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ABSTRACT

The concept of pseudo-complementation * on an almost semilattice(ASL) with 0 is introduced and proved some

elementery properties of the pseudo-complementation *. Also, proved that pseudo-complementation *on an ASL is
equationally definable. A one-to-one correspondence between the pseudo-complementations on an ASL L with 0 and

maximal elements of L is obtained. It is also proved that L~ :{a** :ae L} is a Boolean algebra which is
independent(up to isomorphism) of the pseudo-complementation * on L.

Key Words: Almost Semilattice, Pseudo-complementation, Unimaximal element, Maximal element, Equationally
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1. INTRODUCTION

It is well known that for any pseudo-complementation *on a semilattice L, ™ ={a"":aeL} becomes a

Boolean algebra. In [1], Frink, O. proved that any pseudo- complemetation on a semilattice is equationally definable. In
[4], Swamy, U.M., Rao, G.C. and Nanaji Rao, G. introduced the concept of pseudo-complemetation * on an Almost
Distributive Lattice(ADL) and proved that this pseudo - complemetation is equationally definable. Also, proved that a

one-to-one correspondece between the pseudo-complementations on an ADL L with 0 and maximal elements of L .
They proved that if L is an ADL with 0 and * is a pseudo-complementation on L then L* ={a":acl} isa

Boolean algebra which is independent(upto isomorphism) of the pseudo-complementation * on L. In this paper, we
introduce the concept of pseudo-complementation * on an ASL with O and prove some basic properties of this
pseudo-complementation. We prove that the pseudo-complementation on an ASL is equationally definable. It is
observed that an ASL with O can have more than one pseudo-complemetation. In fact, if there is a

pseudo-complementation * onan ASL with O and * elements commutes then we prove that each maximal element
of L gives rise to a pseudo-complementation and that this correspondence is one-to-one. For any pseudo

-complementation * on an ASL with 0 and * elements commutes, we prove thatthe set L~ ={a" :aeL} isa
Boolean algebra, which is independent(upto isomorphism) of the pseudo-complementation* .

2. PRELIMINARIES

In this section we collect a few important definitions and results which are already known and which will be
used more frequently in the text.

Definition 2.1 [2]: Let (P, <) beaposet. If P has leastelement O and greatest element 1, then P is said to be a
bounded poset.

If (P, <) isabounded poset with bounds 0,1, then forany X € P, we have 0 < x <1.
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Definition 2.2 [2]: Let (P, <) be a poset. Then P is said to be lattice ordered set if for any X,y € P ,L.u.b{x, y}
and g.1.b{X, y} existsin P .

Definition 2.3 [2]: Let L beanon-emptysetand V, A be two binary operationson L . Thenthetriplet (L,Vv,A) is
called lattice if it satisfies the following conditions:

1) Xvy=yvXand XAY=YAX. (Commutative Law)
2 (xvy)vz=xv(yvz) and (XAY)AZ=XA(YAZ). (Associative Law)
(3) Xv(XAYy)=X and XA(XVY)=X,forall X,yel. (Absorption Laws)

Lemma 2.4 [2]: Let (L,Vv,A) bealattice. Thenforany Xe L, XAX=X and Xv X=X.

Theorem 2.5 [2]: (L, <) be a lattice ordered set. For any X,y € L, if we define XA 'Y isthe ¢.l.b{x, y} and
XVvy isthe L.u.b{x, y}, then (L,v,A) isa lattice.

Theorem 2.6 [2]: Let (L,Vv,A) be a lattice. If we define a relation < on L,by X<V ifandonlyif X=XAY,
(or equivalently XV Yy =1Y),then (L, <) isa lattice ordered set.

Note that, by theorems 2.5 and 2.6 together imply that the concepts of lattice and lattice ordered set are same. We refer to
it as a lattice in future.

Theorem 2.7 [2]: In any lattice (L, Vv, A), the following are equivalent:
1) XA(yvz)=(xXAy)v(Xaz)
@ Xvy)Az=(XAZ2)Vv(YyAZ)
) Xv(yaz)=(xvy)a(xvz)
4 (XAay)vz=(Xvz)a(yvz).

Definition 2.8 [2]: A lattice (L,Vv, A) is called a distributive lattice if it satisfies any one of the four conditions, in
theorem 2.7

Theorem 2.9 [2]: Let (L,V,A) be a lattice. Then for any X, Y, Z € L, the following conditions are equivalent:
1) Xv(yaz)=(xvy)a(xvz)
) XA(Yyvz)=(XAYy)v(XAZ)
B) (Xvy)AzZ<XxVv(YAZ).

Definition 2.10 [2]: Let (L, Vv, A) be a lattice. Then L is said to be bounded lattice if L is bounded as a poset.

It can be easily seen that if (L,V,A) isabounded lattice with bounds 0,1, thenforany Xe L, 0OAX=XxA0=0
, Ovx=xv0=x, xAl=1AXx=X and Xvl1=1vx=1.

Definition 2.11 [2]: A bounded lattice (L, v, A) with bounds O and 1 is said to be complemented if to each X € L
,there exists Y € L suchthat XAy =0 and Xvy=1.

Definition 2.12 [2]: A complemented distributive lattice is called a Boolean algebra.
Definition 2.13 [2]: Aring R is called a regular ring if, to each @ € R, there exists X € R such that axa = a.

Definition 2.14 [1]: A semilattice is an algebra (S, *) where S isnon-empty setand * is a binary operationon S ,
satisfies the following conditions:

1. Xx(y*z2)=(Xx*y)*z (Associative Law)
2. X*y=Yy*X (Commutative Law)
3. x*x=x,forall X,y,2€S.  (Idempotent)
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Definition 2.15 [1]: Let S be a meet semilattice with 0 in which each element a has a pseudo-complement a’
suchthat aA X =0 ifandonlyif x<a .

Definition 2.16 [3]: An almost semilattice(ASL) is an algebra (L,o) where L is a non-empty setand o is a binary
operation on L, satisfies the following conditions:

1. (Xoy)oz=Xo(yo2) (Associative Law)

2. (Xoy)oz=(yoX)oz (Almost Commutative Law)

3. Xox=X,forall X,y,zeL. (ldempotent)

Definition 2.17 [3]: An ASL with O isanalgebra (L,c,0) oftype (2,0) satisfies the following conditions:

1. (Xoy)oz=Xo(yo2z) (Associative Law)
2. (Xoy)oz=(yoX)oz (Almost Commutative Law)
3. XoX=X (Idempotent)

4. Qox=0,forall X,y,zelL.

Definition 2.18 [3]: Let L be a non-empty set. Define a binary operation o on L by Xoy =Y forall X,yelL.
Then (L,o) isan ASL and is called discrete ASL.

Theorem 2.19 [3]: Let (L,o) beanASL. Definearelation < on L by a<b ifandonlyif acb=a.Then < is

a partial orderingon L.

Theorem 2.20 [3]: Let (L,o) be an ASL. Then for any a,beL with a<b we have aocc<boc and
coa<cob,forall cel.

Theorem 2.21 [3]: Let (L,o) be an ASL. Then for any a,b € L, we have the following:

1. aocb<h.
2. aob=boa whenever a<b.

Theorem 2.22 [3]: Let (L,o) beanASLwith O.Thenforany a,b e L, we have the following:
1. ao0=0.
2. aob=0 ifandonlyif boa=0.
3. aocb=Dboa whenever aocbh=0.

Definition 2.23 [3]: Let (L,o) be an ASL. Then an element m € L is said to be unimaximal if mo x = X, for all
Xel.

Definition 2.24 [2]: Let B, and B, be two Boolean algebras. A mapping f :B, — B, is said to be Boolean
homomorphism if it is a lattice homomorphism and preserves complementation. That is, for any a,be B, .
f(avb)=f(a)v f(b), f(anb)=f(a)a f(b) and f(a')=(f(a))"

It can be observed that if f is a lattice homomorphism from B, to B, suchthat f(0)=0 and f(1)=1, then
f becomes a Boolean homomorphism. A Boolean isomorphism is a Boolean homomorphism which is a bijection.

3. DEFINITION AND INDEPENDENCY OF THE AXIOMS

In this section, we introduce the concept of the pseudo-complementation on an almost semilattice and we
establish the independency of the conditions in the definition. Further, we give few examples of pseudo-complemented
almost semilattice.

Definition 3.1: Let (L,o,0) be an almost semilattice with zero. Then a unary operation a > a” on L issaid to be
pseudo-complementation on L if, for any @,b € L, it satisfies the following conditions:

1. ach=0=a"ob=b

2. aca =0.
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For brevity, in future, we will refer an Almost Semilattice as ASL and to this Pseudo - Complemented Almost
Semilattice as PCASL. Now, we give examples to exhibit independency of the conditions in the above definition.

Example 3.2: Let (L,o) be an ASL with zero with atleast two elements and define a unary operation * on L by
a"=0,forall aelL.

Here the algebra (L,o) satisfies (2) but, it fails to satisfies (1). Because, forany b = 0, we have Oob = 0. But,
O*Ob:OOb:O?fb.

Example 3.3: Let L be a meet semilattice with least element 0 and greatest element 1. Now, define a unary
operation * on L by a’ =1,forall aclL.

Here the algebra (L,o) satisfies (1) but, it fails to satisfies (2). Because forany a=0eL, ara =aAnl=a=0

Now, we give some examples of PCASL.
Example 3.4: Every pseudo - complemented semilattice is a pseudo-complemented almost semilattice.

In the case of semilattices, if pseudo-complementation exists then it is unique. But, in the case of ASL, there are several
pseudo-complementation. For, consider the following examples.

Example 3.5: Let (L,o) be a discrete ASL with zero and fix X, € L. Now, define a unary operation * on L by

. |0 ifa=0
a = .
X, ifa=0.

Then * is a pseudo-complementation on L, and to each X, € L, we get a pseudo - complementation on L.

Example 3.6: Let L = { a, b, ¢, 0 }. Now, define binary operation o on L as follows:

O |T| |O|°
eollelie}lle] o]
T|T| |O|T
OO0 | |Olo

|| | Ol

Then cleary, (L,0) is an ASL. Now, define 0'=b, x"=0 for all x#0. Then clearly * is a
pseudo-coplementation on L, and hence L isaPCASL.

Note that, we define 0" =c and X =0 forall X # 0, then it can be eaily seen that L isa PCASL.

Example 3.7: Let L = { a, b, ¢, 0 }. Now, define binary operation o on L as follows:

o | Ola|bj|c
ojo0o|o0|0|oO
a|0|al|bjc
b|O0|al|b]c
c|O0|c|c|ec

Then cleary, (L,0) is an ASL. Now, define 0"=a , X =0 for all Xx=0 . Then clearly * is a
pseudo-coplementation on L and hence L isaPCASL.

Note that, we define 0" =b and X =0 forall X # 0, then it can be eaily seen that L isa PCASL .

© 2017, IIMA. All Rights Reserved 97



G. Nanaji Ra01, S. Sujatha Kumari*? / Pseudo - Complemented Almost Semilattices / IIMA- 8(10), Oct.-2017.

Example 3.8: Let (R,+,.) be a commutative regular ring with unity 1. Let a’ bethe unique idempotent element in
R, such that aR =a’R . Now, for any a,be R, define operations on R as follows: aob=a’b and

a" =1-a°. Thenclearly (R,o) isanASL and * is a pseudo - complementation on R .

Example 3.9: Let A be a non-empty set with atleast two elements, and let B any set and p, € A®. Now, for any

a,be A®, define
b(t) if a(t) = p,(t)
(aeb)(t) = { Lo
Po(t) if a(t)=p, (1).
Then (A®,0,p,) isan ASL with P, as zero element. Now, let p e A® such that p(t) # p,(t) forall teB.

Forany ae A®, define
t) if a(t) #p,(t
ap(t):{poo f a(t) =Py (0
p(t) if at)=p, ().
Then ar> a’ is a pseudo-complementation on A® and conversely, if am— a’ isa pseudo-complementation on
AP, then there exists p € A® suchthat p(t) = p,(t) forall te B and a" =a” forall ac A®(take p=p;).

In the following we prove some basic properties of PCASL.

Lemma 3.10: Let L be a PCASL. Then for any @,b e L, we have the following:
1.0 ca=a
2. 0" is unimaximal
3. 07 is maximal

4. 8" ca=a

5. aca =0

6. a* o a*** = a***

7.7 ca=a

8. a<b=a ob =b"

9. a isunimaximal = a =0

10. 07" =0

11. a* isunimaximal < a =0

12.a=0<a” =0

13. (ach) ca" =a’

14. (ach) ob™" =b"

1. Since 0ca =0 forall aeL,wehave 0 ca=a, forall aeL.
2. Proof follows by condition (1).

3. Let XeL suchthat 0" <x.Then 0" =0 ox =X since 0" isunimaximal. Thus Q"
is maximal.

Since @ ca=0,wehave @3 oca=a.
By (4), wehave @ oa =a.Now,consider aca ~=(a  ca)oca =(aca )oa
= ao(a**oa***) =a-0=0.
6. By(5), aca =0, itfollowsthat a" oca”  =a .
7. By(5), aca  =0.Hence @ oa=0.Itfollowsthat 8 oa=a.
8. Supose a<b.Then aob” <bob™.Hence ach” =0.Itfollowsthat & ob™ =b".
9. Suppose @ isunimaximal. Then aot=t forall teL.Now, 0=aca =a".Thus a =0.

10.Wehave 0=0"00""=0"" since 0" is unimaximal. Thus 0°" = 0.
© 2017, IIMA. All Rights Reserved 98
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11. Suppose @~ is unimaximal. Then @~ = 0 since by (9). Now, consider 2" =a  oa =0o0a =0.
Therefore @ = 0. Conversely, suppose @ =0.Then @ =0 which is unimaximal.

12.Suppose @ =0.Then @"~ =0"" = 0. Conversely, suppose @ =0.Consider a=a" oca=00a=0.
Thus a=0.

13.We have (aob)oa” =0.Therefore (ach) oa” =a’. Similarly, we can prove (14).
Next, we prove some equivalent conditions in PCASL.

Theorem 3.11: Let L be a PCASL.Then for any a,b € L, the following are equivalent:

1. aob=0
2.a 7 ob=0
3aoh™ =0

* *

4.@" 7 ob" =0
Proof:
(1) = (2): Suppose acb=0.Then a"ob=D.Now consider a“oh=a"o(a ob) =(a ca )ob=00b=0.
(2) = (1): Suppose @" b =0. Now, consider ach=(a""oa)ob =(aca )ob=ao(a ob)=a-0=0.
Therefore aocb=0. (1)= (3) : Suppose acb=0.
Then boa=0.Therefore b™ oa =a. Now, consider ach™ = (b 0a)obh™ =(ach)oh™ =a
o(b"ob)=a0c0=0. Thus aob™" =0.
(3) = (4): Suppose ach™ =0.Then a" ob™™ =b"". Now, consider
a ob=a"o(@oh)=(a"ca)oh =00b""=0.Thus 2" ob"" =0.
(4)= (1): suppose @ ob™" =0. Now, consider
acb=(a"oa)o(b”"ob)=a""co(ao(b" o b)) =a o((@ach)ob) =a""o((b** oa)ob)
=a""o (b o(ach)) =(a""ob*") o(ach) =00(ach) =0. Thus acb=0.

* * %

Corollary 3.12: Let L be a PCASL. Then for any a,b € L, we have the following: (aob)™ ca ™ ob™ =a" ob

Proof: We have aobo(ach)” =0. Therefore by theorem 3.11, we get @ obo(ach)” =0. This implies
boa™ o(aoh)” =0. Again, by theorem 3.11, we get b™ oa  o(aob) =0. It follows that (acb) oca
ob”" =0.Therefore (ach) " oa  ob™ =a " ob™".

In the following, we prove that pseudo-complementation * on an ASL L is equationally definable.

Theorem 3.13: Let L be an ASL with 0. Then aunary operation *: L — L isa pseudo - complementationon L if
and only if it satisfies the following conditions:

(1) a“ob=(ach) b
(2) 0"ca=a
(3) 07 =0

Proof: Suppose * is a pseudo-complementation on L. Then we have acbo(aob)” =0,

Therefore  a”obo(ach) =bo(ach)” . This implies a obo(ach) ob=bo(acb) ob . Hence
a o(ach) ob=(ach) ob . Therefore (aoh) oca”ob=(ach) ob . Hence a"ob=(aob) ob since
(aob)o(a” ob) =0. Proofs of conditions (2) and (3) follows by lemma 3.10. Conversely, suppose * satisfies the
given conditions. Let a,be L such that aocb=0. Now, from (1) we get a ob=(ach) ocbh=0ob=h.
Therefore @“ ob =b. Again, considera” ca=(0"ca) o a=0"ca=00a=0.1t follows that aca” =0.
Thus * is a pseudo-complementation on L.
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Remark: Whether * elements commutes are not, is not known so far in pseudo-complementated ASL with
pseudo-complementation *. Investigations are still going on.

Definition 3.14: Let (L,0,0) be a pseudo-complemented almost semilattice, with pseudo - complementation *. Then

L issaid to be *- commutativeif @ ob” =b oa”,forall a,belL.

Next, we prove that, for any * - commutative PCASL L the set L= {a** :a € L} becomes a Boolean algebra. It is
remarked that an ASL with O can have more than one pseudo - complementation and examples were given to this
effect. In fact, we prove that if L isan ASL with a pseudo-complementation *, then to each maximal element m in
L , we obtain a pseudo-coplementation *, and this correspondence between maximal elements of L and

pseudo-complementation on L is one-to-one. Also prove that the Boolean algebra L™ s independent (upto
isomorphism) of the pseudo-complementation *. For, this, first we need the following.

Theorem 3.15: Let L be a *- commutative PCASL. Then for any a,b € L, we have the following:
1. a<b=b" <a’

2.a <0

3.a "=a

4, 8 <b ob <a

5. a <(boa)” and b" < (aoh)

Proof:
1. Suppose @D Then ac b"<bob” Therefore @b =0 jtfollowsthat @ °D =b" Hence
b ea’ = b*.Weget b"<a’,
2.Since 0ca =0. Itfollowsthat 0" ca =a .Hence @ 0" =a". Therefore a” <0".
3.Wehave & oa =0 andhence @ oa =a .Ontheother hand, we have aca =0 since by
lemma 3.10(5). Therefore a“oa”"=a . Hence by *-commutative we get a’ =a .
4.Suppose @ <b".Then b™" <a  since by (1). Conversely, suppose b™~ <a . Then again by (1), we get

* %k K

a~” <b""". Thisimplies a <b” since by (3).
5.Wehave aob <b.Henceby (1), b” < (aoh)". Also, we have boa <a. Therefore by (1), a" <(boa)".

Theorem 3.16: Let L be a *- commutative PCASL. Then for any a,b € L, we have the
following:

1. (aoh)"=a" ob™
2. (aoh)" = (boa)"
3. a",b" <(ach)".

Proof:
1. Let abel . Then we have (ach) cach=0 . This implies bo(ach) ca=0 . Therefore

b™o(ach) ca=(ach) ca.Now, consider (ach) caoh™ =h"o(ach) caoch™ =

(ach) caob ob™ =(ach) cao0=0.Therefore ac(ach) ob™ =0.Hence a o(ach) ob™

= (aob) ob™*.Now, (aoch) cb0a” =a"o(ach) ob™ca"* = (ach) ca’ob* ca" = (ach)"

ob 7 oa oa” = (ach) o b" o0 =0.Therefore (ach) ob™ oa” =0 and hence

(aob) ca™ ob™ =0. It follows that (ach) oca ob =a" ob™ . On the other hand, we have
(acb) oa” =a .Therefore (aoh) o(ach) ca”=(ach) oa . Hence (ach) oa” =0. This implies
a o(ach)” =0.Hence a” o(ach)” =(ach)". Similarly, we can prove that b™ o (aob)” = (ach)" .
Hence we get &~ ob™ o(ach)” =(aoh)™". Therefore (aoh) oca o b™ =(ach) . It follows by *-
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commutativity, (aob)” =a" ob"".
2. Consider, (@ob)" = (ach) ™" = ((@aob)") =(@a" ob™) = (b 0a™) =((boa)”) =(boa)”"
=(boa)". Therefore (aob)” =(boa)”.
3. Proof of (3) follows by condition (5) in theorem 3.15 and condition (2) in theorem 3.16.

*\ KK

)"

Also, it can be easily seen that if X,y are * -elementsin L then Xoy = 0 ifand only if X< y* if and only if

Ina *- commutative PCASL L, it can be easily observed that, if x=a" then X" =x and @ ob” =(a"ob

y <X . Now, we prove that if L is * - commutative PCASL then the set L ={a" :a e L} is a Boolean
algebra.

Theorem 3.17: Let (L,o) be a *- commutative PCASL. Then the set L™ is a Boolean algebra with the original

determination of the meet operation aob and of the order relation a < b, the Boolean complement of an element
being its pseudo-complement for these element, the Boolean join operation is given by the formula avb=(a"ob")".

Proof: Suppose L isa *- commutative PCASL. Then clearly L~ ={a"" : a e L} is a poset with respect to <
definedasin L.Suppose @ ,b" €L ".Then @ ob™" =(ach)” €L andclearly (ach)™ " isthe greatest
lower bound of {a” " ,b" " }.Now, a8 vb =(@ "ob") = (a ob’).Sincea ob” < a’,b"itfollows that
a~ b <(a"ob") . Therefore (@"ob™)" isan upper bound of {a”",b""}. Let t e L"" such that t is an upper
bound of {a"",b""}. Then a"" <t and b™" <t.Since te L'", t=c"" forsome c e L.Therefore a” <c”~
and b™" <c™". It follows that ¢ <a” and ¢" <b". Hence ¢" <a”ob".Thus (@ ob’) <c =t. Therefore
(@"ob™)" is the least upper bound of {a” ,b""}. Hence L is a lattice. Now, we have 0 =0"" and hence
Oe L. Clearly 0 and 0" are the least and greatest elements in L respectively. Also, forany a € L™ we have
a" el since a°=a""" and aca” =0. Now, consider, ava =(a o a ) =0.Thus a" is a
complement of a in L. Finally, for a,b,ceL”, we have boco(a o(boc)’)=0. It follows that
co(a o(boc))<b". Again,wehave accCo(a o (boc))=0.Therefore Co(a o(boc))<a . Itfollows
that Co(a o(boc))<a ob™ . Hence (Co(a o(boc)))o(a ob”) =0 . This implies
(@ o(boc))oc)o(a ob™) =0 and  hence (@ o(boc))o(co(@ oh’)’)=0.  Therefore
co(@ ob) <(@a o(boc)’)” and hence (a"ob") oc<(a o(boc)). It follows that

(avb)oc<av (boc).Therefore by theorem 2.9, (L, v,0,0,07) is a distributive lattice and hence is a
Boolean algebra.

Finally, we prove that if L isan ASL with a pseudo-complementation *, then to each maximal element M in L, we
obtain a pseudo-copmlementation *,, and this correspondence between maximal elements of L and pseudo-

complementation on L is one-to-one. Also, prove that if an ASL L with two pseudo-complements say * and L then
the corresponding Boolean algebras L™ and L™ are isomorphic. For this first we need the following.

Lemma 3.18: Let L beaPCASL and let * and L be two pseudo-complementationson L. Thenforany a,be L,
we have the following:

1. a ca'=a"

2 a*J_ - aJ_J_
3.a =b"<a'=b"
4 a =0=a" =0 (ach=0=b=0)
5.a 00" =a’

Proof:
1.Since aca' =0.Itfollowsthat @ ca* =a*.
2.Consider 2" =(0"ca’ )" =(a"c0) =(atoa o0) =(a ca‘o0) =(at-0)" =
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(0" ca™)™* (sin ce by theorem 3.16, condition(2))= (a*)" = a“*. Therefore a™* = a**.
3.Suppose @ =b".Now, consider a* =a'** =a™* =b™* =b*** =pb". Therefore a* =b".
Similarly, we can prove thatif a“ =b* then @ =b".
4.Suppose @ =0.Thenwehave a* =a oa® =0oa" =0. Therefore a“ = 0. Now, suppose a* =0
and suppose aob =0.Thenwe have a* ob =Db. It follows that

b =0.Suppose @ach =0 impliesthat b = 0. Now, we have aca” =0. Therefore 2" =0.
5. Consider, 8" c0" =a*oa 00" =a oca'o0" =a 00" ca’ =a oca" =a’. Therefore a"-0* =a*.

Now, we prove the following theorem.

Theorem 3.19: Let L be an ASL and * be a psuedo-complementation on L. Let M be the set of all maximal
elements in L and let PC(L) be the set of all pseudo-complementations on L. For any me M , define

*..L—>L by am=a"om, forall aeL.Then m = *_ isabijectionof M onto PC(L).

Proof: Let m,ne M such that * =*_ . Then 0™ =0". Therefore 0" om=0"on. Hence M=n. Let

m
LePC(L). If m=0", then consider a™ =a" om=a" 00" = a*. Therefore a ™ =a*. Hence *,, is the
is a bijection of M onto PC(L).

In the following we prove that, if L is an ASL with the pseudo-complementation * and L then the Boolean algebra

* *

L™ and L™ are isomorphic.

sameas L and m is maximal. Thus mi=*_

Theorem 3.20: Let L be an ASL and *, L be two pseudo-complementations on L. Then the map f : [

definedby f(a" ) =a"" isan isomorphism of Boolean algebras.

Proof: Suppose @ ,b" e L such that f(a™ )= f(b™"). Then a** =b**. It follows by lemma 3.18

condition(3), we get @ =Db"". Therefore f isone-one. Suppose a** e L**.

Then we have @ eL™™ and f(a”)=a'" . Hence f is onto. Let @  ,b" L . Now, consider
f(@ ob™)=f((@ach)")=(ach)'* =a*ob** =f(@a)of(b™") Again, consider
Fa"vb™) = f@ ob™) = F((a" ob)) = F((a" ob’)) " T=[(@" ob") = = (2" ob’)™ =
(a" ob*)LLLz (a*LL Ob*LL)L _ (aLLL obiii)iz atty bt = f(aLL) v f(bli)l Hence f is a

homomorphism. Now, consider f(0)= f(0"")=0"" =0 and f(0")=0".Thus f isaBoolean isomorphism.
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