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ABSTRACT 
The aim of this paper is to obtain a common fixed point theorem for compatible mappings of type (A-1) in a metric 
space which generalizes the result of A.K.Sharma, V.H.Badshah and V.K.Gupta [6]. 
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1. INTRODUCTION 
 
In 1986, G.Jungck[1]  introduced the concept of compatible maps which is more general than that of weakly 
commuting maps. In 1993, Jungck and Cho [7] introduced the concept of compatible mappings of type (A) by 
generalizing the definition of weakly uniformly contraction maps. Further Pathak and Khan [10] introduced the 
concepts of A-compatibility and S-compatibility by splitting the definition of compatible mapping of type (A). In 2007, 
Pathak et.al [8] renamed A-compatibility and S-compatibility as compatible mappings of type (A-1) and compatible 
mappings of type (A-2) respectively.   
 
The purpose of this paper is to prove a common fixed point theorem for four self maps in metric space using weaker 
conditions such as compatible mappings of type (A-1) and associated sequence related to four self maps.  
 
2. DEFINITIONS AND PRELIMINARIES 
 
2.1 Definition [1]:  Two self maps S and T of a metric space (X, d) are said to be compatible mappings if 

lim ( , ) 0d STx TSxn nn
=

→∞
 whenever nx< >  is a sequence in X such that lim limn nn n

Sx Tx t
→∞ →∞

= = for some t X∈ . 

 
2.2 Definition [7]:  Two self maps S and T of a metric space (X, d) are said to be compatible mappings of type (A) if 
lim ( , ) 0n nn

d STx TTx
→∞

=  and lim ( , ) 0n nn
d TSx SSx

→∞
=  whenever nx< >  is a sequence in X such that lim limn nn n

Sx Tx t
→∞ →∞

= = , 

for some t X∈ . 
 
2.3 Definition [8]: Two self maps S and T of a metric space (X,d) are said to be compatible mappings of type(A-1) if 
lim ( , ) 0n nn

d TSx SSx
→∞

= whenever { }nx is a sequence in X such that lim limn nn n
Sx Tx t

→∞ →∞
= = , for some t X∈ .  

 
2.4 Definition [9]: Suppose P, Q, S and T are self maps of a metric space ( , )X d such that ( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂ . 

Now for any arbitrary 0x X∈ , we have 0 ( ) ( )Sx S X Q X∈ ⊂ so that there is a 1x X∈ such that 0 1Sx Qx= and for this 1x , 

there is a point 2x ∈  X such that 1 2Tx Px=  and so on. Repeating this process to obtain a sequence { }ny in X such that 

2 2 2 1 2 1 2 1 2n n n n n ny Px Tx and y Qx Sx− + += = = =  for 0n ≥ . We shall call this sequence an associated sequence of 0x  
relative to the four self maps P, Q, S and T. 
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2.5 Proposition: Let S and T be self mappings of a metric space ( , ).X d  
 
If  the pair (S,T) is compatible mappings of type (A-1) and Sz = Tz for some  in  X , then  TSz = SSz. 
 
2.6 Lemma: Let P, Q, S and T be self mappings of a metric space ( , )X d  satisfying  

( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂                                                                        (2.6.1) 

and (S ,P )( , ) (Ty, )
1 ( , )

d x xd Sx Ty d Qy
d Px Qy

α β
 

≤ + + 
                                                                     (2.6.2) 

for all , , , 0, 1.x y in X whereα β α β≥ + <  
 

0Further if X is complete,then for any x X∈  and for any of its associated sequence 
{ }ny = 0 1 2 3 2 2 1{ , , , ,..... , ,.....}n nSx Tx Sx Tx Sx Tx +  relative to four self maps,  converges to some point in X. 
 
Proof: From (2.4) and (2.6.2), we have 

2 2 1 2 1 2( , ) ( , )n n n nd y y d Tx Sx+ −=  
 2 2 1( , )n nd Sx Tx −=  

 2 2
2 1 2 1

2 2 1

(S ,P )
(Tx , )

1 ( , )
n n

n n
n n

d x x
d Qx

d Px Qx
α β − −

−

 
≤ + + 

 

 2 1 2
2 2 1

2 2 1

(y , y )
(y , y )

1 (y , y )
n n

n n
n n

d
d

d
α β +

−
−

 
= + + 

 

 2 2 1 2 1 2(y , y ) (y , y ) impliesn n n nd dα β− +≤ +  
 

2 2 1 2 1 2(1 ) ( , ) ( , ) so thatn n n nd y y d y yβ α+ −− ≤  

2 2 1 2 1 2 2 1 2( , ) ( , ) = h ( , ), where .
(1

 
1

 
)

 n n n n n nd y y d y y d y y hα α
β β+ − −≤ =

− −
 

 
2 2 1 2 1 2That is, ( , )    ( , ).n n n nd y y hd y y+ −≤                                                                                                                          (2.6.3) 

 
2 1 2 2 2 2 1Similarly, we can prove that    .( , ) ( , )n n n nd y y hd y y+ + +≤                                                                                      (2.6.4) 

 
( ) ( )Hence, from 2.6.3  and 2.6.4 , we get  

2
1 1 2 1 0 1( , ) ( , ) ( , ) ....... ( , ) .n

n n n n n nd y y h d y y h d y y h d y y+ − − −≤ ≤ ≤ ≤                                                                            (2.6.5) 
 
Now for any positive integer p, we have  

 1 1 2 1( , ) ( , ) ( , ) ........ ( , )n n p n n n n n p n pd y y d y y d y y d y y+ + + + + − +≤ + + +  
1 1

0 1 0 1 0 1( , ) ( , ) ........ ( , )n n n ph d y y h d y y h d y y+ + −≤ + + +  
1 1

0 1( ......... ) ( , )n n n ph h h d y y+ + −= + + +  
2 1

0 1(1 ....... ) ( , )n ph h h h d y y−= + + + +  

0 1( , ) 0   as  n ,since h<1
1

nh d y y
h

< → →∞
−

.
 

 
Thus the sequence { }ny is a Cauchy sequence in X.  Since X is complete , the sequence  { }ny  converges to some point 
z in X. 
 
2.7 Remark: The converse of the above Lemma is not true. That is, if P, Q, S and T are self maps of a metric 
space ( , )X d satisfying (2.6.1), (2.6.2) and even if for any 0x in X and for any of its associated sequence converges, 
then the metric space ( , )X d need not be complete. 
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2.8 Example: Let ( ]0,1X =  with ( , ) | |d x y x y= −  for ,x y X∈ . Define the self maps S, T, P and Q on X by  

11 0
2

1 1 1
3 2

x if x
Sx Tx

if x

 − < ≤= = 
 < ≤


  ,  

1 1 1 10 0
2 2 2 2and Qx = 

1 11 2 1 1
2 2

if x if x
Px

x if x x if x

 < ≤ < ≤  =  
 < ≤ − < ≤
  

. 

Then 1 1( ) ( ) ,1 while ( ) ,1  and Q(X) = (0,1] .
2 2

S X T X P X   = = =     
  

Clearly ( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂ . It is also easy to see that the sequence 

0 1 2 3 2 2 1, , , ,..... , ,.....n nSx Tx Sx Tx Sx Tx + converges to 1
2

. Also the inequality (2.6.2) holds for , 0, 1.α β α β≥ + <  Note that 

(X, d) is not complete.

 
 
Now we generalize the result of A.K.Sharma, V.H.Badshah and V.K.Gupta as follows. 
 
3. MAIN RESULT 
 
3.1 Theorem: Let P,Q,S and T be self maps of a metric space ( , )X d satisfying    

( ) ( ) ( ) ( )S X Q X and T X P X⊂ ⊂                                            (3.1.1) 

(S ,P )( , ) (Ty, )
1 ( , )

d x xd Sx Ty d Qy
d Px Qy

α β
 

≤ + + 
                                                       (3.1.2)  

for all x,y in X whereα,β 0,α+β<1.≥  
one of P and Q is continuous   and                                                          (3.1.3) 
the pairs (P,S) and (Q,T)  are compatible mappings of type (A-1)   .                                                                         (3.1.4)
                          
Further if there is point 0  and an associated sequence x X∈ 0 1 2 3 2 2 1, , , ...... , ...n nSx Tx Sx Tx Sx Tx + of 0x  relative to four self 
maps P, Q, S and T   converges to some point z X∈ ,                                                                                               (3.1.5) 
then z is a unique common fixed point of P,Q,S and T. 
  
Proof: From (3.1.5), we have  

2 2 1 2 1 2 2, ,n n n nSx z Qx z Tx z and Px z as n+ + +→ → → → →∞                                                                        (3.1.6) 
 
Let the pair (Q,T) be compatible mappings of type(A-1) and Q be continuous. 
 
Then we have 2 1 2 1lim lim .n nn n

TQx QQx Qz+ +→∞ →∞
= =                                                                                                       (3.1.7) 

 
Now by (3.1.2), we have 

2 2
2 2 1 2 1 2 1

2 2 1

(S ,P )
( , ) (T , )

1 ( , )
n n

n n n n
n n

d x x
d Sx TQx d Q QQ

d Px QQ
α β+ + +

+

 
≤ + + 

 

 
Letting n  and using (3.1.6) and (3.1.7), we obtain→∞  

( ) [ ] ( ), 0 ,d z Qz d Qz Qzα≤ +  
               0, a contradiction.≤  

Thus we have Qz = z.  
 
Again from (3.1.2) we get 

2 2
2

2

(S ,P )
( , ) (Tz, )

1 ( , )
n n

n
n

d x x
d Sx Tz d Qz

d Px Qz
α β
 

≤ + + 
 

 
Letting n  and using Qz = z , we obtain→∞  

( ) [ ] ( ),T 0 ,d z z d Tz zα≤ +  

               ( )= ,  d Tz zα  

            ( )  , , a contradiction since 1.d Tz z α≤ <  
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Thus we have Tz = z.  
 
Now , since Tz = z and ( ) ( ),  there exists a u  such thatT X P X X⊂ ∈  

Tz = Pu.  
 
Hence from (3.1.2) ,we get  

(Su,Pu)( , ) (Tz, )
1 ( , )

dd Su Tz d Qz
d Pu Qz

α β
 

≤ + + 
 

 
Using Qz = Tz , we obtain  

( )Su,T 0, a contradiction.d z ≤  
 
Thus we have Su = Tz.  
 
Hence  Su = Pu = z. Since the pair (P,S) is compatible mappings of type (A-1)
and  Su = Pu , so by the Proposition (2.5)  
 
we have SPu = PPu implies Sz = Pz.  
 
Now from (3.1.2), we get

 (Sz,Pz)( , ) (Tz, )
1 ( , )

dd Sz Tz d Qz
d Pz Qz

α β
 

≤ + +   

              
0, a contradiction.≤

 Thus we have Sz = Tz.
  

 Therefore Sz Pz Qz Tz z= = = = , showing that z is a common fixed point of P, Q, S and T. 
 
Uniqueness: Let z and w be two common fixed points of P,Q,S and T. Then we have z Sz Pz Qz Tz= = = = and 
w Sw Pw Qw Tw= = = = .  

Using (3.1.2), we get 
(Sz,Pz)( , ) (Tw, )

1 ( , )
dd Sz Tw d Qw
d Pz Qw

α β
 

≤ + + 
 implies

 
d(z,w)  0≤ , a contradiction.

  
Thus we have ( , ) 0d z w =  which implies z w= . 
 
Hence z is a unique common fixed point of P, Q, S and T. 
 
3.2 Remark: It is easy to verify that the self mappings P,Q,S and T defined in  the example (2.8) satisfy all the 

conditions of the Theorem (3.1). It may be noted that ‘ 1
2

’ is the unique common fixed point of P, Q, S and T. 
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