AFFINE TRANSFORMATIONS AND ISOMETRIES
IN A COMPLETE RIEMANNIAN MANIFOLD

K. C. Petwal* and Shikha Uniyal

Department of Mathematics, H. N. B. Garhwal University campus, Badshahi Thaul,
Tehri Garhwal-249199, Uttarakhand (India)

E-mail: kcpatwal@gmail.com

(Received on: 19-08-11; Accepted on: 31-08-11)

ABSTRACT

The groups of affine transformations of an affinely connected manifold were studied by Nomizu and also Han-Morimato. Further, Myers and Steenrod gave the theory of group of isometries of Riemannian manifold. In the present study we describe certain aspects of a complete Riemannian manifold. We have investigated that in a complete irreducible Riemannian manifolds the group of all affine transformations and the group of all isometries are equal. Further, if \(X \) be an infinitesimal affine transformation on a complete Riemannian manifold \(M \), then \(X \) is an infinitesimal isometry. Also, we have related the affine transformations on a complete Riemannian manifold to the conditions of isometry.

Key words: Complete, Riemannian, affine transformation, isometry.

1. INTRODUCTION

If \(M \) is a differentiable Riemannian manifold with a fundamental metric tensor field \(G \) which is positive definite, for any vector field \(X \) we denote by \(\nabla (X) \) the covariant differentiation in the direction of \(X \) with respect to the Riemannian connection.

Now let \(M_1 \) and \(M_2 \) be two Riemannian manifolds with \(G_1 \) and \(G_2 \) as their fundamental metric tensor fields and \(\nabla_1(X_1) \) and \(\nabla_2(X_2) \) are the corresponding covariant differentiations respectively. Let \(\varphi \) be a differentiate homeomorphism of \(M_1 \) onto \(M_2 \). If \(\varphi \) commutes with the covariant differentiations i. e. for any vector field \(X \) on \(M_1 \) such that:

\[
\varphi (\nabla_1 X) = \nabla_2 (\varphi X) \varphi,
\]

then \(\varphi \) is called an affine transformation. If we have \(\varphi G_1 = \rho G_2 \), then \(\varphi \) is said to be an isometric transformation or an isometry. If for some real constant \(\rho > 0 \) we have \(\varphi G_1 = \rho G_2 \), \(\varphi \) is called a homothetic transformation [1].

A manifold with an affine connection (or a Riemannian manifold) \(M \) is complete if every geodesic curve can be extended for any large value of the canonical parameter. When the completeness is satisfied on \(M \), any infinitesimal affine transformation (or a Killing vector field) generates a one-parameter group of affine transformations from \(M \) onto itself [2].

Let \(M \) be a manifold with an affine connection. The group \(A(M) \) of all affine transformations of \(M \) onto itself is a Lie group with respect to the compact-open topology ([3], [4], [7]). When \(M \) has a Riemannian metric, the group \(I(M) \) of all isometries of \(M \) onto itself is a closed subgroup of \(A(M) \). \(I(M) \) is also a Lie group [5]. The mapping from \(A(M) \times M \) onto \(M \) gives the transformation law which is differentiable, as is known from a theorem of S. Bochner and D. Montgomery [3]. Any one-parameter subgroup in \(A(M) \) (i.e. \(I(M) \)) induces an infinitesimal affine transformation (i.e. a Killing vector field) on \(M \).

As \(\varphi \) is an affine transformation, the two Riemannian metrics \(g \) and \(g^\ast \) determine the same Riemannian connection, say \(L \). Let \(\varphi(x) \) be the linear holonomy group of \(L \) with reference point \(x \). Since it is irreducible and leaves both \(g \) and \(g^\ast \) invariant, there exists a positive constant \(c_x \) such that \(g^\ast(X,Y) = c_x^2 g(X,Y) \) for all \(X, Y \in T_x(M) \), i.e., \(g^\ast_x = c_x^2 g_x \). Since both \(g \) and \(g^\ast \) are parallel tensor fields with respect to \(t, c_x \) is constant.

Corresponding author: K. C. Petwal, *E-mail: kcpatwal@gmail.com*
Let us assume that φ is non-isometric homothetic transformation of M. Considering the inverse transformation if necessary, we may assume that the constant c associated with φ is less than 1. Take an arbitrary point x of M. If the distance between x and $\varphi(x)$ is less than δ, then the distance between $\varphi^m(x)$ and $\varphi^{m+1}(x)$ is less than $c^m\delta$. It follows that $\{\varphi^m(x); m=1, 2, \ldots\}$ is a Cauchy sequence and hence converges to some point x^*, since M is complete. We may further conclude at the following two definitions:

Definition (1.1): If M is an irreducible Riemannian manifold, then every affine transformation φ of M homothetic [2].

Definition (1.2): If M is a complete Riemannian manifold which is not locally Euclidian of M is an isometry [2].

2. AFFINE TRANSFORMATION AND ISOMETRIES IN A COMPLETE RIEMANNIAN MANIFOLD

In the Euclidian space of three dimensions the distance ds between adjacent points whose rectangular cartesian coordinates are (x, y, z) and $(x + dx, y + dy, z + dz)$ is given by $ds^2 = dx^2 + dy^2 + dz^2$. More generally for any system of oblique curvilinear coordinates (u, v, w) we have, $ds^2 = du^2 + dv^2 + dw^2 + 2dwdv + 2gdwdy + 2hdudy$, where a, b, c, f, g, h are the function of coordinates. This idea was generalized and extended to space of n-dimensions of Riemannian, who had defined the infinitesimal distance ds between the adjacent points whose coordinates in any system are x^1 and $x^1 + dx^1$, $(i = 1, 2, \ldots, n)$, by the relation $ds^2 = g_{ij}dx^1dx^j$, where the coefficient g_{ij} are the function of the coordinates x^1. This quadratic differential form is called a Riemannian metric and a space which is characterized by such a metric is called Riemannian manifold. A Riemannian manifold or a Riemannian metric g on M is said to be complete if the Riemannian connection defined by g coincides with g. This means that every homothetic transformation of M homothetic [2].

For a connect Riemannian manifold the following conditions are mutually equivalent:

1. M is a complete Riemannian manifold.
2. M is a complete metric space with respect to the distance function d.
3. Every bounded subset of M is relatively compact.
4. For an arbitrary point x of M and for an arbitrary curve C in tangent space $T_x(M)$ starting from x which is developed upon the given curve C.

Definition: If M is a connected complete Riemannian manifold, then any two points x and y of M can be joined by a minimizing geodesic.

Theorem (2.1): If M is a complete, irreducible Riemannian manifold of dim n >1, then the group of all affine transformations and the group of all isometries are equal.

Proof: A transformation φ of a Riemannian manifold is said to be homothetic, if there is a positive constant c such that $g(\varphi(X), \varphi(Y)) = c^2g(X, Y)$ for all $X, Y \in T_x(M)$ Where $T_x(M)$ is a tangent space of M at x, and $x \in M$, consider the Riemannian metric g define by $g(X, Y) = g(\varphi(X), \varphi(Y))$. By the [2] the Riemannian connection defined by g coincides with g. This means that every homothetic transformation of a Riemannian manifold M is an affine transformation of M [def 1.1, def 1.2]. Let U be a neighborhood of x^* such that \overline{U} is compact. Let K^* be a positive number such that $|g(R(Y_1, Y_2) Y_1, Y_2)| < K$ for any unit vector Y_1 and Y_2 at $Y \in U$, where R denotes the curvature tensor field. Let $z \in M$ and q any plane in $T_z(M)$. Let X, Y be an orthonormal basis for q, since φ is an affine transformation and let $f: M \rightarrow M'$ be an affine mapping and X, Y, Z the vector fields on M which are f-related to vector fields X', Y', Z' on M' respectively, then $R(X, Y) Z$ is f-related to $R'(X', Y') Z'$. Here R and R' are the curvature tensor fields of M and M' respectively, which implies

$$R'(\varphi^m X', \varphi^m Y')(\varphi^m Y) = \varphi^m R(X, Y) Y).$$

Hence we have,

$$g(R(\varphi^m X, \varphi^m Y)(\varphi^m Y, \varphi^m X) = g(\varphi^m(R(X, Y) Y), \varphi^m X)$$

$$= c^{2m} g(R(X, Y) Y, X)$$

$$= c^{2m} K(q).$$

Also, the distance between $x^* = \varphi^m(x^*)$ and $\varphi^m(z)$ approaches 0 as m tends to infinity. Thus, there exists an integer m_0 such that $\varphi^m(z) \in U$ for every $m \geq m_0$. Since the lengths of the vectors $\varphi^m X$ and $\varphi^m Y$ are equal to c^m, we have

$$c^{2m} K \geq |g(R(\varphi^m X, \varphi^m Y)(\varphi^m Y), \varphi^m X)| \text{ for } m \geq m_0.$$
This implies
\[c^{2m}K \geq |K(q)| \text{ for } m \geq m_0 \]

Provided \(m \) tends to infinity, we have \(K(q) = 0 \). In view of def (1.1) and def (1.2) and the above result, we say that if \(M \) is a complete, irreducible Riemannian manifold of \(\dim n \geq 1 \), then group of all affine transformations is equal to all group of all isometries.

Theorem (2.2): If \(X \) be an infinitesimal affine transformation on a complete Riemannian manifold \(M \), then \(X \) is an infinitesimal isometry.

Proof: Consider \(X \) an infinitesimal affine transformation on a complete Riemannian manifold \(M \). To prove above theorem, we need the theorem (2.1) and the following theorem:

Let \(M= M_0 \times M_1 \times \ldots \times M_k \) be the de Rham decomposition of a complete, simply connected Riemannian manifold \(M \), then

\[\mathfrak{g}(M) = \mathfrak{g}(M_0) \times \mathfrak{g}(M_1) \times \ldots \times \mathfrak{g}(M_k), \]

\[\mathfrak{a}(M) = \mathfrak{a}(M_0) \times \mathfrak{a}(M_1) \times \ldots \times \mathfrak{a}(M_k), \]

where \(\mathfrak{a}(M) \) is a closed subgroup of the group of all affine transformations \(\mathfrak{a}(M) \), while \(\mathfrak{g}(M) \) and \(\mathfrak{a}(M) \) are their respective identity components.

Considering that \(M \) is connected, let \(M^* \) be the universal covering manifold with the naturally induced Riemannian metric \(g^* = p^*(g) \), where \(p: M^* \to M \) is natural projection.

Let \(X^* \) be the vector field on \(M^* \) induced by \(X \) and \(X^* \) is \(p \)-related to \(X \). Then \(X^* \) is an infinitesimal affine transformation of \(M^* \). Clearly \(X^* \) is an infinitesimal affine transformation of \(M^* \) and \(X \) is an infinitesimal isometry of \(M^* \) if and only if \(X \) is an infinitesimal isometry of \(M \).

Corollary (2.1): If \(M \) is connected, complete Riemannian manifold whose restricted linear holonomy group leaves no any non-zero vector at fix point, then group of all affine transformation is equal to group of all isometries.

Proof: The linear holonomy group of \(M \) is naturally isomorphic with the restricted linear holonomy group of \(M \). This means that \(M_0 \) reduces to a point and hence \(X_0 = 0 \) in the above corollary.

Corollary (2.2): If \(X \) is an infinitesimal affine transformation of a complete Riemannian manifold and if the length of \(X \) is bounded, then \(X \) is an infinitesimal isometry.

Proof: Let \(M \) to be connected. If the length of \(X \) is bounded on \(M \), the length of \(X_0 \) is also bounded on \(M_0 \). Let \(x^1, x^2, \ldots, x^r \) be the Euclidean coordinate system in \(M_0 \) and set,

\[X_0 = \sum_{a=1}^r \xi^a \frac{\partial}{\partial x^a}. \]

Applying the formula

\[(L_{X_0} \nabla_y - \nabla_y L_{X_0})Z = \nabla_{[X_0,y]}Z \]

to

\[y = \frac{\partial}{\partial x^a} \quad \text{and} \quad Z = \frac{\partial}{\partial x^a}, \]

we see that

\[\frac{\partial^2 \xi^a}{\partial x^a \partial x^r} = 0. \]

This means that \(X_0 \) is of the form

\[\sum_{a=1}^r \left(\sum_{\beta=1}^r \omega_{\beta a} x^\beta + b^a \right) \frac{\partial}{\partial x^a}. \]
It is easy to see that length of \(X_0 \) is bounded on \(M_0 \) if and only if \(a_{\alpha\beta}^0 = 0 \) for \(\alpha, \beta = 1, \ldots, r \). Thus if \(X_0 \) is of bounded length, then \(X_0 \) is an infinitesimal isometry of \(M_0 \) ([2], [4]).

Corollary (2.3): On a compact Riemannian manifold \(M \), we have \(\Psi^0(M) = \mathcal{Y}^0(M) \).

Proof: On a compact manifold \(M \), every vector field is of bounded length. By Corollary (2.3), every infinitesimal affine transformation \(X \) is an infinitesimal isometry.

REFERENCES
