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ABSTRACT

In this paper, we present a simple method to derive a intuitionistic fuzzy (n-1)-norm from intuitionistic fuzzy n-norm
and then prove that any intuitionistic fuzzy n-normed linear space is an intuitionistic fuzzy (n-1)-normed linear space.
Some results regarding convergence and completeness in the intuitionistic fuzzy n-normed linear spaces are obtained
and use these results to prove a fixed point theorem in intuitionistic fuzzy n-Banach spaces.

1. INTRODUCTION

Gahler[17] introduced the theory of 2-norm and n-norm on a linear space. For a systematic development of n-normed
linear spaces, one may refer to [1, 2, 8, 14]. The theory of fuzzy set was introduced by L. Zadeh in 1965[13]. T. Bag
and S.K.Samanta [21] introduced the definition of fuzzy norm over a linear space. Further, Al. Narayanan and
S.Vijayabalaji[4] defined the concept of fuzzy n-normed linear space. J.H.Park [9] introduced and studied a notion of
intuitionistic fuzzy metric spaces. Further R.Saadati [15] defined the notion of intuitionistic fuzzy normed space. The
definition of intuitionistic fuzzy n-normed linear space was given in the paper [20]. In this paper, we present a simple
method to derive a intuitionistic fuzzy n-1-norm from intuitionistic fuzzy n-norm and then prove that any intuitionistic
fuzzy n-normed linear space with n> 2 is an intuitionistic fuzzy (n-1)-normed linear space and hence by induction an
fuzzy (n-r)-normed linear space for all r =1, 2,.....,n-1. Further some results regarding convergence and completeness in
the intuitionistic fuzzy n-normed linear spaces are obtained and then used to prove a fixed point theorem in
intuitionistic fuzzy n-Banach spaces.

2. PRELIMINARIES

Definition 2.1[17]: Let X be a real linear space of dimension greater than 1. Let || e, ® || be a real valued function on
X xX satisfying the following conditions:

1. ||x, y||=0ifany onlyifx, y are linearly dependent,

2. |, ylI=lly. X

3. llax, ylI=lall[x, yl|, where a € R(set of real numbers)

4. |x y+zI <[Ix, yil+lix, 2]l _ _ ,
||, e is called a 2-norm on X and the pair (X, || ®,®||) is called a 2-normed linear space.

Definition 2.2[1]: Let n €N (natural numbers) and X be a real linear space of dimension greater than or equal to n. A

real valued function ||e, ..., ®| on X x - - - x X = X" satisfying the following four properties:
() X1, X2, .« ., Xp || = 0 ifany only if x; , X5, . . ., X, are linearly dependent,
(2) |IX1, X2, - - ., Xq || IS invariant under any permutation,
3) X1, X2, - ., @ [ =8 X2 s X24 - -+, Xq ||, fOr any a € R (real),
(A X0 Xay o Xt Y+ Z|| S Xy %oy oy Xog, VI + (X2, X2, X, 2l
is called an n-norm on X and the pair (X, ||®, ..., ®]|) is called an n-normed linear space.
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Example 2.3: Let X be a space with inner product <0, 0> Then

N |

XXy (%) o (X X,)
{

X %) (X, %) . . (X3 %)

<xn;xl> <xn,.x2> <xn,.xn>

it defines an n-norm on X. This n-norm is called standard n-norm.

Definition 2.4[1]: A sequence { X, }in an n-normed space (X, ||®, ..., ®]) is said to converge to x e X (in the n-
norm) whenever
lim
X1, X2y -+, Xn-1, X -X||=0.
| = ye'e)
Definition 2.5[1]: A sequence { X, }in an n-normed space (X, ||®, ..., ®]) is called Cauchy sequence if
lim
||Xl ’ X2 gy Xn-1’ XI"I -Xk“:O'
n,k = oo

Definition 2.6[1]: An n-normed linear space is said to be complete if every Cauchy sequence in it is convergent.

Definition 2.7[4]: Let X be a linear space over a real field F. A fuzzy subset N of X" x R (R-set of real numbers) is
called a fuzzy n-norm on X if and only if:

(N1 Forallt e Rwitht<0,N (x, X2, ..., X, t) =0.
(N2)Forallt € Rwitht>0, N (X, X5, ..., X, t)=1ifand only if X, X5, ..., X, are linearly dependent.
(N 3) N (Xq, X, . . ., Xp, ) is invariant under any permutation of Xy, X, . . . s Xn.

(N 4) Forallt € Rwitht>0,

t
N (Xg, Xo, + «« 5 CXn, ) = N (Xg, X, + . ., X, 7 ), ifC # 0, ¢ € F (field).

ICI
(N5) Foralls, t € R,
!
N (X11X2| e :Xn+Xn ,S+t)2min{N(x1, X2y o ooy Xny S)i N (X11X21 ceey Xpy t)}
(N 6) N (Xq, X, . . ., Xp, 1) is @ non-decreasing function of te R and

lim
N (X1, Xoy « « .+, Xp, 1) = 1.
t—>

Then (X, N) is called fuzzy n-normed linear space or in short f-n-NLS.

Example 2.8[4]: Let (X, ||®, ..., ®]|) is called an n-normed linear space as in definition .Define
t
, Whent >0,t € R, (X, X, 0oy X;) € X X X X, x X
N (1 Yoo Xy ) = 4 T [Xyy Xy, X | -
0, whent <0.

Then (X, N) is an f-n-NLS.

Definition 2.9[9]: A binary operation *: [0,1]x[0,1] —[0,1] is continuous t-norm if * satisfies the following
conditions:

1. * iscommutative and associative

2. * iscontinuous

3. ax1=a, forallae[0,1]

4. a*b<c*dwhenevera<candb<danda,b,c,d e [0,1].
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Definition 2.10[9]: A binary operation ¢ : [0, 1]1x [0, 1]— [0, 1] is continuous t-co-norm if ¢ satisfies the following
conditions:

1. O is commutative and associative

2. O is continuous

3. a{0=a forallac[0,1]

4. a®b<cO®dwhenevera<candb<danda,b,c,d e [0,1].

Definition 2.11[10]: Let E any set. An intuitionistic fuzzy set A of E is an object of the form A={(x, £, (X), 7 5 (X) ; x
€ E}, where the functions x, :E—[0,1] and y ,:E —>[0,1] denote the degree of membership and non-membership of
the element x € E respectively and for every xe E, 0< g, (X)+ 4 (X) <1.

Definition 2.12[12]: If A and B are any two intuitionistic fuzzy sets of a non-empty set E, then A C B if and only if for
all xeE, p,(X) < pg(X)and 7, (X)2 75 (X); A=B if and only if for all xe E, 1, (X)= tg (X) and y o (X)= g (X);

A={(x, 70 (X), 11, (X) : x€E},
AN B={(x, min( 2, (), g (X)),max(y,(X), g (X)); Xx€E};
AU B={(x, max( 2, (X), g ().min(y (%), 75 (X)); x€E}.

INTUITIONISTIC FUZZY n-NORMED LINEAR SPACE

Definition 2.13[20]: Let X be a linear space over a realfield F, and fuzzy subsets N, M of X " x (0,00), N denotes the
degree of membership and M denotes the degree of non-membership of (X1, X, . . ., Xn, t) € X"x(0, c0) satisfying the
following conditions:

1 N Xy, Xoy ooy Xy £) + M(Xg, Xo, ..o, X 1) 1

2. Forallt eRwitht<0,N (xq, Xp, ..., Xp, t)=0.
3. Forallt eRwitht>0, N (Xq, Xp, ..., Xy, t)=21ifand only if x5, X,, . . ., X, are linearly dependent.
4. N (Xq, Xp, . . ., Xp, 1) is invariant under any permutation of Xy, X,, . . . s Xn.

t
5. Forallt € Rwitht>0, N (X, X5, ..., CXy, £) = N (Xg, Xo, .+« ., X, H), ifc # 0,c € F (field).

C

!

6. Foralls,te R, N(Xy, X, ..oy Xn+ X, , S+ 2mMIin{N (X, Xp, . .., Xn, 8), N (X1, X2, . ., Xn, D}
7. N (X, Xz, .+« y Xp, 1): (0,00) —[0,1] is continuous in t.
8. Forallt € Rwitht<0, M(xq, Xp, - . ., Xp, £) = 1.
9. Forallt € Rwitht>0, M(xy, X, . . ., X, t) = 0 if and only if x;, X, . . ., X, are linearly dependent.
10. M(Xq, Xg, - - ., Xp, 1) is invariant under any permutation of x;, X, . . .y X

t
11. Forallt e Rwitht>0, M(Xy, Xz, . . ., CXp, £) = M(Xq, X, . . ., Xp, H), ifc # 0, ceF (field).
c
!

12. Foralls,t € R, M(Xy, X, ..., Xn + X, ,S+1) < max{M (X3, Xp, .. ., Xn, 8), M(Xg, Xp, . . ., Xp, D)}

13. M(Xy, X2, « . ., X, 1)1 (0,00) —>[0,1] is continuous in t.
Then (X, N, M) is called a intuitionistic fuzzy n-normed linear space or in short i-f-n- NLS.

To strengthen the above definition, we present the following example.

Example 2.14 [20]: Let (X, || .,.,...,. |) be an n-normed linear space and
t
N(Xli---,Xn,t) =
1 X, X s X, |
e X
Mo ) = — el
1l % Xy X, |

Then (X, N, M) is i-f-n-NLS.

Definition 2.15 [20]: A sequence {X,} in an i-f-n-NLS is said to x if given r>0, t>0, 0<r<1 there exists an integer no €
N such that N (X1, X, . . . Xp-1, Xn =X, )>1-r and M (X, X, . . . ,Xn.1, Xn =X, t)< 1, for all n=>n.
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Theorem 2.16 [20]: In an i-f-n-NLS, a sequence converges to x if and only if
N (X1, X2, - - - Xne1, Xn =X, 1) > 1 and M (Xq, X, -+« Xp.1, Xp =X, t) =0, a5 n—> 00,

Definition 2.17[20]: A sequence {x,}in an i-f-n-NLS, is said to be Cauchy sequence if given & >0, with0 < & <1,
t > 0 there exists an integer ny € N such that N (Xg, Xo, . . . Xn1, Xn =X ) > 1 - & and M (Xg, Xa, -+« Xn1, Xn =X D)< €
forall n, k = n.

Theorem 2.18 [20]: In a i-f-n-NLS (X, N) a sequence {x,} is Cauchy if and only if

lim
N (X1, -+ X1 Xk- X, %1 = 1,
K,/ — oo ’
lim
M (X1, Xn1,Xk- X, ,X,t) = 0, for every Xy,...,.Xp1 € X.
K,/ — o0 ‘

Theorem 2.19[20]: In an i-f-n-NLS, every convergent sequence is a cauchy sequence.

3. MAIN RESULT

Suppose (X, N, M) is an i-f-n-NLS. Take a linearly independent set {a,,...... , @}, define the following function
Noo(eyerevvenyen) @A Mog(yryerenry) 0N X X X XX X xR by
%ﬁf—/
n-1

Ny (X1, X2, ., Xn-1, £) = MIN{N(Xy,Xo,...,Xn.1,a3,1); 1=1,.., N}
and M,,( X1, X2, «..yXn1, £) = Max{N(Xy,Xa, ..., Xp.1,8;,t); i=1,.., N}

Theorem 3.1: The function N..(.,.,...,.,.) and M.(.,.,...,.,.) defines an i-f-(n-1)-NLS on X.
Proof: We will verify that N, (.,., .....,.,.) and M(.,.,...,.,.) satisfies the all properties of i-f-(n-1)-NLS.
(i) Noo(X1, X2, Xn-1, £) + Mo(Xq, X,...,%n.1, ) <1, since
N(X1, X2,.+,Xn-1, @i, £) + M(Xq, Xp,...,%n.1, @i, 1) <1, foreachi=1,.....n.
(i) forall t € R with t <0, we have
N(X1, X2,..+,Xn-1, @i, £) =0 foreachi=1,...n.
= Ny (X1, X25-4,Xn1, ) =0

(iii) forallt € R with t > 0, we have
Nw(Xl, X2y ey Xp-1s t) =1

= min {N(Xy, Xo,....Xp., &, 1);1 =1, ....n}=1
= N(X1, X2y, Xp.1, @y 1) =1 foreachi=1,...n.
= X1, Xa,...,Xn.1, @; are linearly dependent for each i = 1, ...,n. But this can only happen when Xy, ...., Xn1
are linearly dependent.
(iv) Since N(Xy,...,Xn.1, &, t) is invariant under any permutation of xy,...,X.1.
= N, (X1, ..., Xn.1, ) is invariant under any permutation of Xy, ...,Xn.1.

(v) Forallte Rwitht>0andce F,c=0,
Noo(X1y..0,CXn, 1) = mMin {N (Xy,...,CXn1, &, 1); 1 = 1,...,n}

t
Noo(X1,-.,CXn1, £) = MIN{N (Xg, ..., Xn.1,8;, ﬁ); i=1,..,n}
C

t
= Noc(Xl, ey X, T )

c|
(vi) Ny (X1, -, Xn2y Xpor + X1, t4S)
=min {N (Xg,...,Xn-2, Xn1t X'n1, &, t+8); i =1,..,n }
> min {min {N (Xg,...,Xn-2,Xn-1,8i,t), N(X1,...Xn-2, X'n1, @, S; 1 = 1,...,n }
> min {min {N (X,...,Xn-2.Xn-1,a;,); 1 = 1...n}, min{N(Xy,...Xn2, X'n.1, @, S}; i = 1-n }}
= min {Ny(X1,- -, Xn-1, 1)y Noo(Xg, -, X1, S)}
(vii) Since N (Xy,...,Xn.1, &,.) IS continuous, so N(Xy,...,Xy.1, t) is continuous.

(viii) Mo (X1,X2, - - -, Xn-1,8)>0, for M(xy,Xs,...... Xn-1,8,1)>0 for each i=1,2,...,n.
(ix) forallt € R with t > 0, we have
Mw(Xl,Xz,... ,Xn_l,t) =0
< max. {M(Xq, Xz,-..,Xn1, &, 1);1 =1, .....,n}=0
< M(Xg, Xp,-., %01, @, 1) =0 foreachi=1,...n.
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< X1,Xp,...,Xn.1,8j are linearly dependent for each i = 1, ...,n. But this can only happen when xy, ...., Xp.1
are linearly dependent

(x) Moo (X1,...,Xn-1, t) is invariant under any permutation of Xy,...,X,.1, since  M(Xg,...,Xn.1,&;,t) is invariant under any
permutation of Xg,...,Xq.1.

(xi)

(xii)

(xiii)

Forallte Rwitht>0andc e F,c#0,
Mo(X1,...,CXp.1,t) = Max. {M(Xy,...,CXn.1,8;, t); i = 1,...,n}

t
Moo(X1, .- .,CXn-1,1) = Max. {M(Xy,...,Xn-1,&, ﬁ); i=1,.,n}
C

t
= MOO(X]J e an-li |_ )

cl
Moo (X1, -+« Xn2y Xng + X', 1+8) = max.{M (Xq,...,Xn2, Xpg+ X'no1, @, t48); 1= 1,...,n }
<max.{max.{M(x1,...,Xn-2:Xn-1,ai,),M(X1,... X2, X'n-1,8;,8}; i = 1,....,n }
< max.{max.{M (Xu,...,Xn.2.Xn-1,8,1); i = 1...n}, Max{M(Xy,...Xn.2,X'1-1,8;,5}; i = 1-n }}
= max.{M,(Xg, .- Xn-1, t), Moo(X1,-..,X'n1, S)}
Since M(Xy,...,Xn.1, &;,.) IS continuous function of t, s0 M,,(Xy,...,Xn.1, t) is continuous by definition.
Thus (X, N, M,,) becomes a i-f- (n-1)- NLS.

Corollary 3.2: Every i-f-n-normed space is i-f-(n-r)-normed space for all r=1,2,...,n-1. In particular, every i-f-n-
normed space is a i-fuzzy normed linear space.

Example 3.3: Suppose (X, N, M) is a i-f-n-NLS define in example (2.13). Take a linearly independent set {a;, a,,...,a}
in X. With respect to {ay,....,a,} define the following function

and

Nw(xl,...,xnl,t)=min{ ! =1,..,n}

g
t||X e X 18|

P Xosia] }
M_ (X;,..., X,_;,T)=max 1=1.,n
(%) {t+||xl,...,xnl,ai||

Then (X, N,,, M,,) becomes an i-f-(n-1) NLS.

Proof:
()
(i)
(iii)

(iv)

Clearly N, (X1, Xn-1, £) + My, (Xg,-2 Xp1, £) < 15
Obviously N, (Xg,...,Xp.1, t) > 0;
N (Xl,...,Xn_l, t) =1

. t .
< min =1.,n;y =1
{t+||x1,...,xnl,ai|| }

t

< max =1

t+I :11.“1n||x1,... Xo 1, 8y]|

max
St=tr 1 ’n||x1,...,xn71,ai||
max

e :1,.“’n||xl,...,xn_1,ai |=0
But it is only possible, when X, ..., X, are linearly dependent.

t i =1,..,n}
t Xy e X g X g |

N (Xl,..., Xn-2, Xn_l,t) = mln{

- t i
min 1=1..,n
{t+||Xl,...,Xn_1,Xn_g,ai|| }

Noc (Xla - -aXn-laXn-Z,t)
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t
(v) N (X1,Xa,...,X L): min |C| i=1.,n
o (X0 X2, Xt "
N |C|+||x1 ..... Xo_1, 8]
t
=min |C| i=1..,n
t[Cf[X, e X 8
c
—mln{ t 1=1 n}
X Xy
=min t i=1..,n
(oot )

= NOO(XLXZ!"'!CXn-llt)
(vi) W.L.O.G. we assume that
NOO (X11X21"'Xln-11t) < NOO (X11X21"'Xn-lls)

= t < S
max ’ max
t+I 1 n||x1 ..... X018y s+I 1 n||xl ..... Xo_po |
max max '
=1(s+ e n||x1 ..... Xo1,8]) < s (t+ L R )
max s max ’
=1 n”x1 """ X”’l’a'”S? i=1.., n||Xl """ X1
max max ’
= i=1.. n”Xl ..... Xn11 @ || +| _1 n”xl ..... Xio1r ||
< i max ”X %' a ” . max ”)( < 3 ”
“ti=1..,n"""" L A T L n-1 Qi
max
(30, T il
s+t max .
il n||x1 ..... Xi 1,8y
But
max , max |
o P Xals e X X 2
max max ’
i1 n||x1 ..... Xot ai||+i L n”xl ..... X, 1,a
s+t max .
T4 =t n”x1 """ X
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max , max ,
g Pl T el
S+t - t
max , max ,
i1 n||x1, ..... Ko XA 4 r]||x1, ..... Ko X0
L ——= <pel T
S+t t
max , max !
s+t+i " n||x1, ..... Xy + X0, 8| t+i " r]||x1, ..... X1 Xn1 8|
S+t < t
min s+t ,  Mmin t
=Ly N St Xp e Xy X8| =Lt X, X &
= N, ( X1,...,Xn_1+X'n_1,S+t) bd min{Noo(Xla---a Xn-lys), Nw(Xl,...,X'n_l,t)}

(vii) Clearly N, (Xg,...,Xn.1,t) is continuous in t.
(viii) By definition, we have M., (X3,Xo,...,Xp.1, 1) = 0
(ix) M., (X1,X2,,Xn1, 1) = 0

Mw(xl,...,xn_l,t):max{ LTI =1, ,n}—o
X X 2y

Xiseen X, )8 .

X, i for each i=1,...... .
[ X X003 [l

& |IX X000 X008 =0 for each i=1,...... n.

< Xy, X, ..., Xng @re linearly dependent.
[y

() M., (X1, X2,...,Xn.1,t) = MaX i=1.,n
t]|Xys X ey X0 Xog
Hxl"XZ’ " nl n2’ |H
=max
t-i_”Xl’XZ’ " n—1’ n21 |||
iMw (X1, X2, -+ Xn-1,Xn-21)
(xi) M., (X1,X2,.++,CXno1, 1) = max{ ” 1 oy '” 1, ,n}
t+||x1,..., X oa
m{ el }
tfeflx, e X, .||
= max LI ‘i=1.,n
St 3
|C| 10 nl’ i
t
= '\/lOO (Xl,....., Xn-1s _)
lc|

(xii) Without loss of generality assume,
Mw(xll'--yxl"l-lls) S MOO(Xli"'!X'n'll t)
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max o X2 ;i=1.,nf < max ”Xl""'x:“f'ai” fi=1..,n
S+ Xy X g 8 tH Xy X
= ||X1,..., o1 & ” < ”Xl’m’ Xr’]_f'ai ” for each i=1,...,n
S+ [Xy1ee X g 8 t X X))
I B ey

p < - for each i=1,...,n
S+t Xy Xy + X0 Tt Xy X |

e X seees Xy + X0

||X1,.--, Xn 108 ” i=1..,n

i=1..,ny < max : X
t Xy X

S+t Xy Xy + X0p, 8

n-1' >

= Moo(Xll'--an—l+X'n-lls+t) S MOO(XliXZI"'lX'n'lit)

Similarly,
Moo(Xln---’Xn-l'I'X‘n—lr S+t) S MOO(X]J X25e443Xn-15 S)
= Moo(le---an-1+X'n-1; S+t) imaX{Moo(Xli X201 Xn-15 S)r MOO(X]J X2,...,X'n.1, t)}

(xiii)  Clearly
M., (Xy,-.-,Xn-1,t) IS continuous in t.
Thus (X, N, M,,) is an i-f-(n-1) NLS.

Example 3.4: Let (X, || .,-,.--,- ||s) b€ standard n-norm space and
t
NS (Xli X21---1an t) =
t ] X, X e X, s
|| Xj_i XZI"'l Xn ||S

and Ms (Xli X21-'-1an t) =
tH ] X0 Xy e X, |l

Then (X, Ng, M) is an i-f-n-NLS space and the space (X, Ns, M) is called standard i-f-n-NLS space.

Proposition 3.5: On a i-f-n-NLS X, the derived i-f-(n-1)-NLS N.(.,.,...,.,.) and M.(.,.,...,.,.) defined with respect to
{e1,-..,en} and Ns(.,+,---1-.), Ms(.,e,-.-,.,.) Standard i-f-(n-1)-norm. The, we have

t
Noo(Xll ree an'llt) 2 NS(Xli v an'lit) 2 NOO(X]J ooy Xn-1y T )
n

t
\/ﬁ)

Proof: Assume that Xx;,...,X,; are linearly independent. For each i = 1,....,n write e; = ei0 +eiL where eiO € span

and Mw(xl! ree :Xn-lyt) < MS(le e vxn-l!t) < MOO(Xl! vo s Xn-1y

{X4,...,Xn.1} and eiL 1 span{x,...,X,.1}. Then we have
t
1 X X g€l
Xy yeeey X eouszo,

L R A

NS (Xl,...,Xn_l, €i, t) =

As

And Y I A A '

s 1 Ao i

0
S PR [

s
€
- HXl,..., Xn_liei Hs

Therefore,

Ns (X1,...,Xn-1, €, 1) 2

t+Hx1,... X, ;€

t

2
t+ || Xl,.--l anl ||S
= NS (Xl! ...,Xn_lyt)
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< min NS( le'--vxn-l!eirt ) el NS( X1yesXn-1s t)
Nw(Xl,... ,Xn_l,t) > NS( X1ye0sXn-1, T ) (1)

Next, take a unit vector e = oue; + ....+a,e, such that e L span {xi,...,Xn.1}. (We still assume that x,,...,X,.; are linearly
independent). We have

t
Ns( X3,.o Xps, 1) =
e e
i} t
- Xy X g€l
t
>
7] SN S22 N
as |a1|+|0{2|+....+|05n|£\/ﬁ, therefore,
Ns(Xg,. ., Xp1, 1) 2= t
N N
t

Jn
t
ﬁ_}_||x1,...,Xn_l,ei”s

Nw(xl,...,xnl,ﬁ]
t

Ns (X1,.... %01, 1) 2 Nw(xl,...,xn_l,—]. 2

Jn

min

Hence we obtain

Hence by (1) and (2), we get
t
Nw(Xl, . ¢ _1,t) > Ns(Xl, . ¢ _1,t) > Nw(Xl, e Xpnely T — )
n n n \/ﬁ

Now consider, by (1)

=  max P X, fi=1...nk< o X
t+Hx1, ..... VX, 1e,H t+||X1. + X, 1||S
= M, (X1,-- -, Xn-1,8) < Ms (X4, ..., Xp1,t) ?3)

And by (2),

© 2017, IIMA. All Rights Reserved 161



Sushma Devi* / On Intuitionistic Fuzzy n-Norm / IIMA- 8(10), Oct.-2017.

t
L D ﬁ_l_nxl’ ,,,,,, X8
[Eo——— <o [ ) is1on
S T L,

= Ms(Xg,.eo Xn1,t) £ Mo (Xg,- 00 X1,

t
—). 4
ﬁ) (4)

t

I

Thus we obtain

Moo (Xli ree an'lit) S MS (Xli ree an'lit) S Moo (Xll oo Xn-1y

The finite-dimensional case 3.6:

For finite-dimensional i-f-n-NLS (X, N,M), we can derive an i-f-(n-1)-norm from the i-f-n-norm by taking N,(Xg,...,X.
o) = min {N(X,....Xp.,a3,0); 1 = 1,...,m} and M, (Xy,...,Xn.1,t) = max.{M(Xy,...,Xn.1,a;,t); i = 1,...,m} and where the set
{a...... ,an} is linearly independent in X with n<m <d (where d is the dimension of X) Then, as in theorem [1.6], the
function N..(.,.,....,.,.) and M, (.,.,....,.,.) defines i-f- (n-1)- norm on X.

Theorem 3.7: If {x,} converges to x € X in i-f-n-norm. Then {x,} also converges to x in the derived i-f-(n-1)-norm N,
and M...

Proof: Let x,=> X ini-f-n-norm then

lim
N (X1, -+« Xn2: X X,a,t) = 1
k > o
lim )
and M (Xq,...,Xn-2:Xc=X,8;,t) = 0 for every xy,....Xpoand i =1,...,n.
k > o
Thus we have
lim
N (Xg,--- Xn2: XX 1) = 1
k > o
lim
M (Xqg,. .. Xn2:Xe-X,t) = 0
k > o

Proposition 3.8: A sequence in a standard i-f-n normed space X is convergent in i-f-n-norm if and only if it is
convergent in the derived i-f-(n-1)-norm N,, and M,,.

Proof: Suppose x, = X in the derived i-f-(n-1)-norm. Then
Ns (X1,...,Xn2,Xn-1, X=X, 1)
t

> Ns (X1,... Xn2,Xk-X, ————)
Il %o 1ls
t

, )
%, s

Here ||.||s on right-hand side denote the usual norm on X.

> Ny (Xg,- -, Xn2, XX

lim
But N (X1,- - Xn2, XX

t
5—):1
k — o0 Il x, 4 lls
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So,
m (Xy ey Xy 00 X = X,1)=1
K —soo SV 2 k 4=
And
Mg (X1,X Xn-2:Xn-1,Xk-X,1) < My (X1, -+« Xn2, XX t )
S\ALIA2y s 1AN-23An-LAKTA L) = © Ly ey An-25A KA, — — —
1%, 4 s
But lim M., ( t )=0
u o (Xtye e Xn2, Xk-X, —=———)=
k — o0 V1%, 4 ls
lim
So, Mg (X1, Xn1,X-X,1) = 0
K — o0
i.e. Xk = X ini-f-n-norm.

Remark 3.9: A sequence in a standard i-f-n-normed space is convergent in the i-f-n-norm if and if only it is convergent
in the standard i-f-(n-1)-norm and, by induction, in the standard i-f-(n-r)-norm for all r=1, 2,...... ,n-1. In particular, a
sequence in a standard n-normed space is convergent in the i-f-n-norm if and only if it is convergent in i-f-n-norm if
and only if it is convergent in the standard intuitionistic fuzzy norm.

Now, for finite-dimensional cases, we can obtain a better i-f-(n-1)-norm by using a set of d vectors, rather than just
n, linearly independent vectors in X (that is, by using a basis for X). Let {by,...,bg} be a basis for X and we define the
following function Ny: (.,.,...,...) and My (.,.,...,.,.) on X" x R by

Neo' (X1, -+ Xn-1,t) = Min{N(Xy,...,.Xp.1,0;,8); 1 = 1,...,d}

My (X1, Xn-1,t) = Max.{M(Xy,...,X,.1,b5,t); i = 1,...,d}
Then, the function N, (.,.,...,.,.) and Mg (.,.,...,.,.) defines an i-f-(n-1)- norm on X with respect to {by,...,bg}. With this
derived i-f- (n-1)- norm, we have the following result.

Theorem 3.10: A sequence in the finite-dimensional i-f-n-normed space X is convergent in the i-f-n-norm if and only
if it is convergent in the derived i-f- (Nn-1)- norm Ne' (.yeyevvyers)y Moot Cyeyeenyers).

Proof: If a sequence in X is convergent in the i-f-n-norm, then it will certainly be convergent in the i-f-(n-1)-norm
Neo' (yeyererr)sMar (oyeyeeerey.). Conversely suppose {xc} converges to an X € X in Nt (oyereeere)sMer (eyeneyere). Take
X1, veeny Xpg € X Writing Xo1 = oby +....+ agbg We get

t
N(Xq, .- X1, XX, 1) > Neg (X, X2, XX,
AR A
lim t
But N (X1, - - - Xn-2,Xk=X, )=1andso
kK— o |051| o + |ad|
We obtain
lim
N (X1, Xn1, XX, 1) = 1
k > o
t
And M(X1,...,Xn-1, XX, 1) S Mg ( X1,.++, X020, X=X,
AR A
lim t
But Moo (X1, - - 1 Xn-2: XX, )=0and so
k— o |al| o + |ad|
We obtain
lim

M (Xg,... Xn-1,Xk-X,t) = 0
k > o

that is, {x} converges to x in the i-f-n-norm.
CAUCHY SEQUENCES, COMPLETENESS AND FIXED POINT THEOREM

The results for Cauchy sequences for standard and finite dimensional cases can be obtained similarly as the results
(theorem 3.7-3.10) obtained above for convergent sequences by replacing “x, converges to x” with “x, is Cauchy” and

“Xi-X With x,-x , .
Hence we obtain:
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Theorem 3.11:
(@) A standard i-f-n-NLS is complete if and only if it is complete with respect to one of the three i-f-(n-1) norms
(Noc ’M s ) (Noo'aMoo') or (NS aMS)-
(b) A finite dimensional i-f-n-NLS is complete if and only if it is complete with respect to the derived i-f-(n-1)-
nNorm Ne: (eyeverere)y Magr(opeyennays)
Using the above theorem (3.10) we obtained the following fixed point theorem

Fixed Point Theorem 3.12: Let (X, N) be a standard or finite dimensional complete i-f-n-NLS and T a contractive
mapping of X into itself, that is there exist a constant k € (0, 1) s.t.

N(X1, ..., Xn-1, TY-TZ, kt) > N(X;,...,Xn.1,Y-Z,1)

M(X1,...,Xn1, TY-TZ, kt) > M(X;,...,Xn.1,Y-Z,1), for all Xy,...,Xq.1, ¥, Z in X. Then T has a unique fixed point in X.

Proof: First consider the case n=2. By above proposition, we know that X is complete with respect to the derived
i-f-norm N,,, M ,, or N, M .. Since the mapping T is also contractive with respect to N, M , or N, M - we conclude
by the fixed point theorem for intuitionistic Fuzzy Banach space that T has a unique fixed point is X. For n > 2, the
result follows by induction.
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