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ABSTRACT 
For any graph  𝐺 = (𝑉,𝐸), the  block graph 𝐵(𝐺) is a graph whose set of vertices is the union of the set of blocks of 𝐺 
in which two vertices are adjacent if and only if the corresponding blocks of 𝐺 are adjacent. For any two adjacent 
vertices 𝑢 and 𝑣 we say that 𝑢 strongly dominates 𝑣 if 𝑑𝑒𝑔 (𝑢) ≥ 𝑑𝑒𝑔 (𝑣).  A dominating set 𝐷 of a graph 𝐵(𝐺) is a 
strong block dominating set of 𝐺 if every vertex in  𝑉[𝐵(𝐺)] − 𝐷 is strongly dominated by at least one vertex in 𝐷. 
Strong block domination number 𝛾𝑆𝐵(𝐺) of 𝐺 is the minimum cardinality of strong block dominating set of 𝐺. In this 
paper, we study graph theoretic properties of 𝛾𝑆𝐵(𝐺) and many bounds were obtain in terms of elements of 𝐺 and its 
relationship with other domination parameters were found. 
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1. INTRODUCTION 
 
In this paper, all the graphs consider here are simple and finite. For any undefined terms or notation can be found in 
Harary [5]. In general, we use < 𝑋 >  to denote the subgraph induced by the set of vertices 𝑋 and 𝑁(𝑣) 𝑎𝑛𝑑 𝑁([𝑣]) 
denote open (closed) neighborhoods of a vertex 𝑣. Let 𝑑𝑒𝑔(𝑣) is the degree of vertex 𝑣 and  as usual 𝛿(𝐺)(∆(𝐺)) is the 
minimum (maximum) degree. A vertex of degree one is called an end vertex and its neighbor is called a support vertex. 
The notation 𝛼𝑜(𝐺)(𝛼1(𝐺)) is the minimum number of vertices (edges) in vertex (edge) cover of 𝐺. The minimum 
distance between any two farthest vertices of a connected G  is called the diameter of G and is denoted by diamG . 
A block graph 𝐵(𝐺) is the graph whose vertices corresponds to the blocks of 𝐺 and two vertices in 𝐵(𝐺) are adjacent if 
and only if the corresponding blocks in 𝐺 are adjacent. 
 
A set 𝑆⊆𝑉(𝐺) is said to be a dominating set of 𝐺, if every vertex in 𝑉 − 𝑆 is adjacent to some vertex in 𝑆. The 
minimum cardinality of vertices in such a set is called the domination number of 𝐺 and is denoted by 𝛾(𝐺). A set 
𝑆⊆𝑉[𝐵(𝐺)] is said to be a dominating set of 𝐵(𝐺), if every vertex in 𝑉 − 𝑆 is adjacent to some vertex in 𝑆. The 
minimum cardinality of vertices in such a set is called the domination number of 𝐵(𝐺) and is denoted by 𝛾[𝐵(𝐺)]. A 
dominating set 𝑆 is called the total dominating set, if for every vertex 𝑣 ∈ 𝑉, there exists a vertex 𝑢 ∈ 𝑆, 𝑢 ≠ 𝑣 such 
that 𝑢 is adjacent to 𝑣. The total domination number of 𝐺 is denoted by  𝛾𝑡(𝐺) is the minimum cardinality of total 
dominating set of 𝐺. A dominating set 𝑆⊆𝑉(𝐺) is a connected dominating set, if the induced subgraph < 𝑆 > has no 
isolated vertices. The connected domination number 𝛾𝑐(𝐺) of 𝐺 is the minimum cardinality of a connected dominating 
set of 𝐺. Also in terms of connected block domination  𝛾𝑐𝑏(𝐺) which is discussed in [13]. Also characterized graphs 
achieving these bounds. 
 
The concept of Roman domination function (RDF) was introduced by E.J. Cockayne, P.A.Dreyer, S.M.Hedetiniemi  
and S.T.Hedetiniemi in [1]. A Roman dominating function on a graph 𝐺 = (𝑉,𝐸) is a function 𝑓:𝑉 → {0,1,2}   
satisfying the condition that every vertex  𝑢  for which  𝑓(𝑢) = 0 is adjacent to at least one vertex of  𝑣 for which 
𝑓(𝑣) = 2. The weight of a Roman dominating function is the value 𝑓(𝑉) = ∑ 𝑓(𝑣)𝑣𝜖𝑉 . The Roman domination number 
of a graph, denoted by 𝛾𝑅(𝐺), equals the minimum weight of a Roman dominating function on 𝐺. A Roman dominating 
function ( )0 1 2, ,f V V V=  on a graph G  is a connected Roman dominating function (CRDF) on G  if 1 2V V∪   
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or 2V  is connected. The minimum weight of a CRDF is called a connected Roman domination number of G  and is 

denoted by ( )RC Gγ , (see[12]). A dominating set 𝑆⊆𝑉(𝐺) is restrained dominating set of 𝐺, if every vertex not in 𝑆 is 
adjacent to a vertex in 𝑆 and to a vertex in 𝑉(𝐺) − 𝑆. The restrained domination number of a graph 𝐺 is denoted by 
 𝛾𝑟(𝐺) is the minimum cardinality of a restrained dominating set in 𝐺.  The concept of restrained domination in graphs 
was introduced by Domke et.al.,[2]. 
 
The concept of strong split block domination in graphs was introduced by M.H.Muddebihal and Nawazoddin U.Patel in 
[9]. A dominating set 𝐷 of a graph 𝐺 is a strong split block dominating set if the induced subgraph 〈𝑉[𝐵(𝐺)] − 𝐷〉 is 
totally disconnected with at least two vertices. The strong split block domination number 𝛾𝑠𝑠𝑏(𝐺)of 𝐺 is the minimum 
cardinality of strong split block dominating set of 𝐺. The concept of strong nonsplit block domination in graphs was 
introduced by M.H.Muddebihal and Nawazoddin U.Patel in [10]. A dominating set 𝐷 of a graph 𝐵(𝐺) is a strong 
nonsplit block dominating set if the induced subgraph 〈𝑉[𝐵(𝐺)] − 𝐷〉 is complete. The strong nonsplit block 
domination number 𝛾𝑠𝑛𝑠𝑏 (𝐺) of 𝐺 is the minimum cardinality of strong nonsplit block dominating set of 𝐺. Recently 
we study a variation on the domination which is called strong line domination in graphs, was introduced by 
M.H.Muddebihal and Nawazoddin U.Patel in [11].  A dominating set 𝐷 of a graph 𝐿(𝐺) is a strong line dominating set 
if every vertex in  〈𝑉[𝐿(𝐺)] − 𝐷〉 is strongly dominated by at least one vertex in 𝐷. Strong line domination number 
 𝛾𝑆𝐿 (𝐺) of 𝐺 is the minimum cardinality of strong line dominating set of 𝐺. Analogously, a dominating set 𝑆⊆V(G) is a 
cototal dominating set, if the induced subgraph < 𝑉 − 𝑆 > has no isolated vertices. The cototal domination number, 
𝛾𝑐𝑡(𝐺) of 𝐺 is the minimum cardinality of a cototal dominating set of 𝐺. This concept was introduced by Kulli et.al, 
[3]. A dominating set D of a graph G is a split dominating set of G if the induced subgraph <V-D> is disconnected (see 
[4]). The split domination number 𝛾𝑠(𝐺) is the minimum cardinality of the minimal split dominating set of 𝐺. 
 
The concept of a dominating set 𝐷 of a graph 𝐺 is a strong split dominating set if the induced subgraph 〈𝑉 − 𝐷〉 is 
totally disconnected with at least two vertices. The strong split domination number 𝛾𝑠𝑠(𝐺) of graph 𝐺 is the minimum 
cardinality of a strong split dominating set of  𝐺. The concept of Strong domination was introduced by Sampathkumar 
and Pushpa Latha in [14] and well studied in [6, 7 and 8]. Given two adjacent vertices 𝑢 and 𝑣 we say that 𝑢 strongly 
dominates 𝑣 if deg (𝑢) ≥ deg (𝑣). A set 𝐷⊆𝑉(𝐺) is strong dominating set of 𝐺 if very vertex in 𝑉 − 𝐷 is strongly 
dominated by at least one vertex in 𝐷. The strong domination number  𝛾𝑠(𝐺) is the minimum cardinality of a strong 
dominating set of 𝐺. A dominating set 𝐷 of a graph 𝐵(𝐺) is a strong block dominating set of 𝐺 if every vertex in  
𝑉[𝐵(𝐺)] − 𝐷 is strongly dominated by at least one vertex in 𝐷. Strong block domination number 𝛾𝑆𝐵(𝐺) of 𝐺 is the 
minimum cardinality of strong block dominating set of 𝐺. In this paper, many bounds on  𝛾𝑆𝐵 (𝐺)  were obtained in 
terms of elements of 𝐺  but not the elements of 𝐵(𝐺). Also its relation with other domination parameters were 
established. 
 
2.  MAIN RESULTS 
 
First we obtained necessary and sufficient condition on 𝐺 for which  𝛾𝑆𝐵 (𝐺) is connected. 
 
Theorem 1: For any graph G with at least two block, then  ( ) 1SB G qγ ≤ − .  
 
Proof: Suppose block graph ( )B G  has at least two vertices. Then G has at least two blocks. If two blocks of G  are 

edges, then ( ) 1SB G qγ = − . Otherwise the inequality holds. Thus  ( ) 1SB G qγ ≤ − . 
 
Theorem 2: For any connected ( , )p q graph G , ( ) ( )SB bcG Gγ γ≤ . 
 
Proof: Let { }1 2, ,..., nH B B B=  be the set of blocks of G  and { }1 2, ,..., iB B B B= be the set of all non-end 

blocks of G . Let { }1 1 2, ,..., iB b b b= be the vertices of block graph ( )B G  corresponding to the elements of B . 

Since 1,1jb B j i∀ ∈ ≤ ≤  is a cutvertex in ( )B G , then there exists a set '
1 1B B⊆ such that '

1kb B∀ ∈  is 

adjacent to at least one vertex of '
1[ ( )]V B G B−  and '

1B  is connected clearly '
1B  is a ( )bc G setγ − . Let 

{ }'' ', ,...,1 1 2 1B b b b Bn= ⊆ and if ''
1v B∀ ∈ , deg( ) deg( )v u≥ , ''[ ( )] 1u V B G B∀ ∈ − , ''[ ] [ ( )]1N B V B G= . Then 

''
1B  is a SB setγ − . Hence ' ''

1 1B B≥  gives ( ) ( )SB bcG Gγ γ≤ . 
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Corollary: For any block graph G  with  2p ≥  vertices , ( ) / 3SB G pγ ≥    . 
 
Theorem 3: For any non-trivial connected tree  T , ( ) ( )SB RcT Tγ γ≤ . 
 
Proof: Let G be any connected graph with a CRDF ' ' '

0 1 2( , , )f V V V= . Suppose G be a non-trival tree T . Let 

{ }1 2, ,...,en enV v v v= be the set of all end vertices, { }1 2, ,...,c cV v v v= be the set of all cutvertices inT such that   

( ) c enV T V V= ∪  and '
c cV V⊆ be the set of all cutvertices adjacent to end vertices in T . Then '

i cv V∀ ∈ , 

( ) 2iw v =  and ' '/j c c cV V V V∀ ∈ ⊆ , ( ) 1jw v = such that ( ( ) ( )) 1i jw N v N v∩ = or 2 . Then i jv v  is 

connected. Hence cV forms Rc setγ − in T  and ' '
1 2 ( )c RcV V V Tγ= + = . Next we consider { }1 2, ,..., nb b b be the 

set of vertices of ( )B T corresponding to the blocks { }1 2, ,..., nB B B of T . Let { }1 2, ,..., mD b b b= where m n<
is a minimal dominating set of ( )B T such that [ ( )] ,V B T D N v Ni− = ∀ ∈ , deg( ) deg( ),v v v Di j j≤ ∀ ∈ . Then 

( )D TSBγ= . Hence ( ) ( )T D V Tc RcSBγ γ= ≥ =  which gives ( ) ( )SB RcT Tγ γ≤ . 

 
Theorem 4: For any connected tree T with 4p ≥ , then ( ) ( ) 1SB T Tγ γ≥ − . 
 
Proof: Let { }1 2, ,..., pV v v v= be the set of all vertices of T and suppose { }1 2, ,..., lD v v v= , l p<  be the minimal 

dominating set of T such that ( )D Tγ= . Let { }1 2 1, ,..., pA B B B −= be the set of all blocks of T and 

{ }, ,...,1 2 1H b b bP= − be the corresponding block vertices in ( )B T . iB∀  adjacent to end blocks containing iv D∈  

in T , there exists a corresponding blocks vertex set { }ib  in ( )B T  such that 2 1{ }ib V V∈ ∪  and jB not adjacent 

to end blocks inT  there exist a corresponding block vertex set { }ib  in ( )B T such that 1{ }jb V∈ . Hence i jb b∪  

is strongly dominated by at least one vertex in 'D and it forms  SB setγ − such that '
1 2 ( )SBV V D Tγ+ = = . 

Clearly ' 1D D≤ − gives ( ) ( ) 1SB T Tγ γ≥ − . 

 
In the following theorem we obtain the relation between for  ( )SB Gγ  in term of ( )ss Gγ .  
 
Theorem 5: For any connected ( , )p q graph G , ( ) ( )SB ssG Gγ γ≤ . 
 
Proof: let 𝑆 ′ be a maximum independent set of vertices in 𝐺 and 𝑆 ′′⊂𝑆 ′ be the of all isolated vertices in < 𝑆 ′′ >. Then 
(𝑉 − 𝑆 ′) ∪ 𝑆 ′′ is a strong split dominating set of 𝐺. Since for each vertex 𝑣 ∈ (𝑉 − 𝑆 ′) ∪ 𝑆 ′′ either 𝑣 is an isolated 
vertex in < (𝑉 − 𝑆 ′) ∪ 𝑆 ′ > or there exists a vertex 𝑢 ∈ 𝑆 ′ − 𝑆 ′′ and 𝑣 is adjacent to 𝑢𝑣, (𝑉 − 𝑆 ′) ∪ 𝑆 ′′ is minimal.Since 
𝑆 ′ is maximum, (𝑉 − 𝑆 ′) ∪ 𝑆 ′′ is minimum. Thus �(𝑉 − 𝑆 ′) ∪ 𝑆 ′′� = 𝛾𝑠𝑠(𝐺) . Let 𝐹 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛} be set of edges 
in 𝐺 and 𝐹⊆𝐸(𝐺). Then in 𝐵(𝐺), 𝐷′  = {𝑣1 ,�𝑣2 , 𝑣3 , … … … , �𝑣𝑛} which corresponds to ∀𝑒𝑖 ∈ 𝐹. Let deg (𝑒𝑖),∀𝑒𝑖 ∈ 𝐹 
and deg�𝑒𝑗�  ∀𝑒𝑗 ∈ 𝐸(𝐺) − 𝐹 such that deg (𝑒𝑖) ≥ deg (𝑒𝑗). Suppose 𝐷′′ = {𝑣1 ,�𝑣2 , 𝑣3 , … … … , �𝑣𝑖}⊆ 𝐷′ and 

( )( )N v V B Gk =   , ''
ku D∀ ∈ , 1 k i≤ ≤ . Then 𝐷′′ forms a 𝛾𝑆𝐵 − 𝑠𝑒𝑡. It follows that ''D ≤ �(𝑉 − 𝑆 ′) ∪ 𝑆 ′′�. 

Hence 𝛾𝑆𝐵(𝐺) ≤ 𝛾𝑠𝑠(𝐺). 
 
Theorem 6: For any connected ( , )p q graph G , ( ) ( )SB G p Gγ ≤ − ∆ . 
 
Proof: Suppose G  is a connected graph with n − blocks in which at least one block has maximum number of vertices 
with ( ) 3G∆ ≥ . Then in ( )B G , SB setγ − is always less than ( )p G−∆ . Now we consider the graph G  such 

that each block of G  is an edge. Let 𝐵 = {𝐵1�,𝐵2,𝐵3, … … … �,𝐵𝑘}, be the set of blocks in 𝐺. Suppose

{ } ( )( )1 2, ,..., kF v v v V B G= ⊆  be the set of vertices with ( )deg 2jv ≥ . Suppose there exists a vertex set  
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D F⊆  with [ ] ( )( )N D V B G=  and if ( ) ( )deg deg 1x y− ≤ , x D∀ ∈ , ( )( )y V B G D∈ − . Then D  

forms a strong block dominating set in ( )B G . Otherwise there exists at least one vertex { }w F⊆  where { }w D∉  

such that { }D w∪  forms a minimal SB setγ −  in ( )B G . Since for any graph G , there exists at least one vertex 

( )v V G∈  of maximum degree ( )G∆ , it follows that { } ( )degD w p v∪ ≤ ∪ . Clearly, ( )GSBγ ≤

( )p G− ∆ . 
 
Theorem 7: For any connected ( , )p q graph G , ( ) ( ) 1SB G diam Gγ ≤ − . 
 
Proof: Suppose { } ( )1 2, ,..., iA e e e E G= ⊆ be the minimal set of edges which constitute the longest path between 

any two distinct vertices ,u v∈  ( )V G  with ( ) ( ),dist u v diam G= . Let {𝑢1 ,�𝑢2 ,𝑢3 , … … … , �𝑢𝑛} ⊆ 𝑉[𝐵(𝐺)] be the 

set of vertices. Suppose 𝐷⊆𝑘 be the set of vertices with deg (𝑤) ≥ 3 for every 𝑤 ∈ 𝐷. Assume there exists 𝐷′ ⊆ 𝐷 

such that '
ju D∀ ∈  'deg( ) deg( ), [ ( )]u u u V B G Dj k k≥ ∀ ∈ − . Clearly 'D forms a strong block dominating set. Since 

each block in G is either an edge of at least one block contain more than two edges, then ' ( ) 1D diam G≤ −  which 

gives ( ) ( ) 1SB G diam Gγ ≤ − . 
 
The following theorem we obtain upper bound for ( )SB Gγ  in terms of Roman domination number ( )R Gγ . 
 
Theorem 8: For any connected ( , )p q graph G , ( ) ( ) ( ) 3SB RG G Gγ γ≤ + ∆ − . 
 
Proof: Let 𝑓 = (𝑉0,𝑉1,𝑉2) be any  𝛾𝑅 −function of 𝐺. Suppose 𝑉1 ∪ 𝑉2 or 𝑉2 form a  𝛾𝑅 − 𝑠𝑒𝑡 of 𝐺 such that |𝐻| =
 𝛾𝑅(𝐺). Next we consider {𝑏1, 𝑏2, 𝑏3, … … … , �𝑏𝑛}� be the set of vertices of  𝐵(𝐺) corresponding to the blocks 
{𝐵1�,𝐵2,𝐵3, … … … , �𝐵𝑛} of 𝐺. Let  𝐷′ = {𝑏1, 𝑏2, 𝑏3, … … … , �𝑏𝑚}� where 𝑚 < 𝑛 is a minimal dominating set of 𝐵(𝐺) such 
that 𝑉[𝐵(𝐺) ] −  𝐷′ = 𝑁,∀𝑣𝑖𝜖𝑁 is a strongly dominated by at least one vertex of 𝐷′. Suppose there exists at least one 
vertex 𝑣 of 𝐺 with maximum degree. Then ( ) deg( )G v∆ = , which gives � 𝐷′� =  𝛾𝑆𝐵(𝐺). Hence  𝛾𝑆𝑏(𝐺) = � 𝐷′� ≤

|𝐻| =  𝛾𝑅(𝐺), clearly ( ) ( ) ( ) 3SB RG G Gγ γ≤ + ∆ − .  
 
In the following theorem we establish the relation between ( )SB Gγ  and ( )c Gγ . 
 
Theorem 9: For any connected ( , )p q graph G , ( ) ( ) ( ) 1SB cG G Gγ γ γ≤ + − . 
 
Proof: Suppose G has at least one block which is not an edge. Then G  has at least one block with maximum number 
of vertices. Hence one can easily verify the inequality. Now we consider every block of G is an edge. Let 

{ }, ,..., ( )1 2D v v v V Gn= ⊆ which are non end vertices. Suppose 'D D⊆ , where ' , [ ] [ ]v D N v V Gi i∀ ∈ = . Then 

'D is a minimal dominating set of G . Further if 'D  is connected then 'D  is also a c setγ − . Otherwise there 

exists { } '
1 2, ,..., ,kH v v v H D= ⊆ which forms a dominating set which is minimal and '{ }D H∪  is 

connected. Then '{ }D H∪  is c setγ − of G . Let { } ( ), ,...,1 2M e e e E Gn= ⊆  be the set of all non end edges of  

G . Since [ ( )]M V B G⊆  and each block of ( )B G is complete, iv M∀ ∈ is a cutvertex of ( )B G . Now we consider 
'M M⊆ . Suppose '

kv M∀ ∈ has deg( ) deg( )k nv v≥ , where '[ ( )]nv V B G M∈ − . Then 'M is a SB setγ − of 

G . Thus ' ' ' 1M D D≤ + −  or { }' ' ' 1M D D H≤ + ∪ −  which gives ( ) ( ) ( ) 1SB cG G Gγ γ γ≤ + − . 
 
Theorem 10: For any connected ( , )p q graph G , ( ) 2 ( ) 3SB G C Gγ ≤ + ∆ − . 

Where C  is the number of cutvertices of G .   
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Proof: Let { }1 2, ,..., nC v v v= where n p< be the number of cutvertices of G . Then there exists a vertex v V∈  

such that deg( ) ( )v G= ∆ . Assume {𝑏1, 𝑏2, 𝑏3, … … … , �𝑏𝑛}� be the number of vertices of ( )B G  corresponding to the 
blocks {𝐵1�,𝐵2,𝐵3, … … … , �𝐵𝑛} of G . Then we prove the result by induction on the number of blocks of G . 
 
Assume that the result is true for 2n = . Then ( ) 1, 1SB G vγ = ≥  and C φ≠ . If 1v ≠ , then ( ) 2 ( )SB G C Gγ = + ∆ . 

If 1v > ,then ( ) 2 ( )SB G C Gγ ≤ + ∆ . Assume the result for n k= . Then ( ) 2 ( )SB G C Gγ ≤ + ∆ . Let 𝐷𝑆𝐵 =

�𝑏1, 𝑏2, 𝑏3, … … … , �𝑏𝑗�� with 𝑗 ≤ 𝑛 be the minimal strong dominating set of ( )B G  such that ( )SB SBD Gγ= . Suppose 
'G  has ( 1)k + blocks. Then 'v v≥  and 'C C≥ . If  'v v≥ , then 'C C= , if follows that 

'( ) 2SB SBG D C vγ = ≤ + ' '2 C v< + 2 ( ) 3C G= + ∆ − , clearly ( ) 2 ( ) 3SB G C Gγ ≤ + ∆ − . 

 
Theorem 11: For any non-trivial tree  T with 3n ≥  blocks, cot( ) ( ) 1SB G Gγ γ≤ − . 
 
Proof: We consider only those graphs which are not 1n = . Let { }1 2, ,..., pH v v v= , { }1 1 2, ,..., iH v v v= , 

1 i p≤ ≤ be a subset of ( )V G H=  which are end vertices in G . Let { }1 2, ,..., ( )jJ v v v V G= ⊆ with 

1 j p≤ ≤ such that jv J∀ ∈ , ( ) ( )i jN v N v φ∩ = and 1( ) ( )V G H J− ∪  has no isolates, then 

1 cot ( )H J Gγ∪ = . 
 
Let { }1 2, ,..., nV v v v= be the vertices in ( )B G . Consider { }1 2 1 2 3, ,..., tD v v v V V V= = ∪ ∪ be the set of all 

vertices of ( )B G . Where 1sv V∀ ∈  and 2tv V∀ ∈ with the property ( ) ( )s tv N v φ∩ = , 3lv V∀ ∈  is a set of all 

end vertices in ( )B G . The D  is strongly dominated by at least one vertex in D  such that ( )SBD Gγ= . Clearly 

1 1H J D∪ − ≤  which gives cot( ) ( ) 1SB G Gγ γ≤ − . 
 
Theorem 12: For any graph G with n blocks− , then ( ) ( ) 3SB sG n Gγ γ≤ + − . 
 
Proof: Suppose 𝑆 = {𝐵1�,𝐵2,𝐵3, … … … , �𝐵𝑛} be the blocks of G . Then 𝑀 = {𝑏1, 𝑏2, 𝑏3, … … … , �𝑏𝑛} � be the 
corresponding blocks vertices in ( )B G with respect to the set S . Let { }1 2, ,..., nH v v v= be the set of vertices in G , 

( )V G H= . If { }1 2, ,..., mJ v v v= where 1 m n≤ ≤ such that J H⊂  and suppose there exists at set 1J J⊂
then { } 1iv J∈ which gives 1H J−  is a disconnected graph. Suppose 1J J∪ has the minimum number of vertices, 

such that 1 1( ) ( ) ( )N J J V G J J∪ = − ∪  gives a minimal split domination set in G . Hence 1 ( )sJ J Gγ∪ = . 
 
Suppose 𝐷 = �𝑏1, 𝑏2, 𝑏3, … … … , �𝑏𝑗�� where 1 j n≤ ≤  such that D m⊂ then ib M∀ ∈ are cutvertices in ( )B G , 

since they are non end blocks in ( )B G is strongly dominated by at least one vertex in D . Hence D  is a SB setγ −
of ( )B G . Clearly ( )SBD Gγ= . Now 1 3D n J J≤ + ∪ − , gives the required result. 
 
Next, the following theorem establish the upper bound for  ( )snsb Gγ  and ( )SB Gγ . 
 
Theorem 13: For any connected ( , )p q graph G , ( ) ( )SB snsbG Gγ γ≤ . 
 
Proof: Assume every block of 𝐺is an edge, let 𝐴′ = {𝐵1 ,�𝐵2 ,𝐵3 , … … … , �𝐵𝑚} be the blocks of  𝐺 and 𝑀1 =
{𝑏1 ,�𝑏2 , 𝑏3 , … … … , �𝑏𝑚} be the block vertices in 𝐵(𝐺). Again we consider a subset {𝑏𝑖

′} such that   {𝑏𝑖
′} ⊂ 𝑉[𝐵(𝐺)] −

{𝑏𝑖  }. Then 𝑉[𝐵(𝐺)] − � 𝑏𝑖
′� = {𝑏𝑖}. If 𝑖 = 1, then {𝑏𝑖} is a  𝛾𝑠𝑛𝑠𝑏 − 𝑠𝑒𝑡 of 𝐺. Otherwise if there exists 𝑖 > 1 for {𝑏𝑖}, 

we choose ∀𝑣𝑖𝜖𝑁[𝑏𝑖  ] such that 𝑉[𝐵(𝐺)] − � 𝑏𝑖
′� ∪ {𝑣𝑖} = 𝑏𝑖 gives for 𝑖 > 1. Hence < 𝑏𝑖 > is complete. Thus 

�𝑉[𝐵(𝐺)] − � 𝑏𝑖
′� ∪ {𝑣𝑖}� =  𝛾𝑠𝑛𝑠𝑏(𝐺).  

 
 



Nawazoddin U. Patel*, M. H. Muddebihal / Strong Block Domination in Graphs / IJMA- 8(11), Nov.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                         52  

 
Let 𝐻 = {𝑢1 ,�𝑢2 ,𝑢3 , … … … , �𝑢𝑛} ⊆ 𝑉[𝐵(𝐺)] be the set of vertices such that {𝑢𝑖} = {𝑒𝑖} ∈ 𝐸(𝐺), 1 ≤ 𝑖 ≤ 𝑛,where {𝑒𝑖} 
are incident with the vertices of 𝐴′. Further let 𝐷′⊆𝐻 be the set of vertices with deg (𝑤) ≥ 3 for every 𝑤 ∈ 𝐷′ and  
𝑁[𝐷′] = 𝑉[𝐵(𝐺)] and if ∀𝑣𝑖 ∈ 𝑉[𝐵(𝐺)] has degree at most 2 and 𝑣𝑖 ∈ 𝑉[𝐵(𝐺)] − 𝐷′. Then {𝐷′} ∪ {𝑣𝑖} forms a strong 
block dominating set. Clearly it follows that { }'

i
D v∪ ≤ �𝑉[𝐵(𝐺)] − � 𝑏𝑖

′� ∪ {𝑣𝑖}� which gives ( ) ( )SB snsbG Gγ γ≤ . 
 
In the following theorem we establish the relation between with strong split block domination of G and strong split 
block domination ( )ssb Gγ of G .  
 
If G  is a block then ( )ssb Gγ  does not exist. Hence we consider, G must have at least two blocks. 
 
Theorem 14: For any connected ( , )p q graph  with 4p ≥ , then ( ) ( )SB ssbG Gγ γ≤ . 
 
Proof: Suppose G  has 3p ≤ . Then ssbγ  does not exists. Hence we consider 4p ≥ , for 4p =  and each block is 

an edge then equality holds. Let 𝐵 = {𝐵1 ,�𝐵2 ,𝐵3 , … … … , �𝐵𝑛} be the set of blocks of G , and 
𝐻 = {𝑏1 ,�𝑏2 , 𝑏3 , … … … , �𝑏𝑛}  be the vertices of ( )B G  corresponding to the blocks of B . 
 
Suppose 𝑆1 = {𝑏1 ,�𝑏2 , 𝑏3 , … … … , �𝑏𝑖} and 𝑆2 = {𝑏1 ,�𝑏2 , 𝑏3 , … … … , �𝑏𝑗� in which 1,deg( ) 2b S b∀ ∈ >  and 

2 ,deg( ) 2b S b∀ ∈ ≤ . Since each block in ( )B G  is complete, then there exists '
1 1S S⊆  such that 

deg( ) deg( )k mb b≥ '
1kb S∀ ∈  and '

1[ ( )]mb V B G S∀ ∈ − . Thus '
1S  is a SB setγ − of G . Further in case of

SSb setγ − , we have '
2 2S S⊆  and ' '

1 2[ ( )] { }J V B G S S= − ∪  in which b J∀ ∈ is an isolate and 2J ≥  

which is a SSb setγ − . Hence ' ' '
1 1 2S S S≤ ∪  and gives ( ) ( )SB ssbG Gγ γ≤ . 

 
Theorem 15: For any connected ( , )p q graph , ( ) ( )SB SLG Gγ γ≤ . 
 
Proof: Suppose 𝐴 = {𝑏1 ,�𝑏2 , 𝑏3 , … … … , �𝑏𝑗� where 1 j n≤ ≤  such that 1A A⊂  then ib A∀ ∈  are cutvertices in 

( )B G . Further 1
1A A⊂  be a set of vertices in ( )B G  such that 1

1[ ( )] { }V B G A A N− ∪ =  where '
iv N∀ ∈  is a 

strongly dominated by at least one vertex in N . Hence ( )SBN Gγ= . Let 𝐷 = {𝑣1 , �𝑣2 , 𝑣3 , … … … , �𝑣𝑛} ⊆ 𝑉(𝐿(𝐺)) 
be the minimal dominating set of 𝐿(𝐺) and deg(𝑣𝑖) ≥ 2 ∀𝑣𝑖 ∈ 𝐷 with deg(𝑣𝑘) ≤ 2 ∀𝑣𝑘 ∈ 𝑉[𝐿(𝐺)] − 𝐷. Then 𝐷 is a 
Strong dominating set of 𝐿(𝐺). It follows that D N≥  which gives ( ) ( )SB SLG Gγ γ≤ . 
 
Theorem 16: For any connected ( , )p q graph  with 4p ≥ , then ( ) 3 2SB G q pγ ≤ − . 
 
Proof: suppose 𝐺 has a block say 𝐵 with maximum number of vertices and edges. Then  3𝑞 − 2𝑝 > | 𝛾𝑆𝐵 (𝐺)|. Hence 
we require to get the sharp bound. For this we consider the graph 𝐺 which is a non-trivial tree with at least 3-blocks.We 
consider the following cases. 
 
Case-1: Suppose 𝐺 is a path 𝑃𝑛 ,𝑛 ≥ 4 vertices. Then 𝐵(𝐺) = 𝑃𝑛−1. Since the path 𝑃𝑛 has 𝑝 − vertices and 𝑞 −  edges, 
then 3𝑞 − 2𝑝 = 3(𝑝 − 1) − 2𝑝 = 𝑝 − 3 for 𝑃 ≥ 4. One can easily verify that  𝛾𝑆𝐵 (𝐺) ≤ 𝑝 − 3 = 3𝑞 − 2𝑝. 
 
Case-2: Suppose 𝐺 is  not a path. Then there exists at least one vertices 𝑣, 𝑑𝑒𝑔𝑣 ≥ 3. Let 𝐶 = {𝑣1, 𝑣2, 𝑣3, … … … , �𝑣𝑖}  �  
be the  number cutvertices and 𝐷 be a dominating set of  𝐵(𝐺). Suppose each block of 𝐵(𝐺) is complete with 
𝑃 −vertices. Then 𝐷 = �𝑣1, 𝑣2, 𝑣3, … … … , �𝑣𝑝−1�  �where 𝐷 consists of 𝑃 − 1 vertices from each block 𝐵(𝐺) such that 
𝐶 ⊆ 𝐷 and 𝑉[𝐵(𝐺)] − 𝐷 = 𝐻 ,where 𝑣𝑖 ∈ 𝐻 is strongly dominating by at least one vertex in 𝐷. Clearly                      
|𝐷| =  𝛾𝑆𝐵 (𝐺) ≤ 𝑝 − 3 = 3𝑞 − 2𝑝. 
 
Theorem 17: For any connected ( , )p q graph  with 3p ≥ , then ( ) ( ) 2 ( ) 2SB tG G Gγ γ γ≤ + − . 
 
Proof: Let { }'

1 2, ,..., nA v v v= ⊆ ( )V G  be the set of all non end vertices in G . Suppose  '' 'A A⊆  and ∀𝑣𝑖 ∈

𝑉(𝐺) − 𝐴′′ are adjacent to at least one vertex of 𝐴′′. Then 𝐴′′ forms a γ - set of G . Let S ⊆ ''A  be the tγ - set of G .  

G

G

G

G
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By the minimality for every vertex v S∈ , the induced subgraph S v−  contains an isolated vertex. Let 

{ }1 :S v v S= ∈  and 1A  be the set of isolated vertices in 1S , 1 1B S A= − , further let A  be the minimum set 

of vertices of 1S S− and each vertex of 1A  is adjacent to some vertex of A . Clearly 1A A≤ . Suppose

{ }'
1S S S A= − ∪  and every '

i iu v S∈ , 1 i k≤ ≤ , clearly 'S  ( )'
t Sγ= . Then 'S forms a minimal 

total dominating set of G . Let 𝐻 = {𝑢1 ,�𝑢2 ,𝑢3 , … … … , �𝑢𝑛} ⊆ 𝑉[𝐵(𝐺)], suppose 𝐷′⊆𝐻 be the set of vertices with 
deg (𝑤) ≥ 3 for every 𝑤 ∈ 𝐷′ such that 𝑁[𝐷′] = 𝑉[𝐵(𝐺)] and if ∀𝑣𝑖 ∈ 𝑉[𝐵(𝐺)] has degree at most 2 and 𝑣𝑖 ∈

𝑉[𝐵(𝐺)] − 𝐷′. Then 𝐷′ forms a strong block dominating set. Clearly it follows that ' '' ' 2D A S≤ ∪ −  and hence 

 𝛾𝑆𝐵(𝐺) ≤ 𝛾𝑡(𝐺) + 2𝛾(𝐺) − 2.  
 
Theorem 18: For any connected ( , )p q graph , [ ( )] ( )SBB G Gγ γ≤ . 
 
Proof: Suppose G  is path with 3P ≥ vertices. Then ( )B G  is also a path with 1p − vertices. Since this path has 
exactly two vertices of degree and remaining  2p −  vertices are of degree two. Then every minimal dominating set of  

( )B G  is also a strong dominating set of ( )B G . Thus [ ( )] ( )SBB G Gγ γ= . Suppose G  is not a path. Then in 

( )B G  every block is complete and there exists at least one block with at least three vertices. Now assume let ( )B G  

has two vertices 1v and 2v with maximum degree. Let D  be strong dominating set, then 1 2{ , }v v D⊆ , if 

1 2( )N v v=  or 2 1( )N v v= . Where as in case of [ ( )]B Gγ , either 1v or 2v  belongs to  [ ( )]B Gγ . Hence 

[ ( )] ( )SBB G Gγ γ≤ . 
 
Theorem 19: For any connected ( , )p q graph , 0( ) ( ) ( ) 2SB G G Gγ α≤ ∆ + − . 
 

Proof: Let A  be the vertex cover of G  with 0 ( )A Gα= . Suppose { }1 2, ,..., pV v v v=  be the set of vertices in 

G  then there exists at least one vertex v V∈  such that deg( ) ( )v G= ∆ . Now without loss of generality in ( )B G , 

suppose there is a set [ ( )]D V B G⊆ , consists of at  most ( )G A∆ +  elements. Hence 

( ) ( )SB G D G Aγ = ≤ ∆ + 0( ) ( ) 2G Gα= ∆ + − , clearly 0( ) ( ) ( ) 2SB G G Gγ α≤ ∆ + − . 
 
Now obtain the following result on restrained domination number of G . 
 
Theorem 20: For any connected ( , )p q graph , ( ) ( ) ( ) 1SB reG G Gγ γ γ≤ + − . 
 
Proof: Let D  be any setγ −  of G  with ( )G Dγ = . Suppose RD  be the restrained dominating set of G such that 

( )re RG Dγ = . If 'D  be the strong block dominating set of ( )B G , then '( )SB G Dγ = . By the definition of 

domination number and restrained domination number of G one can easily verify that, ' 1RD D D≤ ∪ − . Hence 

'( ) ( ) ( ) 1SB R reG D D D G Gγ γ γ= ≤ ∪ = + −  gives ( ) ( ) ( ) 1SB reG G Gγ γ γ≤ + − . 
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