On Strongly Generalized b-Closed Sets

1S. Bharathi*, 2K. Bhuvaneswari and 3N. Chandramathi

1Dept of Mathematics, Angel college of Engineering and Technology, P. K. Palayam, Dharapuram Road, Tirupur- 641665, Tamil Nadu, India

2Dept of Mathematics, Mother Teresa University for women, Kodaikanal. TamilNadu, India

3Dept of Mathematics, Hindusthan College of Engineering and Technology, Coimbatore, TamilNadu, India

E-mail: 1bharathikamesh6@gmail.com, 2kbguhan@gmail.com, 3mathi.chandra303@gmail.com

(Received on: 17-08-11; Accepted on: 31-08-11)

--

ABSTRACT

In this paper, we study a new class of generalized sets called strongly generalized b-closed sets, briefly g^b-closed sets. We study some of their properties. These sets are placed between the class of gs-closed sets and gp-closed sets.

2000 Mathematics Subject Classification: 54A10, 54C8, 54C10, 54D10.

Keywords and phrases: g-closed, g*-closed, b-closed, g^b-closed, $T^g b$-space.

--

1. INTRODUCTION AND PRELIMINARIES:

Generalized closed sets form a strong tool in the characterization of topological spaces satisfying weak separation axioms. The concept of generalization was first initiated by Levine [4] in 1963. Since then this method of generalizing sets was adopted by many topologists. Andrijevic [1] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. The class of b-open sets is contained in the class of semi-preopen sets and contains all semi-open and preopen sets. The class of b-open sets generates the same topology as the class of preopen sets. Extensive research on generalizing closedness was done in recent years as the notions of a generalized closed, generalized semi-closed, α-generalized closed, generalized semi-preopen closed sets were investigated in [2,3,5].

The aim of this paper is to continue the study of generalized closed sets. In particular, the notion of strongly generalized b-closed sets and its various characterizations are given in this paper. All through this paper, all spaces X and Y (or (X, τ) and (Y, σ)) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively.

Definition: 1.1 [7] A subset A of a space X is said to be:

1. α-open if $A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))$;
2. Semi-open if $A \subseteq \text{Cl}(\text{Int}(A))$;
3. Preopen or nearly open if $A \subseteq \text{Int}(\text{Cl}(A))$;
4. β-open or semi-preopen if $A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A)))$;
5. b-open or sp-open if $A \subseteq \text{Cl}(\text{Int}(A)) \cup \text{Int}(\text{Cl}(A))$.

The complement of a b-open set is said to be b-closed [2]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by $b\text{Cl}(A)$. The union of all b-open sets of X contained in A is called b-interior of A and is denoted by $b\text{Int}(A)$. The family of all b-open (resp. α-open, semi-open, preopen, β-open, b-closed, preclosed) subsets of a space X is denoted by $bO(X)$ (resp. $\alpha O(X)$, $SO(X)$, $PO(X)$, $\beta O(X)$, $bC(X)$, $PC(X)$) and the collection of all b-open subsets of X containing a fixed point x is denoted by $bO(X, x)$. The sets $SO(X, x)$, $\alpha O(X, x)$, $PO(X, x)$, $\beta O(X, x)$ are defined analogously.

Corresponding author: 1S. Bharathi, *E-mail: bharathikamesh6@gmail.com
Definition: 1.2[6] A subset A of a space (X, τ) is called
(1) a generalized closed set (briefly g-closed) if Cl(A) ⊆ U whenever A ⊆ U and U is open;
(2) a generalized preclosed set (briefly gp-closed) if pCl(A) ⊆ U whenever A ⊆ U and U is open;
(3) a generalized semi-preclosed set (briefly gp-closed) if spCl(A) ⊆ U whenever A ⊆ U and U is open;
(5) a generalized b-closed set (briefly gb-closed) [15] if bCl(A) ⊆ U whenever A ⊆ U and U is open.

Complements of g-closed (resp. gp-closed, etc.) sets are called g-open (resp. gp-open, etc.)

2. STRONGLY GENERALIZED b-CLOSED SETS:

Definition: 2.1 A subset of a topological space (X, τ) is said to be g*b-closed set in (X, τ) if bcl(A) ⊆ G whenever A ⊆ G where G is g-open. The collection of all g*b-closed sets of (X, τ) is denoted by G*bC(X, τ).

Theorem 2.2: If a subset A of a topological space (X, τ) is closed, then it is g*b-closed.

Proof: Let G be a g-open set containing A. Then G ⊇ A = cl(A) as A is closed. Also cl(A) ⊇ bcl(A). Thus G ⊇ bcl(A). Hence A is a g*b-closed set in (X, τ).

The converse of the above theorem need not be true as seen from the following example.

Example: 2.3 Let X= {a, b, c} and τ = {X, φ, {a}}, then the subset {c} is g*b-closed but not closed in (X, τ).

Corollary: 2.4 If a subset A of a topological space (X, τ) is regular closed, then it is g*b-closed but not conversely.

Proof: Since every regular closed set is closed but not conversely. By theorem 2.2 every closed set is g*b-closed but not conversely. Hence every regular closed set is g*b-closed but not conversely.

Theorem 2.5 If a subset A of a topological space (X, τ) is g*b-closed, then it is gb-closed.

Proof: Let G be an open set containing A. Then G ⊇ A = bcl(A) as A is gb-closed. Hence A is a gb-closed set in (X, τ).

The converse of theorem 2.5 need not be true as seen from the following example.

Example: 2.6 Let X= {a, b, c} and τ = {X, φ, {a}, {b}, {a, b}, {a, b, c}}, then the subset {b, c} is gb-closed but not g*b-closed set in (X, τ).

Theorem: 2.7 If a subset A of a topological space (X, τ) is b-closed, then it is g*b-closed.

Proof: Let G be an open set containing A. Then G ⊇ A = bcl(A) as A is b-closed. Thus G ⊇ bcl(A). Hence A is g*b-closed in (X, τ).

The converse of the above theorem need not be true and it can be seen from the following example.

Example: 2.8 Let X= {a, b, c} and τ = {X, φ, {a}, {b}, {a, b}}, then the subset {b} is g*b-closed but not b-closed in (X, τ).

Theorem: 2.9 If a subset A of a topological space (X, τ) is g*b-closed, then it is gb-closed.

Proof: Let G be an open set containing A. Then G ⊇ A = bcl(A) as A is g*b-closed. Hence A is gb-closed in (X, τ).

The converse of the above theorem is not true and it can be seen from the following example.

Example 2.10: Let X= {a, b, c} and τ = {X, φ, {a}, {a, b}}, then the subset {a, c} is gb-closed but not g*b-closed.

Theorem: 2.11 Let A be a subset of a topological space (X, τ). If A is g*b-closed, then it is gs-closed.
Proof: Let \(G \) be an open set containing \(A \). Then \(G \supseteq \text{bcl}(A) \), as \(A \) is \(g^*b \)-closed. Thus \(G \supseteq \text{bcl}(A) \supseteq \text{Scl}(A) \).

Therefore \(A \) is \(gs \)-closed in \((X, \tau)\).

The following example shows that the converse of the above theorem need not be true.

Example: 2.12 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \), then the subset \(\{a\} \) is \(gs \)-closed but is not \(g^*b \)-closed in \((X, \tau)\).

Remark: 2.13 The following example shows that every \(g \)-closed set is \(g^*b \)-closed but not conversely.

Example: 2.14 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{b\}, \{a, b\}\} \), then the subset \(\{a\} \) is \(g^*b \)-closed but not \(g \)-closed.

Remark: 2.15 The following examples shows that the concept of semi-closed and \(g^*b \)-closed sets are independent.

Example: 2.16 (a) Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \), then the subset \(\{a, c\} \) is \(g^*b \)-closed but not semi-closed.

Example: 2.16 (b) Let \(X = \{a, b, c, d\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}\} \), then the subset \(\{b\} \) is semi closed but not \(g^*b \)-closed.

Remark: 2.17 The following examples shows that the concept of pre-closed and \(g^*b \)-closed sets are independent.

Example: 2.18 Let \(X = \{a, b, c, d\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}\} \), then the subset \(\{a, c, d\} \) is \(g^*b \)-closed but not pre-closed.

Remark: 2.20 The following examples shows that the concept of \(g \)-closed and \(g^*b \)-closed sets are independent.

Example: 2.21 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}\} \), then the subset \(\{a, b\} \) is \(g \)-closed but not \(g^*b \)-closed.

Example: 2.22 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \), then the subset \(\{b\} \) is \(g^*b \)-closed but not \(g \)-closed.

Remark: 2.23 The following examples shows that the concept of \(bg^* \)-closed and \(g^*b \)-closed sets are independent.

Example: 2.24 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \), then the subset \(\{a, c\} \) is \(g^*b \)-closed but not \(bg^* \)-closed in \((X, \tau)\).

Example: 2.25 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \), then the subset \(\{a, b\} \) is \(bg^* \)-closed but not \(g^*b \)-closed in \((X, \tau)\).

Remark: 2.26 The following diagram shows the relationship between \(g^*b \)-closed sets with various sets.

![Diagram showing relationships between various types of closed sets]

where \(A
ightarrow B \) (resp. \(A \rightarrow B \)) represents \(A \) implies \(B \) and \(B \) need not implies \(A \) (resp. \(A \) & \(B \) are independent of each other).

© 2011, IJMA. All Rights Reserved
3. PROPERTIES OF \(g^*b \)-CLOSED SETS IN TOPOLOGICAL SPACES:

Theorem 3.1

(i) Let \(A \subset (X, \tau) \) be \(g^*b \)-closed. Then \(\text{Cl}(A) \backslash A \) contains no non empty \(b \)-closed set.

(ii) If \(A \) is \(g^*b \)-closed \(A \subset B \subset \text{cl}(A) \), then \(\text{cl}(B) \backslash B \) contains no non empty \(b \)-closed sets.

Proof:

(i) Let us suppose that \(A \) is \(g^*b \)-closed and \(F \) is any \(b \)-closed subset of \(\text{Cl}(A) \backslash A \). Then \(F \subset X \backslash A \Rightarrow A \subset X \backslash F \) is \(b \)-open. Since \(A \) is \(g^*b \)-closed, \(b\text{cl}(A) \subset X \backslash F \). That is \(F \subset X \backslash b\text{cl}(A) \).

We already have \(F \subset b\text{Cl}(A) \). So \(F \subset b\text{cl}(A) \cap X \backslash b\text{cl}(A) = \emptyset \). Thus \(F = \emptyset \). Hence \(\text{Cl}(A) \backslash A \) contains no non empty \(b \)-closed set.

(ii) Let \(A \) be \(g^*b \)-closed and \(A \subset B \subset \text{cl}(A) \), then we have \(\text{cl}(B) \cap X \backslash B \subset \text{cl}(A) \cap X \backslash A \). That is \(\text{cl}(B) \backslash B \subset \text{cl}(A) \backslash A \).

By (i) \(\text{cl}(A) \backslash A \) has no nonempty \(b \)-closed set. Hence \(\text{cl}(B) \backslash B \) contains no nonempty \(b \)-closed set.

Theorem 3.2

A \(g^*b \)-closed set \(A \) is \(b \)-closed if and only if \(b\text{cl}(A) - A \) is \(bg \)-closed.

Proof:

Necessity: Since \(A \) is \(b \)-closed, we have \(b\text{cl}(A) = A \). Then \(b\text{cl}(A) - A = \emptyset \) is \(b \)-closed and hence \(bg \)-closed.

Sufficiency: By theorem 3.1, \(b\text{cl}(A) - A \) contains no non empty \(bg \)-closed set. That is \(b\text{cl}(A) - A = \emptyset \).

Therefore \(b\text{cl}(A) = A \). Hence \(A \) is \(b \)-closed.

Theorem 3.3

If \(A \) is a \(g^*b \)-closed set and \(B \) is any set such that \(A \subset B \subset b\text{cl}(A) \), then \(B \) is a \(g^*b \)-closed set.

Proof:

Let \(B \subset U \) where \(U \) is \(g \)-open set. Since \(A \) is \(g^*b \)-closed set and \(A \subset U \), then \(b\text{cl}(A) \subset U \) and also \(b\text{cl}(A) = b\text{cl}(B) \).Therefore \(b\text{cl}(B) \subset U \) and hence \(B \) is a \(g^*b \)-closed set.

Theorem 3.4

(i) The intersection of a \(g^*b \)-closed set and a \(b \)-closed sets is always a \(g^*b \)-closed set.

(ii) If \(A \) is a \(g^*b \)-closed set and \(A \subset B \subset \text{cl}(A) \), then \(B \) is \(g^*b \)-closed set.

Proof:

(i) Let \(A \) be \(g^*b \)-closed set and let \(F \) be a \(b \)-closed set. Suppose \(G \) is a \(g \)-open set with \(A \cap F \subset G \), then \(A \subset G \cup F \) where \(G \cup F \) is \(b \)-open.

Therefore \(b\text{cl}(A) \subset G \cup F \). Now \(b\text{cl}(A \cap F) \subset b\text{cl}(A) \cap b\text{cl}(F) = b\text{cl}(A) \cap F \subset G \).

Hence \(A \cap F \) is a \(g^*b \)-closed set.

(ii) Let \(A \) be \(g^*b \)-closed and \(B \subset G \) where \(G \) is a \(g \)-open set. Then \(A \subset G \). Since \(A \) is \(g^*b \)-closed, \(b\text{cl}(A) \subset G \).

Hence by assumption \(b\text{cl}(B) \subset b\text{cl}(A) \subset G \). Thus \(b\text{cl}(B) \subset G \) implies that \(B \) is \(g^*b \)-closed.

Theorem 3.5

Let \(\{ A_i : i \in I \} \) be a locally finite family of \(g^*b \)-closed sets. Then \(A = \bigcup A_i \) is \(g^*b \)-closed for every \(i \in I \).

Proof:

Since \(\{ A_i : i \in I \} \) is locally finite, \(cl(\bigcup A_i) = \bigcup cl(A_i) \). Assume that for some \(b \)-open set we have \(A = \bigcup A_i \subset U \). Then \(cl(\bigcup A_i) = \bigcup cl(A_i) \subset U \), since each \(A_i \) is \(g^*b \)-closed. Thus \(A \) is \(g^*b \)-closed.

Remark 3.6

The spaces \(g^*bTg^* \) and space \(g^*bTb \) are independent as seen from the following examples:

Example 3.7

Let \(X = \{ a, b, c \} \) with topology \(\tau = \{ X, \phi, \{ a, b \} \} \). Then \((X, \tau) \) is a \(g^*bTg^* \)-space but not a \(g^*bTb \)-space, since \(\{ a,c \} \) is \(g^*-closed \) but not \(b \)-closed in \((X, \tau) \).

Example 3.8

Let \(X = \{ a, b, c \} \) with topology \(\tau = \{ X, \phi, \{ a \}, \{ a, b \} \} \). Then \((X, \tau) \) is a \(g^*bTb \)-space but not a \(g^*bTg^* \)-space, since \(\{ b \} \) is \(g^*b \)-closed but not \(g^*-closed \) in \((X, \tau) \).

Theorem 3.9

If \((X, \tau) \) is both \(b \)-space and \(g^*bTb \)-space, then it is a \(g^*bTg^* \)-space.

Proof:

Let \(A \) be a \(g^*b \)-closed set in \((X, \tau) \). Since \((X, \tau) \) is a \(g^*bTb \)-space, \(A \) is \(b \)-closed in \((X, \tau) \). Since \((X, \tau) \) is a \(b \)-space, every \(b \)-closed set is closed and hence \(A \) is closed in \((X, \tau) \). We know that every closed set is \(g^*-closed \) in
Theorem 3.10: If (X, τ) is both $T^*_{1/2}$ –space and g^*bTg^* –space, then it is a g^*bTb –space.

Proof: Let A be a g^*b-closed set in $(X, \tau).$ Since (X, τ) is a g^*bTg^* –space, A is g^*-closed. Since (X, τ) is a $T^*_{1/2}$-space, A is closed in (X, τ). Since every closed set is b-closed, A is b-closed in (X, τ). Hence it is a g^*bTb –space.

Remark: 3.11 In a semiregular space $T1/2$ –space, the concepts of g^*b closed, g-closed and closed sets coincide.

REFERENCES:
