ≤ . Hence by (1), ** )( bab ≤ . Also, we have aab ≤ . Therefore by (1), ** )( aba ≤ . 

 
Theorem 3.16: Let L  be a * - commutative PCASL. Then for any Lba ∈, , we have the  
    following:  
    1. ****** =)( baba    

    2. ** )(=)( abba    

    3. .)(, *** baba ≤   
 
Proof:  
1. Let Lba ∈, . Then we have 0=)( * baba  . This implies 0=)( * abab  . Therefore 

abaabab 

*** )(=)( . Now, consider == ∗∗∗∗∗∗∗ bababbaba  )()(  
.0=0)(=)( ****

 ababbaba ∗ Therefore .0=)( *** bbaa  Hence ∗∗bbaa 

** )(  

 .)( ∗∗∗= bba  Now, ∗∗∗∗∗∗∗∗∗∗∗∗ == )()()(=)( ****** baababaabbaaabba    

 .00)(=***** =∗∗∗
 bbaaab Therefore 0=)( ***** abba   and hence  

∗∗aba 

*)( .0=∗∗b It follows that ********** =)( bababa  . On the other hand, we have 
*** =)( aaba  .Therefore ******* )(=)()( abaababa  . Hence 0=)( *** aba  . This implies 

0=)( *** baa  . Hence ****** )(=)( babaa  . Similarly, we can prove that ****** )(=)( babab  . 

Hence we get ******** )(=)( bababa  . Therefore 

****  )( aba .)(= **** bab   It follows by * - 
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commutativity, ****** =)( baba  .  

2. Consider, *********************** )(=))((=)(=)(=))((=)(=)( abababbabababa   

  .)(= *ab  Therefore ** )(=)( abba  .  
3. Proof of (3) follows by condition (5) in theorem 3.15 and condition (2) in theorem 3.16.  
  
In a * - commutative PCASL L, it can be easily observed that, if *= ax  then xx =**  and ****** )(= baba  . 

Also, it can be easily seen that if yx,  are *  - elements in L  then 0=yx   if and only if ∗≤ yx  if and only if 
*xy ≤ . Now, we prove that if L  is *  - commutative PCASL then the set }:{= **** LaaL ∈  is a Boolean 

algebra.  
 
Theorem 3.17: Let ),( L  be a * - commutative PCASL. Then the set **L  is a Boolean algebra with the original 
determination of the meet operation ba   and of the order relation ba ≤ , the Boolean complement of an element 
being its pseudo-complement for these element, the Boolean join operation is given by the formula *** )(=  baba ∨ .  
 
Proof: Suppose L  is a * - commutative PCASL. Then clearly }:{= **** LaaL ∈  is a poset with respect to ≤  

defined as in L . Suppose ****** , Lba ∈ . Then ******** )(= Lbaba ∈  and clearly **)( ba   is the greatest 

lower bound of },{ **** ba . Now, =∨ *********** )(=  baba  .)( *** ba  Since **** ,baba ≤ it follows that
* * * * * * *, ( ) .a b a b≤  Therefore *** )( ba   is an upper bound of },{ **** ba . Let **Lt ∈  such that t  is an upper 

bound of },{ **** ba . Then ta ≤**  and tb ≤** . Since **Lt ∈ , **= ct  for some Lc∈ . Therefore **** ca ≤  

and **** cb ≤ . It follows that ** ac ≤  and ** bc ≤ . Hence .*** bac ≤ Thus tcba =)( ***** ≤ . Therefore 
*** )( ba   is the least upper bound of },{ **** ba . Hence **L  is a lattice. Now, we have **0=0  and hence 

**0 L∈ . Clearly 0  and *0  are the least and greatest elements in **L  respectively. Also, for any **La∈  we have 
*** La ∈  since **** = aa  and 0=*aa  . Now, consider, 

** (=  aaa ∨ .0=) ****a Thus *a  is a 

complement of a  in **L . Finally, for **,, Lcba ∈ , we have 0=))(( ** cbacb  . It follows that 
*** ))(( bcbac ≤ . Again, we have 

*(aca .0=))( *cb  Therefore *** ))(( acbac ≤ . It follows 

that **** ))(( bacbac  ≤ . Hence 0=)()))((( ***** bacbac  . This implies 

0=)()))((( ***** baccba   and hence .0=))(())(( ***** baccba  Therefore 
****** ))(()( cbabac  ≤  and hence .))(()( *** cbacba  ≤∗∗∗ It follows that 

)(  )  ( cbacba  ∨≤∨ .Therefore by theorem 2.9, )0 0, , ,  ,( ***
∨L  is a distributive lattice and hence is a 

Boolean algebra.  
  
Finally, we prove that if L  is an ASL with a pseudo-complementation * , then to each maximal element m  in L , we 
obtain a pseudo-copmlementation m*  and this correspondence between maximal elements of L  and pseudo- 
complementation on L  is one-to-one. Also, prove that if an ASL L with two pseudo-complements say *  and ⊥  then 
the corresponding Boolean algebras **L  and ⊥⊥L  are isomorphic. For this first we need the following.  
 
Lemma 3.18: Let L  be a PCASL and let *  and ⊥  be two pseudo-complementations on L . Then for any Lba ∈, , 
we have the following:  
    1. ⊥⊥ aaa =*

   
    2. ⊥⊥⊥ aa =*   
    3. ⊥⊥⇔ baba == **   
    4. 0)=0=(0=0=* bbaaa ⇒⇔⇔ ⊥

   

    5. ⊥⊥ aa =0*
   

 
Proof:  
    1. Since 0=⊥aa  . It follows that ⊥⊥ aaa =*

 .  
    2. Consider =)0(=)0(=)0(=)0(=)(0= ********** ⊥⊥⊥⊥⊥⊥⊥⊥⊥

 aaaaaaaa   
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      .)())2(,16.3(sin)0( ⊥⊥⊥⊥⊥⊥∗ == aaconditiontheorembycea  Therefore .=* ⊥⊥⊥ aa              

    3. Suppose ** = ba . Now, consider ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ bbbaaa ===== ** . Therefore ⊥⊥ ba = .   
       Similarly, we can prove that if ⊥⊥ ba =  then ** = ba .  
    4. Suppose 0=*a . Then we have 0=0== * ⊥⊥⊥ aaaa  . Therefore 0=⊥a . Now, suppose 0=⊥a    
       and suppose 0=ba  . Then we have bba =

⊥ . It follows that 
      0=b . Suppose 0=ba   implies that 0=b . Now, we have 0=*aa  . Therefore 0=*a .  
    5. Consider, ⊥⊥⊥⊥⊥⊥⊥⊥⊥ aaaaaaaaaa ==0=0=0=0 *****


. Therefore ⊥⊥ aa =0*


.  

  
Now, we prove the following theorem. 
  
Theorem 3.19: Let L  be an ASL and *  be a psuedo-complementation on L . Let M  be the set of all maximal 
elements in L  and let )(LPC  be the set of all pseudo-complementations on L . For any Mm∈ , define 

LLm →:*  by maa m


** = , for all La∈ . Then mm *  is a bijection of M  onto )(LPC .  
 

Proof: Let Mnm ∈,  such that nm *=* . Then nm ** 0=0 . Therefore nm 

** 0=0 . Hence nm = . Let 

)(LPC⊥∈ . If ⊥0=m , then consider ⊥⊥ aamaa m =0== ***
 . Therefore ⊥aa m =*

. Hence m*  is the 

same as ⊥  and m  is maximal. Thus mm *  is a bijection of M  onto .)(LPC   

In the following we prove that, if L  is an ASL with the pseudo-complementation *  and ⊥  then the Boolean algebra 
**L  and ⊥⊥L  are isomorphic.  

 
Theorem 3.20: Let L  be an ASL and ⊥∗,  be two pseudo-complementations on L . Then the map ⊥⊥→ LLf **:  

defined by ⊥⊥aaf =)( **  is an isomorphism of Boolean algebras. 
  
Proof: Suppose ****** , Lba ∈  such that )(=)( **** bfaf . Then ⊥⊥⊥⊥ ba = . It follows by lemma 3.18 

condition(3), we get **** = ba . Therefore f  is one-one. Suppose ⊥⊥⊥⊥ ∈ La .  

Then we have **** La ∈  and ⊥⊥aaf =)( ** . Hence f  is onto. Let ****** , Lba ∈ . Now, consider 

).()(==)(=))((=)( ********** bfafbababafbaf 

⊥⊥⊥⊥⊥⊥  Again, consider 

=)(=])[(=]))[((=))((=)(=)  ( ************************* ⊥⊥⊥⊥∨ bababafbafbafbaf   

 ).()()()()( ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∗⊥⊥∗⊥⊥⊥∗∗ ∨=∨=== bfafbabababa   Hence f  is a 

homomorphism. Now, consider 0=0=)(0=(0) ** ⊥⊥ff  and ⊥0=)(0*f . Thus f  is a Boolean isomorphism.  
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