ON UNIQUE COMMON FIXED POINT THEOREMS FOR THREE AND FOUR SELF MAPPINGS IN SYMMETRIC G-METRIC SPACE

Saurabh Manro*, S. S. Bhatia*, Sanjay Kumar ** and Rashmi Mishra***

* School of Mathematics and Computer Applications, Thapar University, Patiala (Punjab), India
** Deenbandhu Chhotu Ram University of Science and Technology, Murthal (Sonepat), India
*** Lovely Professional University, Jalandhar (Punjab), India

(Received on: 26-06-11; Accepted on: 06-07-11)

ABSTRACT

In this paper, we prove two unique common fixed point theorems for three and four self mappings in symmetric G – metric spaces.

Key words: Symmetric G-metric space, owc maps, common fixed point theorem.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION:

In 1992, Dhage[1] introduced the concept of D – metric space. Recently, Mustafa and Sims [5] shown that most of the results concerning Dhage’s D – metric spaces are invalid. Therefore, they introduced an improved version of the generalized metric space structure and called it as G – metric space. For more details on G – metric spaces, one can refer to the papers [5]-[9]. In this paper, we prove two unique common fixed point theorems for three and four self mappings in symmetric G – metric spaces.

Now we give basic definitions and some basic results ([5]-[9]) which are helpful for proving our main result.

In 2006, Mustafa and Sims[6] introduced the concept of G-metric spaces as follows:

Definition: 1.1[6] Let X be a nonempty set, and let G: X × X × X → R+ be a function satisfying the following axioms:
(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y), for all x, y ∈ X with x ≠ y,
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z ≠ y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = … (symmetry in all three variables) and
(G5) G(x, y, z) ≤ G(x, a, a) + G (a, y, z) for all x, y, z, a ∈ X, (rectangle inequality)

then the function G is called a generalized metric, or, more specifically a G – metric on X and the pair (X, G) is called a G – metric space.

Definition: 1.2[6] A G-metric space (X, G) is symmetric if
(G6) G(x, y, y) = G(x, x, y) for all x, y ∈ X.

Definition: 1.3[6] Let (X,G) be a G-metric space then for x₀ ∈ X, r > 0, the G-ball with centre x₀ and radius r is

B_G(x₀, r) = {y ∈ X : G(x₀, y, y) < r }.

Proposition: 1.1[6] Let (X,G) be a G-metric space then for any x₀ ∈ X, r > 0, we have,

(1) if G(x₀, y, y) < r then x , y ∈ B_G(x₀, r),
(2) if y ∈ B_G(x₀, r) then there exists a δ > 0 such that B_G(y, δ) ⊆ B_G(x₀, r).

Corresponding author: Saurabh Manro, *E-mail: sauravmanro@hotmail.com
It follows from (2) of the above proposition that the family of all G-balls, $B = \{B_G(x, r) : x \in X, r > 0\}$ is the base of a topology $\tau(G)$ on X, the G-metric topology.

Proposition: 1.2[6] Let (X, G) be a G-metric space then for all $x_0 \in X$ and $r > 0$, we have,

$$B_G(x_0, \frac{1}{3}r) \subseteq B_{d_G}(x_0, r) \subseteq B_G(x_0, r)$$

where $d_G(x, y) = G(x, y, y) + G(x, x, y)$, for all x, y in X.

Consequently, the G-metric topology $\tau(G)$ coincides with the metric topology arising from d_G. Thus, while ‘isometrically’ distinct, every G-metric space is topologically equivalent to a metric space. This allows us to readily transport many results from metric spaces into G-metric spaces settings.

Definition: 1.4[6] Let (X, G) be a G–metric space, and let $\{x_n\}$ a sequence of points in X, a point ‘x’ in X is said to be the limit of the sequence $\{x_n\}$ if $\lim_{n, m \to \infty} G(x, x_n, x_m) = 0$, and one says that sequence $\{x_n\}$ is G–convergent to x.

Thus, that if $x_n \to x$ or $\lim_{n \to \infty} x_n = x$ in a G-metric space (X, G) then for each $\varepsilon > 0$, there exists a positive integer N such that $G(x, x_n, x_m) \leq \varepsilon$ for all $m, n \geq N$.

Proposition: 1.3[6] Let (X, G) be a G – metric space. Then the following are equivalent:

1. $\{x_n\}$ is G-convergent to x,
2. $G(x_n, x, x) \to 0$ as $n \to \infty$,
3. $G(x_n, x_n, x) \to 0$ as $n \to \infty$,
4. $G(x_n, x_n, x) \to 0$ as $m, n \to \infty$.

Definition: 1.5[6] Let (X, G) be a G – metric space. A sequence $\{x_n\}$ is called G – Cauchy if, for each $\varepsilon > 0$, there exists a positive integer N such that $G(x_n, x_m, x_l) \leq \varepsilon$ for all $n, m, l \geq N$; i.e. if $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to \infty$.

Proposition: 1.4[6] If (X, G) is a G – metric space then the following are equivalent:

1. The sequence $\{x_n\}$ is G – Cauchy,
2. for each $\varepsilon > 0$, there exist a positive integer N such that $G(x_n, x_m, x_l) \leq \varepsilon$ for all $n, m, l \geq N$.

Proposition: 1.5[6] Let (X, G) be a G – metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition: 1.6[6] A G – metric space (X, G) is said to be G–complete if every G-Cauchy sequence in (X, G) is G-convergent in X.

Proposition: 1.7[6] A G – metric space (X, G) is G – complete if and only if (X, d_G) is a complete metric space.

Proposition: 1.8[6] Let (X, G) be a G – metric space. Then, for any x, y, z, a in X it follows that:

(i) If $G(x, y, z) = 0$, then $x = y = z$,
(ii) $G(x, y, z) \leq G(x, x, y) + G(x, x, z)$,
(iii) $G(x, y, z) \leq 2G(y, x, x)$,
(iv) $G(x, y, z) \leq G(x, a, z) + G(a, y, z)$,
(v) $G(x, y, z) \leq \frac{3}{4}(G(x, y, a) + G(x, a, z) + G(a, y, z))$,
(vi) $G(x, y, z) \leq (G(x, a, a) + G(y, a, a) + G(z, a, a))$.

Definition: 1.7 Let (X, G) be a G-metric space. f and g be self maps on X. A point x in X is called a coincidence point of f and g iff $fx = gx$. In this case, $w = fx = gx$ is called a point of coincidence of f and g.

Definition: 1.8 A pair of self mappings (f, g) of a G-metric space (X, G) is said to be weakly compatible if they commute at the coincidence points i.e., if $fu = gu$ for some $u \in X$, then $fgu = gfu$.

It is easy to see that two compatible maps are weakly compatible but converse is not true.

Definition: 1.9 Two self mappings f and g of a G-metric space (X, G) are said to be occasionally weakly compatible (owc) iff there is a point x in X which is coincidence point of f and g at which f and g commute.
2. MAIN RESULTS:

2.1 A unique common fixed point theorem for three mappings

Theorem 2.1: Let \((X, G)\) be symmetric G-metric space. Suppose \(f, g,\) and \(h\) are three self mappings of \((X, G)\) satisfying the conditions:

1. For all \(x, y \in X\)
 \[
 \int_0^1 G(fx, gy) \phi(t) dt \leq \int_0^1 \alpha G(hx, hy) + \beta G(fx, hx) + G(gy, hy) + \gamma G(hy, fy) \phi(t) dt
 \]
 where \(\phi : \mathbb{R}^+ \rightarrow \mathbb{R}\) is a Lebesgue-integrable mapping which is summable, nonnegative and such that \(\int_0^\epsilon \phi(t) dt > 0\) for each \(\epsilon > 0\), and \(\alpha, \beta, \gamma\) are non-negative reals such that \(\alpha + 2\beta + 2\gamma < 1\).

2. Pair of mappings \((f, h)\) or \((g, h)\) is owc.

Then \(f, g\) and \(h\) have a unique common fixed point.

Proof: Suppose that \(f\) and \(h\) are owc then there is an element \(u\) in \(X\) such that \(fu = hu\) and \(fhu = hfu\).

First, we prove that \(fu = gu\). Indeed, by inequality (1), we get

\[
\int_0^1 G(fu, gu) \phi(t) dt \leq \int_0^1 \alpha G(hu, hu) + \beta G(fu, hu) + G(gu, hu) + \gamma G(hu, fu) \phi(t) dt
\]

\[
= \int_0^1 \beta G(gu, fu) + \gamma G(fu, gu) \phi(t) dt
\]

\[
= \int_0^1 (\beta + \gamma) G(fu, gu) \phi(t) dt
\]

\[
< \int_0^1 G(fu, gu) \phi(t) dt
\]

which is a contradiction, hence, \(gu = fu = hu\).

Again, suppose that \(ffu \neq fu\). The use of condition (1), we have

\[
\int_0^1 G(ffu, gu) \phi(t) dt \leq \int_0^1 \alpha G(hfu, hu) + \beta G(ffu, hfu) + G(gu, hu) + \gamma G(hfu, gu) + G(hu, ffu) \phi(t) dt
\]

\[
= \int_0^1 \alpha G(ffu, gu) + 2\gamma G(ffu, gu) \phi(t) dt
\]

\[
= \int_0^1 (\alpha + 2\gamma) G(ffu, gu) \phi(t) dt
\]

\[
< \int_0^1 G(ffu, gu) \phi(t) dt
\]

this contradiction implies that \(ffu = fu = hfu\).

Now, suppose that \(gfu \neq fu\). By inequality (1), we have

\[\int_{0}^{G(fu,gu,gfu)} \phi(t)dt \leq \int_{0}^{\alpha G(hu,hu,hu)+\beta[G(fu,hu,hu)+G(gfu,hfu,hfu)]+\gamma[G(hu,gfu,gu)+G(hfu,hu,hu)]} \phi(t)dt \\
= \int_{0}^{\beta G(gfu,hu,hu)+\gamma G(fu,gfu,gfu)} \phi(t)dt \\
= \int_{0}^{(\beta+\gamma)G(fu,gfu,gfu)} \phi(t)dt \\
< \int_{0}^{G(fu,gfu,gfu)} \phi(t)dt \]

This above contradiction implies that \(gfu = fu \). Put \(fu = gu = hu = t \), so, \(t \) is a common fixed point of mappings \(f \), \(g \) and \(h \).

Now, let \(t \) and \(z \) be two distinct common fixed points of \(f \), \(g \) and \(h \). That is \(ft = gt = ht = t \) and \(fz = gz = hz = z \). As \(t \neq z \), then from condition (1), we have

\[\int_{0}^{G(t,z,z)} \phi(t)dt = \int_{0}^{G(f,t,g,z)} \phi(t)dt \leq \int_{0}^{\alpha G(h,t,h,t)+\beta[G(f,t,h,t)+G(g,t,g,t)]+\gamma[G(h,t,g,t)+G(t,g,f,t)]} \phi(t)dt \\
= \int_{0}^{\alpha G(t,z,z)+2\gamma G(t,z,z)} \phi(t)dt \\
= \int_{0}^{(\alpha+2\gamma)G(t,z,z)} \phi(t)dt \\
< \int_{0}^{G(t,z,z)} \phi(t)dt \]

Contradiction, hence \(z = t \). Thus the common fixed point is unique.

If we put \(\phi(t) = 1 \) in the above theorem, we get the following result:

Corollary 2.1: Let \((X,G)\) be symmetric G-metric space. Suppose \(f, g, \) and \(h \) are three self mappings of \((X,G)\) satisfying the conditions:

1. for all \(x, y \in X \)
 \[G(fx,gy,hy) \leq \alpha G(hx,hy,hx)+\beta[G(fx,hx,hx)+G(gy,hy,hy)]+\gamma[G(hy,gx,gx)+G(hy,fx,fx)] \]
 \[\alpha, \beta, \gamma \] are non-negative reals such that \(\alpha + 2\beta + 2\gamma < 1 \)

2. pair of mappings \((f, h)\) or \((g, h)\) is owc.

Then \(f, g \) and \(h \) have a unique common fixed point.

2.2 A unique common fixed point theorem for four mappings

Now, we give our second main result:

Theorem 2.2: Let \((X, G)\) be symmetric G-metric space. Suppose \(f, g, h \) and \(k \) are four self mappings of \((X,G)\) satisfying the following conditions: (1)

\[\int_{0}^{G(fx,gy,gy)} \phi(t)dt \leq \int_{0}^{\alpha G(hx,ky,ky)+\beta[G(fx,hx,hx)+G(gy,ky,ky)]+\gamma[G(hx,gy,gy)+G(ky,fx,fx)]} \phi(t)dt \]

for all \(x, y \in X \), where \(\phi : R^+ \rightarrow R \) is a Lebesgue-integrable mapping which is summable, nonnegative and such that \(\int_{0}^{\phi(t)}dt > 0 \) for each \(\epsilon > 0 \), and \(\alpha, \beta, \gamma \) are non-negative reals such that \(\alpha + 2\beta + 2\gamma < 1 \)

(2) pair of mappings \((f, h)\) and \((g, k)\) are owc.
Then f, g, h and k have a unique common fixed point.

Proof: Since pairs of mappings (f, h) and (g, k) are owc, then, there exists two points u and v in X such that fu = hu and fhv = hvu, gv = kv and gkv = kv.

First, we prove that fu = gv. Indeed, by inequality (1), we get

\[\int_0^{G(fu,gv)} \phi(t)dt \leq \int_0^{\alpha G(hu,kv,kv)+\beta[G(fu,hu)+G(gv,kv,kv)]+\gamma[G(hu,gv,gv)+G(kv,fu,fu)]} \phi(t)dt \]

\[= \int_0^{\alpha G(hu,kv,kv)+\gamma[G(fu,gv,gv)]} \phi(t)dt \]

\[= \int_0^{(\alpha+\gamma)G(fu,gv,gv)} \phi(t)dt \]

\[< \int_0^{G(fu,gv,gv)} \phi(t)dt \]

which is a contradiction, hence, gv = fu = hu = kv.

Again, suppose that ffu = fhu = fhu ≠ fu. The use of condition (1), we have

\[\int_0^{G(ffu,gv,gv)} \phi(t)dt \leq \int_0^{\alpha G(hfu,kv,kv)+\beta[G(ffu,hfu,hfu)+G(gv,kv,kv)]+\gamma[G(hfu,gv,gv)+G(kv,ffu,ffu)]} \phi(t)dt \]

\[= \int_0^{\alpha G(hfu,kv,kv)+2\gamma[G(ffu,gv,gv)]} \phi(t)dt \]

\[= \int_0^{(\alpha+2\gamma)G(ffu,gv,gv)} \phi(t)dt \]

\[< \int_0^{G(ffu,gv,gv)} \phi(t)dt \]

this contradiction implies that ffu = fu = hfu = fhv.

Similarly gfu = kfu = fu. Put fu = t, therefore t is a common fixed point of mappings f, g, h and k.

Now, let t and z be two distinct common fixed points of f, g, h and k. That is ft = gt = ht = t and fz = gz = hz = kx = z. As t ≠ z, then from condition (1), we have

\[\int_0^{G(t,z,z)} \phi(t)dt = \int_0^{G(fz,gz)} \phi(t)dt \leq \int_0^{\alpha G(ht,kz,kz)+\beta[G(fz,ht,ht)+G(gz,kz,kz)]+\gamma[G(ht,gz,gz)+G(hz,fz,fz)]} \phi(t)dt \]

\[= \int_0^{\alpha G(t,z,z)+2\gamma[G(t,z,z)]} \phi(t)dt \]

\[= \int_0^{(\alpha+2\gamma)G(t,z,z)} \phi(t)dt \]

\[< \int_0^{G(t,z,z)} \phi(t)dt \]

a contradiction, hence z = t. Thus the common fixed point is unique.

If we put \(\phi(t) = 1 \) in the above theorem, we get the following result:

Corollary: 2.2 Let (X,G) be symmetric G-metric space. Suppose f, g, h and k are four self mappings of (X,G) satisfying the following conditions:
(1) \[G(fx, gy, gy) \leq \alpha G(hx, ky, ky) + \beta [G(fx, hx, hx) + G(gy, ky, ky)] + \gamma [G(hx, gy, gy) + G(ky, fx, fx)] \]

for all \(x, y \in X \), and \(\alpha, \beta, \gamma \) are non-negative reals such that \(\alpha + 2\beta + 2\gamma < 1 \).

(2) pair of mappings \((f, h) \) and \((g, k) \) are owc.

Then \(f, g, h \) and \(k \) have a unique common fixed point.

Example 2.1: Let \(X = [0, \infty) \) with the symmetric G-metric \(G(x, y, z) = (x - y)^2 + (y - z)^2 + (z - x)^2 \). Define

\[
\begin{align*}
 f(x) &= g(x) = \begin{cases}
 0 & x \in [0, 1), \\
 1 & x \in [1, \infty),
 \end{cases} \\
 h(x) &= \begin{cases}
 3 & x \in [0, 1), \\
 1/x & x \in [1, \infty),
 \end{cases} \\
 k(x) &= \begin{cases}
 1 & x \in [0, 1), \\
 \sqrt{x} & x \in [1, \infty).
 \end{cases}
\end{align*}
\]

Clearly \((f, h) \) and \((g, k) \) are occasionally weakly compatible. By taking \(\phi(x) = 3x^2, \alpha = \frac{1}{4}, \beta = \frac{1}{5}, \gamma = \frac{1}{6} \), all the hypothesis of theorem 2.2 are satisfied and \(x = 1 \) is the unique common fixed point of mappings \(f, g, h \) and \(k \).

ACKNOWLEDGMENT:

I would like to thank the referee for the critical comments and suggestions for the improvement of my paper.

3. REFERENCES:

[2] H. Bouhadjera, on unique common fixed point theorems for three and four self mappings, *Faculty of Sciences and Mathematics, University of Nis, Serbia* 23(3) (2009), 115-123.
