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ABSTRACT 
In this paper, we discuss the existence as well as uniformly global attractivity results on unbounded intervals of 
functional differential equation through application of classical hybrid fixed point theorem. 
 
AMS Subject Classification: 39A10, 34K20.  
 
Keywords: Functional differential equation; Fixed point theorem, Uniformly global attractivity. 
 
 
1. INTRODUCTION 
 
Let R be the real line and let 𝑅+ be set of nonnegative real numbers. Let 𝐼0 = [−𝛿, 0]  be a closed and bounded interval 
in R for some real number 𝛿 > 0 and let = 𝐼0𝑈 𝑅+. Let C denote the Banach Space of continuous real-valued 
functions ∅ 𝑜𝑛 𝐼0 with the supremum norm .

C
defined by 

sup ( )
o

C
t I

tφ φ
∈

=  

 
Clearly, C is a Banach Space with this supremum norm. For a fixed t , 𝑡 ∈ 𝑅+, 𝑙𝑒𝑡 𝑥𝑡   denote the element of C defined 
by 

𝑥𝑡(𝜃) = 𝑥(𝑡 + 𝜃),𝜃𝜖 [−𝛿, 0]. 
 
The space C is called the history space of the past interval 𝐼0 for the functional differential equations to describing the 
past history of the problems. 
 
Let 𝐶𝑅𝐵(𝑅+) denote the class of functions a: 𝑅+ → 𝑅 − {0} satisfying the following properties: 

(i) A  is continuous, 
(ii) lim ( )

t
a t

→∞
= ± ∞ , and 

(iii) a(0) = 1 
 
There do exist functions satisfying the above conditions. In fact, if 𝑎1(𝑡) = 𝑡 + 1,𝑎2(𝑡) = 𝑒𝑡, then 𝑎1, 𝑎2 ∈ 𝐶𝑅𝐵 (𝑅+). 
Again, the class of continuous and strictly monotone functions 𝑎 ∶ 𝑅+ → 𝑅 − {0} with a(0) = 1 satisfy the above 
criteria. Note that if 𝑎 𝜖 𝐶𝑅𝐵 (𝑅+), then the reciprocal function 𝑎� ∶ 𝑅+ → 𝑅 defined by 𝑎�(𝑡) = 1

𝑎(𝑡)
 is continuous and 

lim ( ) 0
t

a t
−

→∞
= . 

 
Given a function ∅ ∈ 𝐶, we consider the following functional differential equation (FDE),  

𝑑
𝑑𝑡

[𝑎(𝑡)𝑥 (𝑡)] = 𝑓(𝑡, 𝑥(𝑡), 𝑥𝑡) + 𝑔(𝑡, 𝑥(𝑡), 𝑥𝑡) , 𝑎. 𝑒. 𝑡 ∈  𝑅+                                                           (1.1) 
𝑥0 = ∅ 
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Where, 𝑎 𝜖 𝐶𝑅𝐵(𝑅+) 𝑎𝑛𝑑 𝑓, 𝑔 ∶  𝑅+ × 𝑅 × 𝐶 → 𝑅.   
 
It is clear that the functional differential equation(1.1) the scalar perturbation of second kind for the following nonlinear 
first order FDE on unbounded interval, 

𝑥 (𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥𝑡) + 𝑔(𝑡, 𝑥(𝑡), 𝑥𝑡)𝑎. 𝑒. 𝑡 ∈  𝑅+                                                                          (1.2) 
𝑥0 = ∅ 

 
A different types of perturbations for the nonlinear differential equations appears in a recent paper of Dhage [4]. Some 
special cases of these FDE with 𝑎 = 1 have already been studied in the literature on closed and bounded intervals for 
various aspects of the solutions. See Hale [10] Ntouyas [11]. The FDEs (1.1) is not discussed so far in the literature on 
closed but unbounded intervals of real line. In this paper, we discuss the functional differential equation (1.1) for 
existence as well as for uniformly global attractivity of the solution. Here we, use application of fixed point theory 
specially hybrid fixed point theory to formulate functional differential equation (1.1) on unbounded intervals of real 
line. 
 
2. FIXED POINT THEORY 
 
Let X be a nono-empty set and let T: 𝑋 → 𝑋. An invariant point under T in X is called a fixed point of T, that is, the 
fixed points are the solutions of the functional equation T 𝑥 = 𝑥. Any statement asserting the existence of fixed point of 
the mapping T is called fixed point theorem for the mapping T in X. We give some fixed point theorems useful in 
establishing the solution for FDE (1.1).Before results we give some basic definitions. 
 
Let X be an infinite dimensional Banach space with the norm || . ||. A mapping Q:  𝑋 → 𝑋 is called D-Lipschitz if there 
is a continuous and nondecreasing function ∅ ∶ 𝑅+ → 𝑅+ satisfying 

 ||𝑄𝑥 − 𝑄𝑦 || ≤ ∅( ||  𝑥 − 𝑦 ||)  
for all 𝑥,𝑦 ∈ 𝑋, where ∅(0) =  0. 𝐼𝑓 ∅(𝑟) =  𝑘𝑟, 𝑘 > 0, then Q is called Lipschitz with the Lipschitz constant k. In 
particular, if k<1, then Q is called a contraction on X with the contraction constant k. Further, if ∅(𝑟) < 𝑟 𝑓𝑜𝑟 𝑟 > 0, 
then Q is called nonlinear D-contraction and the function ∅ is called D-function of Q on X.  
 
The fixed point theorem is 
 
Theorem  2.1 (Granas and Dugundji) [9]: Let S be a non-empty, closed, convex and bounded subset of the Banach 
Space X and let 𝑄: 𝑆 → 𝑆 be a continuous and compact operator. Then the operator equation 

Q𝑥 = 𝑥 has a solution in S.                                                                                                                (2.1) 
 
We use the following variant of a fixed point theorem of Burton [3] which is a special case of a hybrid fixed point 
theorem. 
 
Theorem 2.2 (Dhage[4]): Let S be a closed, convex and bounded subset of the Banach Space X and let                
𝐴:𝑋 → 𝑋 𝑎𝑛𝑑 𝐵: 𝑆 → 𝑋 be two operator such that  

(a) A is nonlinear D-contraction, 
(b) B is completely continuous, 
(c) 𝑥 = 𝐴𝑥 + 𝐵𝑦   ,   𝑥 𝜖 𝑆 

              Then the operator equation  
𝐴𝑥 + 𝐵𝑥 = 𝑥                                                                                                                                                 (2.2) 

               has a solution in S. 
 
Theorem 2.3 (Dhage[8]): Let S be a non-empty, closed convex and bounded subset of the Banach algebra X and Let 
𝐴:𝑋 → 𝑋 𝑎𝑛𝑑 𝐵 ∶ 𝑆 → 𝑋 be two operators such that  

(a) A is D-Lipschitz with D-function 𝜓, 
(b) B is completely continuous, 
(c) 𝑥 = 𝐴𝑥 𝐵𝑦 → 𝑥 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑆, 𝑎𝑛𝑑 
(d) 𝑀𝜓(𝑟) < 𝑟,𝑤ℎ𝑒𝑟𝑒 𝑀 = || 𝐵(𝑆) || = sup��|𝐵𝑥|�: 𝑥 ∈ 𝑆�. 

              Then the operator equation 
𝐴𝑥 𝐵𝑥 = 𝑥                                                                                                                                                    (2.3) 

              has a solution in S. 
 
3. CHARACTERZATION OF SOLUTIONS 
 
We seek the solution of the FDE (1.1) in the space BC (𝐼0 ∪  𝑅+𝑅+) of continuous and bounded real-valued functions 
defined on 𝐼0 ∪ 𝑅+. Define a standard supremum norm || .|| and a multiplication “ . ” in BC (𝐼0 ∪ 𝑅+,𝑅) by  

�|𝑥|� =
𝑠𝑢𝑝

𝑡 ∈ 𝐼0 ∪ 𝑅+
|𝑥(𝑡)|𝑎𝑛𝑑 (𝑥𝑦)(𝑡) =  𝑥 (𝑡)𝑦 (𝑡), 𝑡 ∈ 𝑅+. 
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Clearly, BC(𝐼0 ∪ 𝑅+,𝑅) becomes a Banach algebra with respect to the above norm and the multiplication in it. By 
𝐿1(𝑅+,𝑅). we denote the space of lebesgue integrable functions on 𝑅+and the norm || . ||𝐿1 𝑖𝑛 𝐿1(𝑅+,𝑅) is defined by 

|| 𝑥 || 𝐿1 = � |𝑥(𝑡)|𝑑𝑠.
∞

0
 

 
Let us assume that 𝐸 = 𝐵𝐶(𝐼0 ∪ 𝑅+,𝑅) and let Ω be a non-empty subset of X. Let Q: 𝐸 → 𝐸 be a operator and consider 
the following operator equation in E, 

𝑄𝑥(𝑡) = 𝑥(𝑡)                                                                                                                                     (3.1) 
for all 𝑡 ∈  𝐼0 ∪ 𝑅+.  
 
Definition 3.1: We say that solutions of the operator equation (4.1) are locally attractive if there exists a closed ball 
𝐵𝑟���(𝑥0)  in the space 𝐵𝐶(𝐼0 ∪ 𝑅+,𝑅)  for some 𝑥0  ∈ 𝐵𝐶(𝐼0 ∪ 𝑅+,𝑅)  such that for arbitrary solutions 𝑥 = 𝑥(𝑡) and  
𝑦 = 𝑦(𝑡) of equation(3.1)  belonging to 𝐵𝑟���(𝑥0), we have that  

lim( ( ) ( )) 0
t

x t y t
→∞

− =                                                                                                                          (3.2) 

 
In the case when the limit (3.2) is uniform with respect to the set 𝐵𝑟���(𝑥0), i.e., when for each ∈> 0 there exists T >0 
such that 

|𝑥(𝑡) − 𝑦(𝑡)| ≤∈                                                                                                                                        (3.3) 
for all 𝑥,𝑦 ∈ 𝐵𝑟���(𝑥0)being solutions of (3.1) and for 𝑡 ≥ 𝑇, we will say that solutions of equation (3.1) are uniformly 
locally attractive on 𝐼0 ∪ 𝑅+. 
 
Definition 3.2: A solution 𝑥 = 𝑥(𝑡) of equation (3.1) is said to be globally attractive if (3.2) holds for each solution 
𝑦 = 𝑦(𝑡) of (3.1) in BC(𝐼0 ∪ 𝑅+,𝑅).In other words, we may say that solutions of the equation (3.1) are globally 
attractive if for arbitrary solutions 𝑥(𝑡) and 𝑦(𝑡) of (3.1) in 𝐵𝐶(𝐼0 ∪ 𝑅+,𝑅). The condition (3.2) is satisfied. In the case 
when the condition (3.2) is satisfied uniformly with respect to the space BC(𝐼0 ∪ 𝑅+,𝑅) i.e., if for every ∈>0 there 
exists T > 0 such that the inequality (3.2) is satisfied for al 𝑦(𝑡)x, y,∈ 𝐵𝐶(𝐼0 ∪ 𝑅+,𝑅) being the solutions of (3.1) and 
for 𝑖 ≥ 𝑇, we will say that solutions of the equation (3.1) are uniformaly globally attractive on 𝐼0 ∪ 𝑅+. 
 
4. ATTRACTIVITY RESULT 
 
We prove the existence and uniformly global attractivity results for the FDE (1.1) on 𝐼0 ∪ 𝑅+ under some suitable 
conditions.  
 
We need the following definitions. 
 
Definition 4.1:  By a solution for the functional differential equation (1.1) we mean a function 𝑥 ∈ 𝐵𝐶(𝐼0 ∪ 𝑅+,𝑅) ∩
𝐴𝐶(𝑅+,𝑅) such that 

(i) The function 𝑡 → 𝑎(𝑡)𝑥(𝑡)is absolutely continuous on 𝑅+, and  
(ii) 𝑥  satisfies the equations in (1.1), 

Where 𝐴𝐶(𝑅+,𝑅) is the space of absolutely continuous real-valued functions on right half real axis 𝑅+. 
 
Definition 4.2: A function f : 𝑅+ × 𝑅 × 𝐶 → 𝑅 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑐𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦 𝑖𝑓  

(i) 𝑡 → 𝑓(𝑡, 𝑥,𝑦) is measuable for all 𝑥 ∈ 𝑅 𝑎𝑛𝑑 𝑦 ∈ 𝐶, 𝑎𝑛𝑑 
(ii) (𝑥,𝑦) → 𝑓(𝑡, 𝑥,𝑦) is continuous for all t ∈  𝑅+ 

Consider the following hypotheses.  
(𝐴) There exists a continuous function h: 𝑅+ → 𝑅+ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

|𝑓(𝑡, 𝑥,𝑦) + 𝑔(𝑡, 𝑥,𝑦)| ≤ ℎ(𝑡)𝑎. 𝑒. 𝑡 ∈ 𝑅+ 
for all 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝐶. Moreover, we assume that lim𝑡→∞ |𝑎�(𝑡)|∫ ℎ(𝑠)𝑑𝑠 = 0.𝑡

0                        
 
Remark: If the hypothesis (𝐴) holds and 𝑎 ∈ 𝐶𝑅𝐵 (𝑅+), then 𝑎� ∈ 𝐵𝐶 (𝑅+,𝑅) and the function 𝑊: 𝑅+ → 𝑅 defined by 
the expression 𝑊(𝑡) = |𝑎�(𝑡)|∫ ℎ(𝑠)𝑑𝑠𝑡

0  is continuous on 𝑅+. Therefore, the number 𝑊 =  sup𝑡≥0 𝑤(𝑡) exists.  
 
Theorem 4.1: Assume that the hypotheses (𝐴) holds. Then the FDE (1.1) has a solution and solutions are uniformly 
globally attractive on 𝐼0 ∪ 𝑅+. 
 
Proof: Set 𝑋 = 𝐵𝐶(𝐼0 ∪  𝑅+,𝑅).Define an operator Q on X by  

{
0 0

0

(0 ) ( ) ( ) ( , ( ) ) ( ) ( , ( ) ) ,
( )

( ) ,

t t

s sa t a t f s x s x d s a t g s x s x d s t R
Q x t

t if t I

φ

φ

− − −

+


+ + ∈= 

 ∈

∫ ∫                (4.1) 
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We show that Q defines a mapping 𝑄 ∶ 𝑋 → 𝑋. 𝐿𝑒𝑡 𝑥 ∈ 𝑋 be arbitrary. Obviously, Q 𝑥  is a continuous function on 
𝐼0 ∪  𝑅+. We show that Q 𝑥 is bounded on 𝐼0 ∪  𝑅+. Thus, if 𝑡 ∈ 𝑅+, then we obtain:|𝑄𝑥(𝑡)| ≤ 

|∅(0)||𝑎�(𝑡)| + |𝑎�(𝑡)|� |𝑓(𝑠, 𝑥(𝑠), 𝑥𝑠)|𝑑𝑠 + |𝑎�(𝑡)|� |𝑔(𝑠, 𝑥(𝑠), 𝑥𝑠)|𝑑𝑠
𝑡

0
≤ |∅(0)||| 𝑎� ||  + |𝑎�(𝑡)|� ℎ (𝑠)𝑑𝑠.

𝑡

0

𝑡

0
 

 
Since lim𝑡→∞ |𝑎�(𝑡)| ∫ ℎ(𝑠)𝑑𝑠 = 0, 𝑎𝑛𝑑 𝑡ℎ𝑒 function 𝑤: 𝑅+ → 𝑅 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑤(𝑡) = |𝑎�(𝑡)|∫ ℎ(𝑠)𝑑𝑠𝑡

0
𝑡
0  is continuous, 

there is constant W > 0 such that 

sup
𝑡≥0

𝑤 (𝑡) =  sup
𝑡≥0

|𝑎�(𝑡)|� ℎ(𝑠)𝑑𝑠 ≤ 𝑊.
𝑡

0
 

 
Therefore, 

|𝑄𝑥(𝑡) ≤ |∅(0)| || 𝑎� ||  + 𝑊 ≤ || 𝑎� ||  ||∅|| + 𝑊 
 
for all 𝑡 ∈  𝑅+. Similarly, if 𝑡 ∈ 𝐼0 then |𝑄𝑥(𝑡)| ≤ || ∅ || . As a result, we have that  

||𝑄𝑥|| ≤ (|| 𝑎� || + 1)||∅|| + 𝑊                                                                                                             (4.2) 
 
for all 𝑥 ∈ 𝑋  and therefore, Q maps X into  X itself. Define a closed ball 𝐵𝑟���(0) centered at origin of radius r, where 
𝑟 = (|| 𝑎� || +  1)||∅|| + 𝑊.𝐶learly  defines a mapping𝑄 ∶ 𝑋 → 𝐵�𝑟 (0) and in particular 𝑄 ∶  𝐵𝑟���(0) →  𝐵𝑟���(0). We show 
that Q satisfies all the conditions of Theorem 2.1. First, we show that Q is continuous on 𝐵𝑟���(0).  To do this, let us fix 
arbitrarily ∈ > 0  𝑎𝑛𝑑 𝑙𝑒𝑡 {𝑥𝑛} be a sequence of points in 𝐵𝑟���(0) converging to a point 𝑥 ∈ 𝐵𝑟���(0). Then  we get: 

|(𝑄𝑥𝑛)(𝑡) − (𝑄𝑥)(𝑡)| ≤ |𝑎�(𝑡)|� |
𝑡

0
𝑓(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠) −  𝑓(𝑠, 𝑥(𝑠), 𝑥(𝜃 + 𝑠)|𝑑𝑠  

                                               + 𝑎�(𝑡)|∫ |𝑡0 𝑔(𝑠, 𝑥𝑛(𝑠),𝑥𝑛(𝜃 + 𝑠) −  𝑔(𝑠, 𝑥(𝑠), 𝑥(𝜃 + 𝑠)|𝑑𝑠 
≤ |𝑎�(𝑡)| ∫ [𝑡0 |𝑓(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)| + |𝑓(𝑠, 𝑥(𝑠), 𝑥(𝜃 + 𝑠))|]𝑑𝑠  

+ |𝑎�(𝑡)|∫ [𝑡0 |𝑔(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)| + |𝑔(𝑠, 𝑥(𝑠), 𝑥(𝜃 + 𝑠))|]𝑑𝑠 

≤ 2|𝑎�(𝑡)|� ℎ
𝑡

0
(𝑠)𝑑𝑠 

≤ 2𝑤(𝑡)                                                                                                                      (4.3) 
 
Hence, by hypothesis (A), we infer that there exists a T >0 such that 𝑤(𝑡) ≤∈ 𝑓𝑜𝑟 𝑡 ≥ 𝑇. Thus, 𝑓𝑜𝑟 𝑡 ≥ 𝑇 from the 
estimate (4.2) we derive that 

|(𝑄𝑥𝑛)(𝑡) − (𝑄𝑥)(𝑡)| ≤ 2 ∈ 𝑎𝑠  𝑛 → ∞. 
 
Furthermore, let us assume that 𝑡 ∈ |0,𝑇]. then by Lebesgue dominated convergence theorem, we obtain the estimate: 

lim
𝑛→∞

𝑄𝑥𝑛(𝑡) = lim
𝑛→∞

[∅(0)𝑎�(𝑡) +  𝑎�(𝑡)� 𝑓(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠 + 𝑎�(𝑡)� 𝑔(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠]
𝑡

0

𝑡

0
 

= ∅(0)𝑎�(𝑡) + 𝑎�(𝑡)∫ [ lim
𝑛→∞

𝑡
0 𝑓(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)]𝑑𝑠  

+ 𝑎�(𝑡)∫ [ lim
𝑛→∞

𝑡
0 𝑔(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)]𝑑𝑠 

= 𝑄𝑥(𝑡) 
 
for all 𝑡 ∈ [0,𝑇].similarly, if 𝑡 ∈ 𝐼0 then 

lim
𝑛→∞

𝑄𝑥𝑛(𝑡) = ∅(𝑡) = 𝑄𝑥(𝑡). 
 
Thus, 𝑄𝑥𝑛 → 𝑄𝑥  as n → ∞ uniformly on R+ and hence Q is a continuous operator on Br���(0) into Br���(0). 
 
Next, we show that 𝑄 is compact operator on Br���(0). to finish this, it is enough to show that every sequence {Q𝑥𝑛} in 
Q (Br���(0) has a cauchy subsequence. Now,  

|Q𝑥𝑛(t)| ≤ |∅(0)||a�(t)| + |a�(t)|∫ |𝑓(𝑠, 𝑥𝑛(𝑠),𝑥𝑛(𝜃 + 𝑠)|𝑑𝑠t
0  + |a�(t)| ∫ |𝑔(𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)|𝑑𝑠t

0  
≤ ��|𝑎�|� + 1�| ∅(0)| + 𝑤(𝑡) 
≤ ��|𝑎�|� + 1�||∅|| + 𝑤(𝑡) 

 
For all 𝑡 ∈  𝑅+. Taking supremum over t, we obtain 

�|𝑄𝑥𝑛|� ≤ ��|𝑎�|� + 1�||∅|| + 𝑊 
 
For all 𝑛 ∈ 𝑁. this shows that {𝑄𝑥𝑛} is a uniformly bounded sequence in 𝑄(𝐵�𝑟(0). 
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Next, we show that 𝑄(𝐵𝑟���(0) is also an equicontinuous set in X. Let ∈> 0 be given. Since. Lim𝑡→∞ 𝑤(𝑡) = 0, there is a 
real number 𝑇1 > 0 such that |𝑤(𝑡)| < ∈

8
 for all 𝑡 ≥ 𝑇1. Similarly, since lim𝑛→∞ 𝑎�(𝑡) = 0,  𝑓𝑜𝑟 𝑎𝑏𝑜𝑣𝑒 ∈> 0, 

𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑟𝑒𝑎𝑙 𝑚𝑢𝑏𝑒𝑟 𝑇2 > 0 such that |𝑎�(𝑡)| < ∈
8|∅(0)|

 for all 𝑡 ≥ 𝑇2. Thus, if 𝑇 = max{𝑇1,𝑇2} , 𝑡ℎ𝑒𝑛 |𝑤(𝑡)| < ∈
8
 and 

|𝑎�(𝑡)| < ∈
8|∅(0)|

 for all 𝑡 ≥ 𝑇. 𝐿𝑒𝑡 𝑡, 𝜏 ∈  𝐼0 ∪  𝑅+ be arbitrary. 𝐼𝑓 𝑡, 𝜏 ∈  𝐼0 then by uniform continuity of ∅ 𝑜𝑛 I0, for 
above ∈ we have a 𝛿1 > 0 which is a function of only ∈ such that 

|𝑡 − 𝜏| < 𝛿1 ⇒ |𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| = |∅(𝑡) − ∅(𝜏)| <
∈
4

 
 
For all 𝑛 ∈ 𝑁. if 𝑡, 𝜏 ∈ [0,𝑇], then we have 

|𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| ≤ |∅(0)||𝑎�(𝑡) − 𝑎�(𝜏) 
+ ||𝑎�(𝑡)|∫ 𝑓𝑡0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠 − 𝑎�(𝜏)∫ 𝑓𝜏0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠|  
+||𝑎�(𝑡)|∫ 𝑔𝑡0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠 − 𝑎�(𝜏)∫ 𝑔𝜏0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠|  

≤ |∅(0)||𝑎�(𝑡) − 𝑎�(𝜏)| + |𝑎�(𝑡)∫ 𝑓 𝑡
0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠 − 𝑎�(𝜏)∫ 𝑓𝜏0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛  

(𝜃 + 𝑠)𝑑𝑠|+|𝑎�(𝜏)∫ 𝑓𝑡0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠 − 𝑎�(𝜏)∫ 𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�𝑑𝑠|  𝑡
0  

+ |𝑎�(𝑡)∫ 𝑔 𝑡
0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠 − 𝑎�(𝜏)∫ 𝑔𝑡0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠|  

+|𝑎�(𝜏)∫ 𝑔𝑡0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠 − 𝑎�(𝜏)∫ 𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�𝑑𝑠|𝑡
0   

≤ |∅(0)||𝑎�(𝑡) − 𝑎�(𝑟)| + |𝑎�(𝑡) − 𝑎�(𝜏)||∫ 𝑓𝑡0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠|)  
+|𝑎�(𝜏)||∫ 𝑓𝑡0 �𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�𝑑𝑠|  
+ |𝑎�(𝑡) − 𝑎�(𝜏)||∫ 𝑔𝑡0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠|) 
+|𝑎�(𝜏)||∫ 𝑔𝑡0 �𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�𝑑𝑠|  

≤ |∅(0)||𝑎�(𝑡) − 𝑎�(𝜏)| + |𝑎�(𝑡) − 𝑎�(𝜏)||∫ ℎ𝑇0 (𝑠)𝑑𝑠 + �|𝑎�|� ∫ ℎ𝑡𝜏 (𝑠)𝑑𝑠|  

≤ |∅(0)|𝑎�(𝑡) − 𝑎�(𝜏) �+|𝑎�(𝑡) − 𝑎�(𝜏)| ∫ ℎ𝑇0 (𝑠)𝑑𝑠 + �|𝑎�|�� 𝑝(𝑡) − 𝑝(𝜏)|  

≤ �|∅(0)| + �|ℎ|�𝐿1�|𝑎�(𝑡) − 𝑎�(𝜏)| + �|𝑎�|�|𝑝(𝑡) − 𝑝(𝜏)| 
Where, 𝑝(𝑡) = ∫ ℎ𝑡0 (𝑠)𝑑𝑠 𝑎𝑛𝑑 �|ℎ|�𝐿1 = ∫ ℎ(𝑠)𝑑𝑠.∞

0  
 
By the uniform continuity of the functions 𝑎� and p on [0,T], for above ∈ we have the real numbers 𝛿2 > 0 𝑎𝑛𝑑 𝛿3 > 0 
which are the functions of only ∈ such that 

|𝑡 − 𝜏| < 𝛿2 ⇒ |𝑎�(𝑡) − 𝑎�(𝜏) <
∈

8[|∅(0)| + �|ℎ|�𝐿1]
 

and 

|𝑡 − 𝜏| < 𝛿3 ⇒ |𝑝(𝑡) − 𝑝(𝜏)| <
∈

8||𝑎�||
 

 
𝐿𝑒𝑡 𝛿4 = min{𝛿2, 𝛿3}.Then 

|𝑡 − 𝜏| < 𝛿4 ⇒ |𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| <
∈
4

 
for all 𝑛 ∈ 𝑁. similarly, if 𝑡 ∈  𝐼0𝑎𝑛𝑑 𝜏 ∈ [0,𝑇], 𝑡ℎ𝑒𝑛 

|𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| ≤ |𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(0)| + |𝑄𝑥𝑛(0) − 𝑄𝑥𝑛(𝜏)| 
 
Take 𝛿5 = min{𝛿1,𝛿4} > 0 which is again a function of only ∈. Hence by above estimated facts it follows that 

|𝑡 − 𝜏| < 𝛿5 ⇒ |𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| <
∈
2

 
 
for all 𝑛 ∈ 𝑁Again, if 𝑡, 𝜏 > 𝑇,  then we have a real number 𝛿6 > 0 which is a function of only ∈ such that 

|𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| ≤ |∅(0)||𝑎(𝑡) − 𝑎(𝜏)| 
+ |𝑎�(𝑡)∫ 𝑓𝑡0 �𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�𝑑𝑠 − 𝑎�(𝜏)∫ 𝑓𝜏0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠|  
+|𝑎�(𝑡)∫ 𝑔𝑡0 �𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�𝑑𝑠 − 𝑎�(𝜏)∫ 𝑔𝜏0 (𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)𝑑𝑠|  

≤ |∅(0)||𝑎(𝑡)| + |∅(0)||𝑎(𝜏) + 𝑤(𝑡) +  𝑤(𝜏) 

<
∈
4

+  
∈
4

 
 
For all 𝑛 ∈ 𝑁,  whenever 𝑡 − 𝜏| < 𝛿6. similarl𝑦, 𝑖𝑓 𝑡, 𝜏 ∈ 𝐼0 ∪ 𝑅+ with 𝑡 < 𝑇 < 𝜏, then we have 

|𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| ≤ |𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝑇)| + |𝑄𝑥𝑛(𝑇) − 𝑄𝑥𝑛(𝜏)| 
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Take 𝛿 = min{𝛿5, 𝛿6} > 0 which is again a function of only ∈. Therefore, from the above obtained estimates, it follows 
that 

|𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝑇)| <
∈
2

 𝑎𝑛𝑑 |𝑄𝑥𝑛(𝑇) − 𝑄𝑥𝑛(𝜏)| <
∈
2

 
 
For all 𝑛 ∈ 𝑁, whenever | 𝑡 − 𝜏| < 𝛿. As a result, 𝑄𝑥𝑛(𝑡) − 𝑄𝑥𝑛(𝜏)| <∈ for all 𝑡, 𝜏 ∈  𝐼0 ∪  𝑅+ and for all n ∈ N,
whenever |𝑡 − 𝜏| < 𝛿. As a result, |𝑄𝑥𝑛(𝑇) − 𝑄𝑥𝑛(𝜏)| <∈  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝜏 ∈  I0  ∪  R+ and for all n ∈ 𝑁, whenever  
|𝑡 − 𝜏| < 𝛿 This shows that {𝑄𝑥𝑛} is equicontinuous sequence in X. Now an application of Arzela-Ascoli theorem 
yields that {𝑄𝑥𝑛} has a uniformly convergent subsequence on the compact subset 𝐼0 ∪ [0,𝑇] of 𝐼0 ∪ 𝑅.Without loss of 
generality, call the subsequence to be the sequence itself. 
 
We show that {𝑄𝑥𝑛} si Cauchy in X. Now |𝑄𝑥𝑛(𝑡) − 𝑄𝑥(𝑡)| → 0𝑎𝑠 𝑛 → ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  𝐼0 ∪ [0,𝑇]. Then for given 
∈ > 0 there exits an 𝑛0 ∈ 𝑁 such that 

𝑠𝑢𝑝
−𝛿 ≤ 𝑝 ≤ 𝑇    |𝑎�(𝑝)|∫ |𝑝

0 𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)� − 𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�|𝑑𝑠 < ∈
2
 , 

𝑠𝑢𝑝
−𝛿 ≤ 𝑝 ≤ 𝑇    |𝑎�(𝑝)|� |

𝑝

0
𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)� − 𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�|𝑑𝑠 <

∈
2

 

for all 𝑚,𝑛 ≥  𝑛0. Therefore, if 𝑚,𝑛 ≥  𝑛0, then we have 
|| 𝑄𝑥𝑚 − 𝑄𝑥𝑛|| = {

𝑠𝑢𝑝
−𝛿 ≤ 𝑡 < ∞ ||𝑎�(𝑡)|∫ |𝑡0 𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)� − 𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�|𝑑𝑠}  

+{
𝑠𝑢𝑝

−𝛿 ≤ 𝑡 < ∞  �|𝑎�(𝑡)|∫ |𝑡0 𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)� − 𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�� 𝑑𝑠} 

 ≤
𝑠𝑢𝑝

−𝛿 ≤ 𝑝 ≤ 𝑇||𝑎�(𝑝)|∫ |𝑝
0 𝑓�𝑠,𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)� − 𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�|𝑑𝑠| 

+
𝑠𝑢𝑝
𝑝 ≥ 𝑇|𝑎�(𝑝)|� [

𝑝

0
|𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)��+�𝑓�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)���𝑑𝑠 

+
𝑠𝑢𝑝

−𝛿 ≤ 𝑝 ≤ 𝑇||𝑎�(𝑝)|� |
𝑝

0
𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)� − 𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)�|𝑑𝑠| 

+
𝑠𝑢𝑝
𝑝 ≥ 𝑇|𝑎�(𝑝)|� [

𝑝

0
|𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)��+�𝑔�𝑠, 𝑥𝑛(𝑠), 𝑥𝑛(𝜃 + 𝑠)���𝑑𝑠 <  ∈. 

 
This shows that {𝑄𝑥𝑛} ⊂ 𝑄�𝐵𝑟(0)�������� ⊂ 𝑋 is Cauchy. Since X is complete, {𝑄𝑥𝑛} converges to a point in X. As 
𝑄(𝐵𝑟���(0)) is closed {𝑄𝑥𝑛} converges to a point in 𝑄(𝐵�𝑟(0)). Hence Q�𝐵�𝑟(0)� is relatively compact and consequently Q 
is a continuous and compact operator on 𝐵�𝑟(0) into itself, Now an application of theorem 2.1 to the operator Q 
on 𝐵𝑟���(0) `yields  that Q has a fixed point in 𝐵𝑟���(0) which further implies that the FDE (1.1) has a solution defined on 
𝐼0 ∪ 𝑅+. 
 
Finally, we show that the solutions are uniformly attractive on 𝐼0 ∪ 𝑅+. Let 𝑥,𝑦 ∈  𝐵�𝑟(0) be any two solutions the FDE 
(1.1) defined on 𝐼0  ∪  𝑅+. Then, 

|𝑥(𝑡) − 𝑦(𝑡)| ≤ |𝑎�(𝑡)∫ 𝑓𝑡0 (𝑠, 𝑥(𝑠), 𝑥𝑠)𝑑𝑠 − 𝑎�(𝑡)∫ 𝑓𝑡0 (𝑠,𝑦(𝑠),𝑦𝑠)𝑑𝑠|  
+ |𝑎�(𝑡)∫ 𝑔𝑡0 (𝑠, 𝑥(𝑠), 𝑥𝑠)𝑑𝑠 − 𝑎�(𝑡)∫ 𝑔𝑡0 (𝑠,𝑦(𝑠),𝑦𝑠)𝑑𝑠| 

≤ |𝑎�(𝑡)| ∫ |𝑓𝑡
0 𝑔(𝑠, 𝑥(𝑠), 𝑥𝑠)| 𝑑𝑠 + |𝑎�(𝑡)|∫ |𝑡0 𝑓(𝑠,𝑦(𝑠),𝑦𝑠)𝑑𝑠   

+ |𝑎�(𝑡)|∫ |𝑡0 𝑔(𝑠, 𝑥(𝑠), 𝑥𝑠)| 𝑑𝑠 + |𝑎�(𝑡)|∫ |𝑡0 𝑔(𝑠,𝑦(𝑠),𝑦𝑠)𝑑𝑠 
≤ 2𝑤(𝑡)                                                                                                                                    (4.4) 

 
For   all 𝑡 ∈ 𝐼0 ∪ 𝑅+. Since lim𝑡→∞ 𝑤(𝑡) = 0, there is a real number T>0 such that 𝑤(𝑡) <  ∈

2
 for all t ≥ T. 

 
therefore, |𝑥(𝑡) −  𝑦(𝑡)| ≤ ∈ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑇, and so all the solutions of the FDE (1.1) are uniformly globally attractive 
on 𝐼0 ∪ 𝑅+. 
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