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ABSTRACT 
In this paper,we study the elliptic equation 0=nθθ +∆  with 0=(0)θ  and 0=(0)θ ′  on real positive line, 
called Lane-Emden equation. We have solved the equation by Differential Transform and Multistep Differential 
Transform Methods Powered by Adomian Polynomial and then made a comparative analysis with the existing numerical 
results. Pade’ approximation is used to improve the convergence in case of Differential Transform Method Powered by 
Adomian Polynomial. 
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1. INTRODUCTION 
 
In recent years, the studies of singular initial-value problems (IVPs) of the type  

0=(0)1,=(0)0,= 'θθθθ n+∆                                               (1) 
 
have seeked the attention of many scientist form various branches [1, 2, 3, 4]. This equation shout special importance in 
astrophysics, because, for values of polytropic index n  between 0 and 5, the equation approximate to a reasonable 
accuracy of the structure of many stellar models. Fundamental contribution towards the solution of this equation is made 
by Lane, Ritter, Kelvin, Emden and Fowler [1]. Chandrashekar [1] established the fact that the exact solutions for this 
equation exist only for the polytropic indices 0,1,5=n  and until now those are the exact solutions available in the 
literature. For all other polytropic indices the contributions of various numerical techniques are remarkable. 
Semi-analytical approaches that have recently been applied in solving the Lane-Emden equations include the Adomian 
decomposition method [5, 6], differential transformation method [7], homotopy perturbation method [8], He’s Energy 
Balance Method (HEBM) [9], homotopy analysis method [10, 11], power series expansions [12, 13, 14] and variational 
iteration method [15]. Generally, when all the above cited analytical approaches are used to solve Lane-Emden equation, 
a truncated power series solution of the true solution is obtained. This solution converges rapidly in a very small region 

1<<0 ξ . For 1>ξ  convergence is very slow and the solutions are inaccurate even when using a large number of 
terms. Convergence acceleration methods such as Padé approximations may be used to improve the convergence of the 
resulting series or to enlarge their domains of convergence. An important physical parameter associated with the 
Lane-Emden function is the location of its first positive real zero. The first zero of )(ξθ  is defined as the smallest 

positive value 0ξ  for which 0=)( 0ξθ . This value is important because it gives the radius of a polytropic star. The 

analytic approaches on their own are not very useful in solving for 0ξ  because their region of convergence is usually 

less than 0ξ . Recent numerical methods that have been proposed include the Legendre Tau method [16] and the 
sinc-collocation method [17], the Lagrangian approach [18], and the successive linearization method [19]. Accurate 
results for the Lane-Emden function have previously been reported in [20] where the Runge-Kutta routine with 
self-adapting step was used to generate seven digit tables for Lane-Emden functions. These tables are now widely used as 
a benchmark for testing the accuracy of new methods of solving the Lane-Emden equations.  
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The aim of this paper is to solve Lane-Emden equation by a new approach, Differential Transform Method Powered by 
Adomian Polynomial (DTMAP) and Mulltistep Differential Transform Method Powered by Adomian Polynomial 
(DTMAP) as a comparative study. 
 
2. BASIC EQUATION 
 
We begin with the equations of mass continuity and of hydrostatic equilibrium.  

2)(4=)( rr
dr

rdm πρ                                                                         (2)
 

)()(=)(
2 r

r
rGm

dr
rdp ρ−                                                                 (3) 

where 0)( ≥rρ  is the density, )(rp  is the thermodynamical pressure and )(rm  is the mass inside radius r  
respectively. Since there are three unknowns (pressure, density, and mass as a function of radius) and only two equations, 
in order to get a solution we must either add more equations (i.e. energy generation and transfer) or introduce an 
additional assumption. For a polytrope, pressure and density are related by a power law of the form  

n
n

Kp
1)(

=
+

ρ                                                                                  (4) 

where 0≠n  is called the polytropic index. K  and n  are constants. This set of three equations (2)-(4) can then be 
reduced to a single differential equation and solved. By eliminating the mass berween the equations (2) and (3), we obtain 
a single second order nonlinear differential equation  

2

2

1 = 4d r dp G
r dr dr

π ρ
ρ

 
− 

 
                                                                (5) 

 
We represent density in terms of a new dimensionless variable θ  by  

n
cθρρ =                                                                                  (6) 

and then rescale the radial variable by the constant α  such that  
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4
1)(==

1
1

−≠
+ −

n
G
Knandr

n
c

π
ρααξ                                               (7) 

 
Relations (6) and (7) transform the equation (5) into the form of Lane-Emden equation  

2
2

1 = nd d
dr dr

θξ θ
ξ

  − 
 

                                                                        (8) 

Equation (8) with initial condition 0=(0)1,=(0) 'θθ  has a wide range of applications in celestial mechnics and has 
beed studied extensively in the literature [1, 2, 4]. 
 
3. SOLUTION OF LANE-EMDEN EQUATION BY DIFFERENTIAL TRANSFORM METHOD POWERED 
BY ADOMIAN POLYNOMIAL  
 
Definition 3.1: Let )(xy  be the original analytic function and differentiated continuously in the domain of interest. 
Then Differential Transform of y(x) is defined as:  

=0

1= ( )
!

k

k k
x

dY y x
k dx
 
 
 

                                                                        (9) 

where )(xy  is the original function and kY  is the transformed function.  
 
Definition 3.2: Differential inverse transform of kY  is defined as : 

k
k

k
xYxy ∑

∞

0=
=)(                                                                                 (10) 

Combining (9) and (10) we may write  

=0 =0
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This implies that the concept of differential transform is derived from Taylor series expansion, but the method does not 
evaluate the derivatives symbolically. Instead, relative derivatives are calculated by a recurrence relation which are 
described by the transformed equations of the original functions. Some fundamental transformations, which can be 
readily obtained are listed in the following table. 
 

Table -1: Fundamental Operations in DTM 
   

Original form  Transformed form 
)()(=)( xvxwxy ±    kkk VWY ±=  

)(=)( xwxy α    kk WY α=  

)(=)( xw
dx
dxu m

m

   
mkk W

k
mkY +

+
!

)!(=
 

nxxy =)(   

 )(= nkYk −δ   

where 



−
otherwise0

n=ifk1
=)( nkδ

 

)()(=)( xvxwxy    rkr
k

rk VWY −∑ 0=
=

 
 

To illustrate the basic concepts of the Differential Transform Method powered by Adomian Polynomial(DTMAP), we 
consider a general nonlinear ordinary differential equation with initial conditions of the form  

)(=)()( xgxNyxDy +                                                                        (12) 
with initial conditions  

10,1,2,...=,=(0)
−mic

dx
yd

ii

i

 

where D is the thm  order linear differential operator m

m

dx
dD = , N represents the general nonlinear differential 

operator and g(x) is the source term. 
 
According to DTM, we can construct the following iteration formula: 

kkmk NYGYmkkk −+++ + =)2)...(1)((  
with initial condition  

10,1,2,...=,= −micY ii  
 
But, according to Differential Transform powered by Adomian Polynomial method, we construct the iteration formula as  

kkmk AGYmkkk −+++ + =)2)...(1)((                                                      (13) 
with initial condition  

10,1,2,...=,= −micY ii                                                               (14) 
 
The Adomian Polynomial kA  defined as  

0=
0=
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k ∑                                                      (15) 

is the decomposition of the nonlinear operator Ny . The general formula (15) can be decomposed as follows: 

)(= 00 YNA  

)(= 011 YNYA  
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Substituting (14) and (15) into (13) and then by iteration we obtain the succeeding value of kY . Then, the inverse 

transformation of the set of values n
kkY 0=}{  gives the n-term approximation to solution as follow: 

k
k

n

k
n xYxy ∑

0=
=)(                                                                        (16) 

 
Therefore the exact solution of the problem is given by  

)(lim=)( xyxy n
n ∞→

                                                                       (17) 

 
Example 3.1: Consider the Lane-Emden equation  

0=2'' ' nθθ
ξ

θ ++                                                                        (18) 

subject to the initial conditions  
0=(0)1,=(0) 'θθ                                                                        (19) 

 
Multiplying both sides of equation (18) by ξ  , 

0=2''' ' nξθθξθ ++                                                                        (20) 
 
By using above theorems of DTM and the DTM powered by Adomian Polynomial method we obtained the following 
recurrence relation  

1,
2)1)((

= 1
1 ≥

++
− −

+ k
kk

AY k
k                                                               (21) 

where kA  represented the Adomian Polynomial applied for decomposing the nonlinear term such that  
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i
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i
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d
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λ ∑                                                                        (22) 

 
From Eq.(14), the initial conditions given in Eq.(19) can be transformed as  

0=1,= 10 YY                                                                        (23) 
 
Substituting Eq.(22) and Eq.(23) into Eq.(21) and then by direct iteration steps we obtain the following:  
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The Pade’ approximant for the solution is  
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Chandrashekar [1] shows that equation (18) has exact solution only for the values of n  as (0, 1, 5). For 0=n , 1=n  
and 5=n  we get the exact solution  

2

6
11=)( ξξθ −  

ξ
ξξθ sin=)(  

and  

3
1

1=)(
2ξ

ξθ
+

 
 

Table -2: Comparison of radius 1ξ  obtained by our method and the numerical result [1] 
n    1ξ        Numerical 

         1  2.44949   2.44949 
0.5   2.75226   2.7528  
1  3.14159   3.14159 
1.5   3.65398   3.65378 
2  4.35287   4.35287 
2.5   5.3474   5.35528 
3  6.8936   6.89685 
2.25   8.09456   8.01894 
2.5   9.87529   9.53581 
4  21.8937 14.97155 
4.5   6465.83 31.83646 

 
Table-3: Comparison of )(ξθ  obtained as Pade approximation by our method and the numerical result [20] for 

1.5=n  
ξ  5.1P  Numerical 

0 1.0000 1.0000 
1 0.84517 0.84517 
2 0.495937 0.495937 
3 40.158858 0.158858 

 
Table-4: Comparison of )(ξθ  obtained as Pade approximation ( 3P  ) by our method and the numerical result [20] for 

3=n  
ξ    3P   Numerical 

0  1.0000   1.0000 
0.25   0.98968   0.98975 
0.50   0.959839   0.95987  
0.75   0.913542   0.91355 
1.00   0.855058   0.85505 
1.25   0.78898   0.78897 
1.50   0.719502   0.71948  
1.75   0.649988   0.64990 
2.00   0.582851   0.58282  
2.50   0.461127   0.46109  
3.00   0.359226   0.35921 
3.5   0.276263   0.27629 
4.0   0.209281   0.20942 
4.5   0.155067   0.15529 
5.0   0.110813   0.11110  
5.0   0.043698   0.04411  
6.9011   0.017784   0.0000  
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Table-5: Comparison of )(ξθ  obtained as Pade approximation by our method and the numerical result [20] for 

4.5=n  
ξ    )(ξθ  Numerical 

0  1.0000  1.0000 
2  0.639654  0.639654 
4  0.36078  0.3605326 
6  0.233668  0.231356 
8  0.1685385  0.1617233 
10  0.131611  0.1198299 

 
 
It is observed from the Table 2 that with DTMAD and Pade’ approximation we obtain quite good results for 30 ≤≤ n . 
Also in Table 3 we present the comparison of values of θ for various values of ξ  for 1.5=n  with the numerical 
solution and observed that DTMAP with Pade’ approximation always converges for smaller region and it has slow 
convergent rate or completely divergent in wider region. We observe that the results obtained by using DTMAP and Pade 
approximation have good agreement with the numerical results for 30 ≤≤ n . For polytrope greater than 3 only for 
smaller values of ξ  approximately 2, the values agree with numerical results. For 2>ξ  the rate of convergence is 
very slow. To overcome this drawback and to obtain efïficient solutions which agree for any polytrope and for all values 
ξ , in the following section we have solved the Lane-Emden equation by multistep DTMAP and Pade’ approximation. 
 
4. SOLUTION OF LANE-EMDEN EQUATION BY MULTIST EP DIFFERENTIAL TRANSFORM METHOD 
POWERED BY ADOMIAN POLYNOMIAL 
 
We consider the initial value problem (IVP) (12) defined in section 3. Let ][0,T  be the interval over which we want to 
find the solution of the IVP. In actual application of DTM, the approximate solution of the IVP (12) can be expressed by 
the finite series (16)  for ][0,Tx∈ . 
 
In the multistep approach, the interval ][0,T  is divided into M subintervals ],[ 1 mm xx − , Mm 1,2,3,...=  for equal 

step size MTh /=  by using the nodes mhxm = . The main idea of the multistep DTMAP to equation (12) is as 

follows. First apply the DTMAP to equation (12) over the interval ][0, 1x  and we shall obtain the following 
approximate solution.  

k
k

K

k
xYxy 1

0=
1 =)( ∑                                                                        (26) 

 
using the initial conditions i

i cy =(0))(
1 . For 2>m  and at each of the subinterval ],[ 1 mm xx −  we shall use the initial 

conditions )(=)( 1
)(
11

)(
−−− m

i
mm

i
m xyxy  and apply DTMAP to equation (12) over the interval ],[ 1 mm xx − . The process is 

repeated and generates a sequence of approximate solutions )(xym , Mm 1,2,...=  for the solution )(ty . 

k
mmk

K

k
m xxYxy )(=)( 1

0=
−−∑                                                               (27) 

 
where MKn .= . In fact, the multistep DTMAP assumes the following solution.  
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In the next section, we shall solve Lane-Emden equation by using multistep DTMAP and see that the obtained series 
solution has a wide range of convergence. 
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According to multistep DTMAP, taking MKN .= , the series solution for Lane-Emden equation (20) is given by,  
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where MjYji 1,2,=,  satisfy the following recurrence relation. such that 1)0(0 = −ii YY   

MjY
d
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A n
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k 1,2,=,)(
!

1=
0=
λ

λ ∑                                                      (28) 

We have solved equation (20) for 3=n  and 4.5=n  by multistep DTMAP. Results are presented in the following  
Table 6. It is to be noted that multistep DTMAP results are obtained when 10=K , 100=M  and 20=T . The 
Numerical values are talen from [1,20]. 
 
Table-6: Comparison of )(ξθ  obtained as Pade approximation by our method and the numerical result [18] for 3=n     
 

ξ    )(ξθ    Numerical 

0  1.0000   1.0000 
       0.25   0.98975  0.98975 
       0.50   0.95987   0.95987  
       0.75   0.91355   0.91355 
       1.00   0.85505   0.85505 
       1.25   0.78897   0.78897 
       1.50   0.71948   0.71948  
       1.75   0.64990   0.64990 
       2.00   0.58282   0.58282  
       2.50   0.46109   0.46109  
       3.00   0.35921   0.35921 
       3.5   0.27629   0.27629 
       4.0   0.20941   0.20942 
       4.5   0.15524   0.15529 
       5.0   0.11113   0.11110  
       6.0   0.04423   0.04411  
    6.9011   0.00628   0.0000  

 
5. CONCLUSION 
 
In this work, we propose DTMAP and Multistep DTMAP to solve Lane-Emden equation. Even though DTMAP is used 
in the presence of Pade’ approximation, it is observed that Multistep DTMAP improves the convergence of the series 
solution.Table 4, 5, 6 show the advantage of Multistep DTMAP over DTMAP.  
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