On Strongly Generalized b-Closed Sets

¹S. Bharathi*, ²K. Bhuvaneswari and ³N. Chandramathi

¹Dept of Mathematics, Angel college of Engineering and Technology, P. K. Palayam, Dharapuram Road, Tirupur- 641665, Tamil Nadu, India

²Dept of Mathematics, Mother Teresa University for women, Kodaikanal. TamilNadu, India

³Dept of Mathematics, Hindusthan College of Engineering and Technology, Coimbatore, TamilNadu, India

E-mail: bharathikamesh6@gmail.com, kbguhan@gmail.com, mathi.chandra303@gmail.com

(Received on: 17-08-11; Accepted on: 31-08-11)

ABSTRACT

In this paper, we study a new class of generalized sets called strongly generalized b-closed sets, briefly g*b-closed sets. We study some of their properties. These sets are placed between the class of gs-closed sets and gp-closed sets.

2000 Mathematics Subject Classification: 54A10, 54C8, 54C10, 54D10.

Keywords and phrases: g-closed, g*-closed, b-closed, g*b-closed, Tg*b-space.

1. INTRODUCTION AND PRELIMINARIES:

Generalized closed sets form a strong tool in the characterization of topological spaces satisfying weak separation axioms. The concept of generalization was first intiated by Levine [4] in 1963. Since then this method of generalizing sets was adopted by many topologists. Andrijevic [1] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. The class of b-open sets is contained in the class of semi-preopen sets and contains all semi-open sets and preopen sets. The class of b-open sets generates the same topology as the class of preopen sets. Extensive research on generalizing closedness was done in recent years as the notions of a generalized closed, generalized semi-closed, α -generalized closed, generalized semi-preopen closed sets were investigated in [2,3,5].

The aim of this paper is to continue the study of generalized closed sets. In particular, the notion of strongly generalized b-closed sets and its various characterizations are given in this paper. All through this paper, all spaces X and Y (or (X,τ) and (Y,σ)) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

Definition: 1.1 [7]A subset A of a space X is said to be:

- (1) α -open if $A \subseteq Int(Cl(Int(A)))$;
- (2) Semi-open if $A \subseteq Cl(Int(A))$;
- (3) Preopen or nearly open if $A \subseteq Int(Cl(A))$;
- (4) β-open or semi-preopen if $A \subseteq Cl(Int(Cl(A)))$;
- (5) b-open or sp-open -open if $A \subseteq Cl(Int(A)) \bigcup Int(Cl(A))$.

The complement of a b-open set is said to be b-closed [2]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by bCl(A). The union of all b-open sets of X contained in A is called b-interior of A and is denoted by bInt(A). The family of all b-open (resp. α -open, semi-open, preopen, β -open, b-closed, preclosed) subsets of a space X is denoted by bO(X) (resp. $\alpha O(X)$, SO(X), PO(X), $\beta O(X)$, bC(X), PC(X)) and the collection of all b-open subsets of X containing a fixed point x is denoted by bO(X, x). The sets SO(X, x), $\alpha O(X, x)$, PO(X, x), $\beta O(X, x)$ are defined analogously.

Corresponding author: ¹S. Bharathi, *E-mail: bharathikamesh6@gmail.com

¹S. Bharathi*, ²K. Bhuvaneswari and ³N. Chandramathi / On Strongly Generalized b-Closed Sets/ IJMA- 2(9), Sept.-2011, Page: 1523-1527

Definition: 1.2[6] A subset A of a space (X, τ) is called

- (1) a generalized closed set (briey g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
- (2) a generalized preclosed set (briey gp-closed) if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
- (3) a generalized semi-preclosed set (briev gsp-closed) if $spCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
- (5) a generalized b- closed set (briev g*b -closed) [15] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Complements of g-closed (resp.gp-closed, etc.) sets are called g-open (resp. gp-open, etc.)

2. STRONGLY GENERALIZED b-CLOSED SETS:

Definition: 2.1 A subset of a topological space (X, τ) is said to be g*b-closed set in (X, τ) if $bcl(A) \subseteq G$ whenever $A \subseteq G$ where G is g-open. The collection of all g*b-closed sets of (X, τ) is denoted by $G*bC(X, \tau)$.

Theorem 2.2: If a subset A of a topological space (X, τ) is closed, then it is g*b-closed.

Proof: Let G be a g-open set containing A. Then $G \supseteq A = cl(A)$ as A is closed. Also $cl(A) \supseteq bcl(A)$. Thus $G \supseteq bcl(A)$. Hence A is a g*b-closed set in (X, τ) .

The converse of the above theorem need not be true as seen from the following example.

Example: 2.3 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$, then the subset $\{c\}$ is g*b-closed but not closed in (X, τ) .

Corollary: 2.4 If a subset A of a topological space (X, τ) is regular closed, then it is g^*b -closed but not conversely.

Proof: Since every regular closed set is closed but not conversely. By theorem 2.2 every closed set is g*b-closed but not conversely. Hence every regular closed set is g*b-closed but not conversely.

Theorem: 2.5 If a subset A of a topological space (X, τ) is g*b-closed, then it is gb-closed.

Proof: Let G be an open set containing A. Then $G \supseteq A$ and $G \supseteq bcl(A)$ as A is g*b-closed set. Hence A is gb-closed set in (X, τ) .

The converse of theorem 2.5 need not be true as seen from the following example.

Example: 2.6 Let $X=\{a,b,c\}$ and $\tau=\{X,\phi,\{a\}\{b\}\{a,b\}\{a,b,c\}\}$, then the subset $\{b,c\}$ is gb-closed but not g*b-closed set in (X,τ) .

Theorem: 2.7 If a subset A of a topological space (X, τ) is b-closed, then it is g*b-closed.

Proof: Let G be an open set containing A. Then $G \supseteq A = bcl(A)$, as A is b-closed. Thus $G \supseteq bcl(A)$. Hence A is g*b-closed in (X, τ) .

The converse of the above theorem need not be true and it can be seen from the following example.

Example: 2.8 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$, then the subset $\{b\}$ is g*b-closed but not b-closed in (X, τ) .

Theorem: 2.9 If a subset A of a topological space (X, τ) is g^*b -closed, then it is bg-closed.

Proof: Let G be an open set containing A. Then G is b-open set containing A, as every open set is b-open. Thus $G \supseteq bcl(A)$, as A is g*b-closed set. Hence A is bg-closed in (X, τ) .

The converse of the above theorem is not true and can be seen from the following example.

Example 2.10: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}\$, then the subset $\{a, c\}$ is bg-closed but not g*b-closed.

Theorem: 2.11 Let A be a subset of a topological space (X, τ) . If A is g*b-closed, then it is gs-closed.

Proof: Let G be an open set containing A. Then $G \supseteq bcl(A)$, as A is g*b-closed. Thus $G \supseteq bcl(A) \supseteq Scl(A)$.

Therefore A is gs-closed in (X, τ) .

The following example shows that the converse of the above theorem need not be true.

Example: 2.12 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$, then the subset $\{a\}$ is gs-closed but is not g*b-closed in (X, τ) .

Remark: 2.13 The following example shows that every g-closed set is g*b-closed but not conversely.

Example: 2.14 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{b\}, \{a, b\}\}\$, then the subset $\{a\}$ is g*b closed but not g-closed.

Remark: 2.15 The following examples shows that the concept of semi-closed and g*b-closed sets are independent.

Example: 2.16 (a) Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}\$, then the subset $\{a, c\}$ is g*b-closed but not semi-closed.

Example: 2.16 (b) Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}\{b\}, \{a, b\}\{a, b, c\}\}\}$, then the subset $\{b\}$ is semi-closed but not g*b-closed.

Remark: 2.17 The following examples shows that the concept of pre-closed and g*b-closed sets are independent.

Example: 2.18 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}\{b\}, \{a, b\}\{a, b, c\}\}\}$, then the subset $\{a, c, d\}$ is g*b closed but not pre-closed.

Remark: 2.20 The following examples shows that the concept of g-closed and g*b-closed sets are independent.

Example: 2.21 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$, then the subset $\{a, b\}$ is g-closed but not g*b-closed.

Example: 2.22 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}\$, then the subset $\{b\}$ is g*b-closed but not g-closed.

Remark: 2.23 The following examples shows that the concept of bg*-closed and g*b-closed sets are independent.

Example: 2.24 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}\$, then the subset $\{a, c\}$ is g*b-closed but not bg*-closed in (X, τ) .

Example: 2.25 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\}$, then the subset $\{a, b\}$ is bg^* -closed but not g^* b-closed in (X, τ) .

Remark: 2.26 The following diagram shows the relationship between g*b-closed sets with various sets.

where $A \rightarrow B$ (resp. $A \triangleq B$) represents a implies B and B need not implies A (resp. A & B are independent of each other).

3. PROPERTIES OF g*b-CLOSED SETS IN TOPOLOGICAL SPACES:

Theorem: 3.1 (i) Let $A \subset (X, \tau)$ be g^*b - closed. Then $Cl(A)\setminus A$ contains no non empty bg-closed set. (ii) If A is g^*b - closed $A \subset B \subset cl(A)$, then $cl(B)\setminus B$ contains no non empty b closed sets.

Proof: (i) Let us suppose that A is g*b closed and F is any b closed subset of $Cl(A)\A$. Then $F \subset X\A => A \subset X\F$ is b open. Since A is g*b closed, $bcl(A) \subset X\F$. That is $F \subset X \setminus bcl(A)$.

We already have $F \subset bCl(A)$.So $F \subset bcl(A) \cap X \setminus bcl(A) = \emptyset$. Thus $F = \emptyset$. Hence $cl(A) \setminus A$ contains no non empty bg-closed set.

(ii) Let A be g^*b - closed and $A \subset B \subset cl(A)$, then we have $cl(B) \cap X \setminus B \subset cl(A) \cap X \setminus A$. That is $cl(B) \setminus B \subset cl(A) \setminus A$. By (i) $cl(A) \setminus A$ has no nonempty b - closed set. Hence $cl(B) \setminus B$ contains no nonempty b - closed set.

Theorem: 3.2 A g*b-closed set A is b-closed if and only if bcl(A) – A is bg-closed.

Proof: Necessity: Since a is b-closed, we have bcl(A) = A. Then $bcl(A) - A = \phi$ is b-closed and hence bg-closed. Sufficiency: By theorem 3.1, bcl(A)-A contains no non empty bg-closed set. That is bcl(A)-A = ϕ .

Therefore bcl(A) = A. Hence A is b-closed.

Theorem: 3.3 If A is a g*b-closed set and B is any set such that $A \subseteq B \subseteq bcl(A)$, then B is a g*b-closed set.

Proof: Let $B \subseteq U$ where U is g-open set. Since A is g*b-closed set and $A \subseteq U$, then $bcl(A) \subseteq U$ and also bcl(A) = bcl(B). Therefore $bcl(B) \subseteq U$ and hence B is a g*b-closed set.

Theorem: 3.4 (i) The intersection of a g*b-closed set and a b closed sets is always a g*b-closed set. (ii) If A is a g*b-closed set and $A \subset B \subset cl(A)$, then B is g*b-closed set.

Proof: (i) Let A be g*b-closed set and let F be a b-closed set. Suppose G is a g-open set with $A \cap F \subset G$, then $A \subset G \cup F$ is b-open.

Therefore $bcl(A) \subset G \cup F$. Now $bcl(A \cap F) \subset bcl(A) \cap bcl(F) = bcl(A) \cap F \subset G$.

Hence $A \cap F$ is a g*b-closed set.

(iii) Let A be g*b-closed and $B \subseteq G$ where G is a g-open set. Then $A \subseteq G$. Since A is g*b-closed, $bcl(A) \subseteq G$.

Hence by assumption $bcl(B) \subset bcl(A) \subset G$. Thus $bcl(B) \subset G$ implies that B is g*b-closed.

Theorem: 3.5 Let $\{A_i : i \in I\}$ be a locally finite family of g^*b -closed sets. Then $A = \bigcup A_i$ is g^*b -closed for every $i \in I$.

Proof: Since $\{A_i: i \in I\}$ is locally finite, $cl(\bigcup A_i) = \bigcup cl(A_i)$. Assume that for some b-open set we have $A = \bigcup A_i \subset U$. Then $cl(\bigcup A_i) = \bigcup cl(A_i) \subset U$, since each A_i is g*b-closed. Thus A is g*b-closed.

Remark: 3.6 The spaces g*bTg* and space g*bTb are independent as seen from the following examples:

Example: 3.7 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a, b\}\}$. Then (X, τ) is a g*bTg* -space but not a g*bTb -space, since $\{a, c\}$ is g*-closed but not b-closed in (X, τ) .

Example: 3.8 Let X= {a, b, c} with topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then (X, τ) is a g*bTb -space but not a g*bTg* -space, since {b} is g*b-closed but not g*-closed in (X, τ) .

Theorem: 3.9 If (X, τ) is both b-space and g*bTb –space, then it is a g*bTg* –space.

Proof: Let A be a g^*b -closed set in (X, τ) . Since (X, τ) is a g^*bTb –space, A is b-closed in (X, τ) . Since (X, τ) is a b-space, every b-closed set is closed and hence A is closed in (X, τ) . We know that every closed set is g^* -closed in

¹S. Bharathi*, ²K. Bhuvaneswari and ³N. Chandramathi / On Strongly Generalized b-Closed Sets/ IJMA- 2(9), Sept.-2011, Page: 1523-1527

 (X, τ) , A is g*-closed. Hence (X, τ) is a g*bTg* –space.

Theorem 3.10: If (X,τ) is both $T^*_{1/2}$ –space and g^*bTg^* –space, then it is a g^*bTb –space.

Proof: Let A be a g*b-closed set in (X,τ) . Since (X,τ) is a g*bTg* –space, a is g*-closed. Since (X,τ) is a T*_{1/2}-space, A is closed in (X,τ) . Since every closed set is b-closed, A is b-closed in (X,τ) . Hence it is a g*bTb –space.

Remark: 3.11 In a semiregular space T1/2 -space, the concepts of g*b - closed, g-closed and closed sets coincide.

REFERENCES:

- [1] P. Andrijevic, Semi-preopen Sets, Mat. Vensik, 38(1986), 24-32.
- [2] S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J.Pure Appl. Math., 21(1990), 717-719.
- [3] J. Dontchev, On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.
- [4] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palmero, 19(2). (1970), 89-96.
- [5] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α generalized closed sets, Mem. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [6] M. S. Sarsak, N. Rajesh, II- generalized semi-preclosed sets, International Mathematical forum, 5(2010), 573-578.
- [7] M. S. Sarsak, N. Gowrisankar and N. Rajesh, On Pre-bg-closed functions and associated properties, Int. J. Contemp. Math. Sciences, Vol. 5(2010), 289-296.
