NON EXISTENCE OF RELAXED SKOLEM MEAN LABELING FOR STAR GRAPHS

A. MANSHATH1, V. BALAJI*2 AND P. SEKAR3

1Department of Mathematics, Sriram Engineering College, Thiruvallur-602024, India.
2Department of Mathematics, Sacred Heart College, Tirupattur-635601, India.
3Department of Mathematics, C. Kandasamy Naidu College, Chennai - 600102 India.

(Received On: 31-07-17; Revised & Accepted On: 25-09-17)

ABSTRACT

In this paper we prove that the two star graph \(K_{1, m} \cup K_{1, n} \) is not a relaxed skolem mean graph if \(|m - n| > 5 \) and the three star graph \(K_{1, m} \cup K_{1, n} \cup K_{1, \ell} \) is not a relaxed skolem mean graph if \(|m - n| > \ell + 6 \).

Keywords: Relaxed Skolem mean graph and star.

2010 Mathematical Subject Classification Number: 05C78.

1. INTRODUCTION

We proved that \(K_{1, m} \) is not a relaxed skolem mean graph for \(m \geq 5 \). Also, we proved that the two star \(K_{1, m} \cup K_{1, n} \) is a relaxed skolem mean graph if \(|m-n| \leq 5 \). Next, we proved the existence of relaxed skolem mean graphs. In [3], the three star \(K_{1, \ell} \cup K_{1, m} \cup K_{1, n} \) is a relaxed skolem mean graph if \(|m-n| \leq \ell + 6 \) for \(\ell = 1, 2, 3, \ldots; m = 1, 2, 3, \ldots; n = \ell + m + 6 \) when \(\ell \leq m < n \).

2. [4] RELAXED SKOLEM MEAN LABELING

Definition 2.1: A graph \(G=(V, E) \) with \(p \) vertices and \(q \) edges is said to be a relaxed skolem mean graph if there exists a function \(f \) from the vertex set of \(G \) to \(\{1, 2, 3, \ldots, p+1\} \) such that the induced map \(f^* \) from the edge set of \(G \) to \(\{2, 3, 4, \ldots, p+1\} \) defined by

\[
\begin{align*}
 f^*(e=uv) = \begin{cases}
 \frac{f(u)+f(v)}{2} & \text{if } f(u)+f(v) \text{ is even} \\
 \frac{f(u)+f(v)+1}{2} & \text{if } f(u)+f(v) \text{ is odd},
\end{cases}
\end{align*}
\]

then the resulting edges get distinct labels from the set \(\{2, 3, 4, \ldots, p+1\} \).

Note 2.2: [4], In a Relaxed skolem mean graph, \(p \geq q \).

Theorem 2.3: The two star \(G = K_{1, m} \cup K_{1, n} \) is not a relaxed Skolem mean graph if \(|m-n| > 5 \).

Proof: Without loss of generality, let us consider \(m \leq n \). Consider the primal graph under the condition \(|m-n| > 5 \) that is \(m = 1 \) and \(n = 7 \). That is \(G = K_{1,1} \cup K_{1,7} \).

Corresponding Author: V. Balaji*2
2Department of Mathematics, Sacred Heart College, Tirupattur-635601, India.

International Journal of Mathematical Archive- 8(10), Oct. – 2017 110
A. Manshath, V. Balaji* and P. Sekar /

Where \(V(G) = \{v_{1,j}: 0 \leq j \leq 1\} \cup \{v_{2,j}:0 \leq i \leq 7\} \)
\[E(G) = \{v_{1,0}v_{1,j}\} \cup \{v_{2,0}v_{2,j}:1 \leq j \leq 7\} \]

G has 10 vertices and 8 edges.

Suppose G is relaxed skolem mean graph.

Then there exists a function \(f \) from the vertex set of G to \{1, 2, 3, ..., 11\} such that the induced map \(f^* \) from the edge set of G to \{2, 3, ..., 11\} defined by
\[
f^*(e = uv) = \begin{cases}
\frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\
\frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd}
\end{cases}
\]

Then the resulting edges get distinct labels from the set \{2, 3, ..., 11\}.

Then the vertex and edge mappings of G is given by
\[
f: V(G) \rightarrow \{1, 2, ..., 11\}
f^*:E(G) \rightarrow \{2, 3, ..., 11\}
\]

Let, \(t_{i,j} = f(v_{i,j}) \) and \(x_{i,j} = f^*(v_{i,0}v_{i,j}) \) \(\forall i \) and \(j \).

Now let us consider the following cases,

Case-(a): \(t_{2,0} = 11 \).

If \(t_{2,j} = 2n \) and \(t_{2,k} = 2n + 1 \) for some \(n, j \) and \(k \) then,
\[
x_{2,j} = f^*(v_{2,0}v_{2,j}) = \left(\frac{11 + 2n}{2}\right) = 6 + n = \left(\frac{11 + 2n + 1}{2}\right) = f^*(v_{2,0}v_{2,k}) = x_{2,k}
\]

Therefore, the possibilities for the pendent vertices are \((1), (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10) \). These six labels are not sufficient to label seven vertices, \(t_{2,j} \) for \(1 \leq j \leq 7 \).

Suppose \(t_{2,7} \) takes any of the remaining values.

Let \(t_{2,0} = 11, t_{2,1} = 1, t_{2,2} = 3, t_{2,7} = 2 \).

Then the corresponding edge labels are \(x_{2,1} = 6, x_{2,2} = 7, x_{2,7} = 7 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when \(t_{2,0} = 11 \).

Case-(b): \(t_{2,0} = 10 \)

If \(t_{2,j} = 2n - 1 \) and \(t_{2,k} = 2n \) for some \(n, j \) and \(k \) then,
\[
x_{2,j} = f^*(v_{2,0}v_{2,j}) = \left(\frac{10 + 2n - 1}{2}\right) = 5 + n = \left(\frac{10 + 2n}{2}\right) = f^*(v_{2,0}v_{2,k}) = x_{2,k}
\]

Therefore, the possibilities for the pendent vertices are \((1 or 2), (3 or 4), (5 or 6), (7 or 8), 9 and 11 \). These six labels are not sufficient to label seven vertices, \(t_{2,j} \) for \(1 \leq j \leq 7 \).
Suppose \(t_{2,7} \) takes any of the remaining values.

Let \(t_{2,0} = 10 \), \(t_{2,1} = 2 \), \(t_{2,2} = 4 \), \(t_{2,7} = 1 \).

Then the corresponding edge labels are \(x_{2,1} = 6 \), \(x_{2,2} = 7 \), \(x_{2,7} = 6 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, \(G \) is not a relaxed skolem mean graph when \(t_{2,0} = 10 \).

Case-(c): \(t_{2,0} = 9 \).

If \(t_{2,j} = 2n \) and \(t_{2,k} = 2n + 1 \) for some \(n, j \) and \(k \) then,

\[
x_{2,j} = f^*(v_{2,0}v_{2,j}) = \left(\frac{9+2n}{2} \right) = 5+n = \left(\frac{9+2n+1}{2} \right) = f^*(v_{2,0}v_{2,k}) = x_{2,k}
\]

Therefore, the possibilities for the pendent vertices are \((1, 2 or 3), (4 or 5), (6 or 7), 8, (10 or 11)\). These six labels are not sufficient to label seven vertices, \(t_{2,0} \) for \(1 \leq j \leq 7 \).

Suppose \(t_{2,7} \) takes any of the remaining values.

Let \(t_{2,0} = 9 \), \(t_{2,1} = 1 \), \(t_{2,2} = 3 \), \(t_{2,7} = 2 \).

Then the corresponding edge labels are \(x_{2,1} = 5 \), \(x_{2,2} = 6 \), \(x_{2,7} = 6 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, \(G \) is not a relaxed skolem mean graph when \(t_{2,0} = 9 \).

Case-(d): \(t_{2,0} = 8 \).

If \(t_{2,j} = 2n-1 \) and \(t_{2,k} = 2n \) for some \(n, j \) and \(k \) then,

\[
x_{2,j} = f^*(v_{2,0}v_{2,j}) = \left(\frac{1+2n}{2} \right) = 1+n = \left(\frac{1+2n+1}{2} \right) = f^*(v_{2,0}v_{2,k}) = x_{2,k}
\]

Therefore, the possibilities for the pendent vertices are \((1 or 2), (3 or 4), (5 or 6), (7), (9 or 10), (11)\). These six labels are not sufficient to label seven vertices, \(t_{2,0} \) for \(1 \leq j \leq 7 \).

Suppose \(t_{2,7} \) takes any of the remaining values.

Let \(t_{2,0} = 8 \), \(t_{2,1} = 2 \), \(t_{2,2} = 4 \), \(t_{2,7} = 1 \).

Then the corresponding edge labels are \(x_{2,1} = 5 \), \(x_{2,2} = 6 \), \(x_{2,7} = 5 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, \(G \) is not a relaxed skolem mean graph when \(t_{2,0} = 8 \).

Case-(e): \(t_{2,0} = 7 \).

If \(t_{2,j} = 2n \) and \(t_{2,k} = 2n+1 \) for some \(n, j \) and \(k \) then,

\[
x_{2,j} = f^*(v_{2,0}v_{2,j}) = \left(\frac{7+2n}{2} \right) = 4+n = \left(\frac{7+2n+1}{2} \right) = f^*(v_{2,0}v_{2,k}) = x_{2,k}
\]
Therefore, the possibilities for the pendent vertices are (1, 2 or 3), (4 or 5), (6), (8 or 9), (10 or 11). These six labels are not sufficient to label seven vertices, $t_{2,j}$ for $1 \leq j \leq 7$.

Suppose $t_{2,7}$ takes any of the remaining values.

Let $t_{2,0} = 7$, $t_{2,1} = 1$, $t_{2,2} = 3$, $t_{2,7} = 2$.

Then the corresponding edge labels are $x_{2,1} = 4$, $x_{2,2} = 5$, $x_{2,7} = 5$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{2,0} = 7$.

Case-(f): $t_{2,0} = 6$.

If $t_{2,j} = 2n - 1$ and $t_{2,k} = 2n$ for some n, j and k then,

$$x_{2,j} = f^*(v_{2,0}v_{2,j}) = \left(\frac{6 + 2n - 1}{2}\right) = 3 + n = \left(\frac{6 + 2n}{2}\right) = f^*(v_{2,0}v_{2,k}) = x_{2,k}$$

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5), (7 or 8), (9 or 10), (11). These six labels are not sufficient to labels seven vertices, $t_{2,j}$ for $1 \leq j \leq 7$.

Suppose $t_{2,7}$ takes any of the remaining values.

Let $t_{2,0} = 6$, $t_{2,1} = 1$, $t_{2,2} = 3$, $t_{2,7} = 2$.

Then the corresponding edge labels are $x_{2,1} = 4$, $x_{2,2} = 5$, $x_{2,7} = 4$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{2,0} = 6$.

Case-(g): $t_{2,0} = 5$.

If $t_{2,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then,

$$x_{2,j} = f^*(v_{2,0}v_{2,j}) = \left(\frac{5 + 2n}{2}\right) = 3 + n = \left(\frac{5 + 2n + 1}{2}\right) = f^*(v_{2,0}v_{2,k}) = x_{2,k}$$

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4), (6 or 7), (8 or 9), (10 or 11). These six labels are not sufficient to labels seven vertices, $t_{2,j}$ for $1 \leq j \leq 7$.

Suppose $t_{2,7}$ takes any of the remaining values.

Let $t_{2,0} = 5$, $t_{2,1} = 1$, $t_{2,2} = 3$, $t_{2,7} = 2$.

Then the corresponding edge labels are $x_{2,1} = 3$, $x_{2,2} = 4$, $x_{2,7} = 4$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{2,0} = 5$.

© 2017, IJMA. All Rights Reserved
Case-(h): $t_{2,0} = 4$.

If $t_{2,j} = 2n - 1$ and $t_{2,k} = 2n$ for some n, j and k then,

$$x_{2,j} = f^*(v_{2,0}, v_{2,j}) = \left(\frac{4 + 2n - 1}{2}\right) = 2 + n = \left(\frac{4 + 2n}{2}\right) = f^*(v_{2,0}, v_{2,k}) = x_{2,k}$$

Therefore, the possibilities for the pendent vertices are (1 or 2), (3), (5 or 6), (7 or 8), (9 or 10), (11). These six labels are not sufficient to label seven vertices, $t_{2,j}$ for $1 \leq j \leq 7$.

Suppose $t_{2,7}$ takes any of the remaining values.

Let $t_{2,0} = 4$, $t_{2,i} = 2$, $t_{2,2} = 3$, $t_{2,7} = 1$.

Then the corresponding edge labels are $x_{2,i} = 3$, $x_{2,2} = 4$, $x_{2,7} = 3$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{2,0} = 4$.

Case-(i): $t_{2,0} = 3$.

If $t_{2,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then

$$x_{2,j} = f^*(v_{2,0}, v_{2,j}) = \left(\frac{3 + 2n}{2}\right) = 4 + n = \left(\frac{3 + 2n + 1}{2}\right) = f^*(v_{2,0}, v_{2,k}) = x_{2,k}$$

Therefore, the possibilities for the pendent vertices are (1), (2), (4 or 5), (6 or 7), (8 or 9), (10 or 11). These six labels are not sufficient to label seven vertices, $t_{2,j}$ for $1 \leq j \leq 7$.

Suppose $t_{2,7}$ takes any of the remaining values.

Let $t_{2,0} = 3$, $t_{2,3} = 4$, $t_{2,4} = 6$, $t_{2,7} = 5$.

Then the corresponding edge labels are $x_{2,3} = 4$, $x_{2,4} = 5$, $x_{2,7} = 4$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{2,0} = 3$.

Case-(j): $t_{2,0} = 2$.

If $t_{2,j} = 2n - 1$ and $t_{2,k} = 2n$ for some n, j and k then,

$$x_{2,j} = f^*(v_{2,0}, v_{2,j}) = \left(\frac{2 + 2n - 1}{2}\right) = 1 + n = \left(\frac{2 + 2n}{2}\right) = f^*(v_{2,0}, v_{2,k}) = x_{2,k}$$

Therefore, the possibilities for the pendent vertices are (1), (3 or 4), (5 or 6), (7 or 8), (9 or 10), (11). These six labels are not sufficient to label seven vertices, $t_{2,j}$ for $1 \leq j \leq 7$.

Suppose $t_{2,7}$ takes any of the remaining values.

Let $t_{2,0} = 2$, $t_{2,2} = 3$, $t_{2,3} = 5$, $t_{2,7} = 4$.

Then the corresponding edge labels are $x_{2,2} = 3$, $x_{2,3} = 4$, $x_{2,7} = 3$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

© 2017, IJMA. All Rights Reserved
Therefore, G is not a relaxed skolem mean graph when $t_{2,0} = 2$.

Case (k): $t_{2,0} = 1$.

If $t_{2,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{3 + 2n}{2}\right) = 2 + n = \left(\frac{3 + 2n + 1}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are $(2, 3), (4, 5), (6, 7), (8, 9), (10, 11)$. These five labels are not sufficient to label seven vertices, $t_{2,j}$ for $1 \leq j \leq 7$.

Suppose $t_{2,7}$ takes any of the remaining values.

Let $t_{2,0} = 1, t_{2,1} = 2, t_{2,2} = 4, t_{2,7} = 3$.

Then the corresponding edge labels are $x_{2,1} = 2, x_{2,2} = 3, x_{2,7} = 2$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{2,0} = 1$.

$\therefore G$ is not a relaxed skolem mean graph for all values of $t_{2,0}$.

Therefore G is not a relaxed skolem mean graph.

In general, we see that G is not a relaxed skolem mean graph if $|m - n| = 6$.

Similar argument asserts that $|m - n| = 7$ is not a relaxed skolem mean graph.

Similarly, we can prove for all greater values of m.

Therefore, G is not a relaxed skolem mean graph if $|m - n| > 5$.

Definition 2.4: The three star is the disjoint union of $K_{1,1}, K_{1,1}, \text{ and } K_{1,1}$. It is denoted by $K_{1,1} \cup K_{1,1} \cup K_{1,1}$.

Theorem 2.5: The three star $K_{1,1} \cup K_{1,1} \cup K_{1,1}$ is not a relaxed Skolem mean graph if $|m - n| > \ell + 6$.

Proof: Let us consider the primal graph under the condition $|m - n| > \ell + 6$ and $m = 1; n = 9$.

Therefore $G = K_{1,1} \cup K_{1,1} \cup K_{1,1} = 2K_{1,1} \cup K_{1,9}$

Where $V(G) = \{v_{i,j} : 1 \leq i \leq 2, 0 \leq j \leq 1\} \cup \{v_{3,j} : 0 \leq j \leq 9\}$

$E(G) = \{v_{i,0}v_{i,j} : 1 \leq i \leq 2\} \cup \{v_{3,0}v_{3,j} : 1 \leq j \leq 9\}$

G has 14 vertices and 11 edges.

Suppose G is relaxed skolem mean graph.

Then there exists a function f from the vertex set of G to $\{1, 2, ..., 15\}$ such that the induced map f^* from the edge set of G to $\{2, 3, ..., 15\}$ defined by

$$f^*(e = uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$
Then the resulting edges get distinct label from the set $\{2, 3, \ldots, 15\}$.

Then the vertex and edge mappings of G is given by

$$f : V(G) \rightarrow \{1, 2, \ldots, 15\}$$

$$f^*: V(G) \rightarrow \{2, 3, \ldots, 15\}$$

Let $t_{i,j} = f(v_{i,j})$ and $x_{i,j} = f^*(v_{i,0} v_{i,j}) \forall i$ and j.

Now let us consider the following cases,

Case (a): $t_{3,0} = 15$.

If $t_{3,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0} v_{3,j}) = \left(\frac{15 + 2n}{2}\right) = 8 + n = \left(\frac{15 + 2n + 1}{2}\right) = f^*(v_{3,0} v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are $(1), (2$ or $3), (4$ or $5), (6$ or $7), (8$ or $9), (10$ or $11), (12$ or $13), 14$. These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,0}$ takes any of the remaining values.

Let $t_{3,0} = 15, t_{3,1} = 1, t_{3,2} = 3, t_{3,0} = 2$.

Then the corresponding edge labels are $x_{3,1} = 8, x_{3,2} = 9, x_{3,9} = 9$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{3,0} = 15$.

Case (b): $t_{3,0} = 14$.

If $t_{3, j} = n - 1$ and $t_{2, k} = 2n$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0} v_{3,j}) = \left(\frac{14 + 2n - 1}{2}\right) = 7 + n = \left(\frac{14 + 2n}{2}\right) = f^*(v_{3,0} v_{3,k}) = x_{3,k}$$

Therefore the possibilities for the pendent vertices are $(1$ or $2), (3$ or $4), (5$ or $6), (7$ or $8), (9$ or $10), (11$ or $12), (13), (15)$. These eight labels are not sufficient to label nine vertices $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,0}$ takes any of the remaining values.

Let $t_{3,0} = 14, t_{3,1} = 2, t_{3,2} = 4, t_{3,0} = 3$.

Then the corresponding edge labels are $x_{3,1} = 8, x_{3,2} = 9, x_{3,9} = 9$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{3,0} = 14$.

Case-(c): $t_{3,0} = 13$.

If $t_{3, j} = 2n$ and $t_{2, k} = 2n + 1$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0} v_{3,j}) = \left(\frac{13 + 2n}{2}\right) = 7 + n = \left(\frac{13 + 2n + 1}{2}\right) = f^*(v_{3,0} v_{3,k}) = x_{3,k}$$
Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10 or 11), (12 or 13), 14. These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3.0} = 13$, $t_{3.1} = 1$, $t_{3.2} = 3$, $t_{3.9} = 2$.

Then the corresponding edge labels are $x_{3.1} = 7$, $x_{3.2} = 8$, $x_{3.9} = 8$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label. Therefore G is not a relaxed skolem mean graph when $t_{3.0} = 13$.

Case (d): $t_{3.0} = 12$.

If $t_{3,j} = 2n - 1$ and $t_{2,k} = 2n$ for some n, j and k then

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{12 + 2n - 1}{2}\right) = 6 + n = \left(\frac{12 + 2n}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}.$$

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7 or 8), (9 or 10), (11), (13 or 14), (15). These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3.0} = 12,$ $t_{3.9} = 15$, $t_{3.7} = 13$, $t_{3.9} = 14$.

Then the corresponding edge labels are $x_{3.8} = 14$, $x_{3.7} = 13$, $x_{3.9} = 13$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label. Therefore G is not a relaxed skolem mean graph when $t_{3.0} = 12$.

Case-(e): $t_{3.0} = 11$.

If $t_{3,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{11 + 2n}{2}\right) = 6 + n = \left(\frac{11 + 2n + 1}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}.$$

Therefore, the possibilities for the pendent vertices (1), (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10), (12 or 13), (14 or 15). These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3.0} = 11$, $t_{3.1} = 1$, $t_{3.2} = 3$, $t_{3.9} = 2$.

Then the corresponding edge labels are $x_{3.1} = 6$, $x_{3.2} = 7$, $x_{3.9} = 7$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label. Therefore G is not a relaxed skolem mean graph when $t_{3.0} = 11$.
Case-(f): \(t_{3,0} = 10 \).

If \(t_{3,j} = 2n-1 \) and \(t_{2,k} = 2n \) for some \(n, j \) and \(k \) then

\[
x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{10 + 2n - 1}{2} \right) = 5 + n = \left(\frac{10 + 2n}{2} \right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}
\]

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7 or 8), (9, (11 or 12), (13 or 14), (15). These eight labels are not sufficient to label nine vertices, \(t_{3,j} \) for \(1 \leq j \leq 9 \).

Suppose \(t_{3,9} \) takes any of the remaining values.

Let \(t_{3,0} = 10, \ t_{3,1} = 2, \ t_{3,2} = 4, \ t_{3,9} = 3 \).

Then the corresponding edge labels are \(x_{3,1} = 6, \ x_{3,2} = 7, \ x_{3,9} = 7 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore \(G \) is not a relaxed skolem mean graph when \(t_{3,0} = 10 \).

Case-(g): \(t_{3,0} = 9 \)

If \(t_{3,j} = 2n \) and \(t_{2,k} = 2n+1 \) for some \(n, j \) and \(k \) then,

\[
x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{9 + 2n}{2} \right) = 5 + n = \left(\frac{9 + 2n + 1}{2} \right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}
\]

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6 or 7), (8), (10 or 11), (12 or 13), (14 or 15). These eight labels are not sufficient to label nine vertices, \(t_{3,j} \) for \(1 \leq j \leq 9 \).

Suppose \(t_{3,9} \) takes any of the remaining values.

Let \(t_{3,0} = 9, \ t_{3,1} = 1, \ t_{3,2} = 3, \ t_{3,9} = 2 \).

Then the corresponding edge labels are \(x_{3,1} = 5, \ x_{3,2} = 6, \ x_{3,9} = 6 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore \(G \) is not a relaxed skolem mean graph when \(t_{3,0} = 9 \).

Case-(h): \(t_{3,0} = 8 \).

If \(t_{3,j} = 2n-1 \) and \(t_{2,k} = 2n \) for some \(n, j \) and \(k \) then,

\[
x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{8 + 2n - 1}{2} \right) = 4 + n = \left(\frac{8 + 2n}{2} \right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}
\]

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7, (9 or 10), (11 or 12), (13 or 14), (15). These eight labels are not sufficient to label nine vertices, \(t_{3,j} \) for \(1 \leq j \leq 9 \).

Suppose \(t_{3,9} \) takes any of the remaining values.

Let \(t_{3,0} = 8, \ t_{3,1} = 2, \ t_{3,2} = 4, \ t_{3,9} = 3 \).

Then the corresponding edge labels are \(x_{3,1} = 5, \ x_{3,2} = 6, \ x_{3,9} = 6 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

© 2017, IJMA. All Rights Reserved
Therefore, G is not a relaxed skolem mean graph when $t_{3,0} = 8$.

Case-(i): $t_{3,0} = 7$.

If $t_{3,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{7 + 2n}{2}\right) = 4 + n = \left(\frac{7 + 2n + 1}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), 6, (8 or 9), (10 or 11), (12 or 13), (14 or 15). These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3,0} = 7$, $t_{3,1} = 1$, $t_{3,2} = 3$, $t_{3,9} = 2$.

Then the corresponding edge labels are $x_{3,1} = 4$, $x_{3,2} = 5$, $x_{3,9} = 5$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{3,0} = 7$.

Case-(j): $t_{3,0} = 6$.

If $t_{3,j} = 2n - 1$ and $t_{2,k} = 2n$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{6 + 2n - 1}{2}\right) = 3 + n = \left(\frac{6 + 2n}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5), (7 or 8), (9 or 10), (11 or 12), (13 or 14), (15). These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3,0} = 6$, $t_{3,1} = 3$, $t_{3,3} = 5$, $t_{3,9} = 4$.

Then the corresponding edge labels are $x_{3,2} = 5$, $x_{3,3} = 6$, $x_{3,9} = 5$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{3,0} = 6$.

Case-(k): $t_{3,0} = 5$.

If $t_{3,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{5 + 2n}{2}\right) = 3 + n = \left(\frac{5 + 2n + 1}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), 4, (6 or 7), (8 or 9), (10 or 11), (12 or 13), (14 or 15). These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3,0} = 5$, $t_{3,1} = 1$, $t_{3,2} = 3$, $t_{3,9} = 2$.

© 2017, IJMA. All Rights Reserved
Then the corresponding edge labels are $x_{3,1} = 3$, $x_{3,2} = 4$, $x_{3,9} = 4$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore G is not a relaxed skolem mean graph when $t_{3,0} = 5$.

Case- (ℓ): $t_{3,0} = 4$.

If $t_{3,j} = 2n - 1$ and $t_{2,k} = 2n$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{4 + 2n - 1}{2}\right) = 2 + n = \left(\frac{4 + 2n}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are (1 or 2), (3), (5 or 6), (7 or 8), (9 or 10), (11 or 12), (13 or 14), (15). These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3,0} = 4$, $t_{3,2} = 3$, $t_{3,3} = 5$, $t_{3,9} = 6$.

Then the corresponding edge labels are $x_{3,2} = 4$, $x_{3,3} = 5$, $x_{3,9} = 5$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore G is not a relaxed skolem mean graph when $t_{3,0} = 4$.

Case-(m): $t_{3,0} = 3$.

If $t_{3,j} = 2n$ and $t_{2,k} = 2n + 1$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{3 + 2n}{2}\right) = 2 + n = \left(\frac{3 + 2n + 1}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are (1), (2), (4 or 5), (6 or 7), (8 or 9), (10 or 11), (12 or 13), (14 or 15). These eight labels are not sufficient to label nine vertices, $t_{3,j}$ for $1 \leq j \leq 9$.

Suppose $t_{3,9}$ takes any of the remaining values.

Let $t_{3,0} = 3$, $t_{3,3} = 4$, $t_{3,4} = 6$, $t_{3,9} = 5$.

Then the corresponding edge labels are $x_{3,3} = 4$, $x_{3,4} = 5$, $x_{3,9} = 4$. In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, G is not a relaxed skolem mean graph when $t_{3,0} = 3$.

Case-(n): $t_{3,0} = 2$.

If $t_{3,j} = 2n + 1$ and $t_{2,k} = 2n + 2$ for some n, j and k then,

$$x_{3,j} = f^*(v_{3,0}v_{3,j}) = \left(\frac{2 + 2n + 1}{2}\right) = 2 + n = \left(\frac{2 + 2n + 2}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}$$

Therefore, the possibilities for the pendent vertices are (1), (3 or 4), (5 or 6), (7 or 8), (9 or 10), (11 or 12), (13 or 14), (15). These eight labels are not sufficient to label nine vertices $t_{3,j}$ for $1 \leq j \leq 9$.
Suppose \(t_{3,9} \) takes any of the remaining values.

Let \(t_{3,0} = 2, t_{3,2} = 3, t_{3,3} = 5, t_{3,9} = 4 \).

Then the corresponding edge labels are \(x_{1,2} = 3, x_{3,3} = 4, x_{3,9} = 3 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore, \(G \) is not a relaxed skolem mean graph.

Case-(o): \(t_{3,0} = 1 \).

If \(t_{3,j} = 2n \) and \(t_{3,k} = 2n+1 \) for some \(n, j \) and \(k \) then,

\[
\begin{align*}
x_{3,j} &= f^*(v_{3,0}v_{3,j}) = \left(\frac{1+2n}{2}\right) + n = \left(\frac{1+2n+1}{2}\right) = f^*(v_{3,0}v_{3,k}) = x_{3,k}
\end{align*}
\]

Therefore, the possibilities for the pendant vertices are \((2 \text{ or } 3), (4 \text{ or } 5), (6 \text{ or } 7), (8 \text{ or } 9), (10 \text{ or } 11), (12 \text{ or } 13), (14 \text{ or } 15) \). These seven labels are not sufficient to label nine vertices, \(t_{3,j} \) for \(1 \leq j \leq 9 \).

Suppose \(t_{3,9} \) takes any of the remaining values.

Let \(t_{3,0} = 1, t_{3,1} = 3, t_{3,2} = 5, t_{3,8} = 2, t_{3,9} = 4 \).

Then the corresponding edge labels are \(x_{3,1} = 2, x_{3,2} = 3, x_{3,8} = 4, x_{3,9} = 3 \). In this case it is not possible to label the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will induce the same edge label.

Therefore \(G \) is not a relaxed skolem mean graph when \(t_{3,0} = 1 \).

3. APPLICATION OF GRAPH LABELING

The skolem mean labeling is applied on a graph (network), such as bus topology, mesh topology and star topology in order to solve the problems in establishing fastness, efficient communication and various issues in that area, in which the following will be taken into account.

1. A protocol, with secured communication can be achieved, provided the graph (network) is sufficiently connected.
2. To find an efficient way for safer transmissions in areas such as Cellular telephony, Wi – Fi, Security systems and many more.
3. Channel labeling can be used to determine the time at which sensor communicate.

CONCLUSION

Researchers may get some information related to graph labeling and its applications in communication field and work on some ideas related to their field of research.
ACKNOWLEDGEMENT

One of the authors (Dr. V. Balaji) acknowledges University Grants Commission, SERO, Hyderabad, India for financial assistance (No. F MRP 5766 / 15 (SERO / UGC).

4. REFERENCES

8. F. Harary, Graph Theory, Addision – Wesley Reading Mars (1972).

Source of support: University Grants Commission, SERO, Hyderabad, India, Conflict of interest: None Declared.

[Copyright © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]