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ABSTRACT 
A series of Rectangular designs has been constructed from Generalized Row Orthogonal Constant Column Matrices 
(GROCM).It is shown that in general, a GROCM is an incidence matrix of a Rectangular Design. 
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1. INTRODUCTION  
 
1.1 Normalized Hadamard Matrix-A square matrix H of order n and entries 1,-1 is called a Hadamard matrix if 

HHT=nIn where In is an nxn identity matrix. A Hadamard matrix is in normalized form if its first row and first 
column have all entries 1[3]. 

 
1.2 Generalized Hadamard Matrix:  

A Generalized Hadamard matrix GH (nq, G) over the group G of order n is an nq nq× matrix  

GH (nq,G)= ( )ijh such that 

(i) hij ϵ G { }, 1,2,...,i j nq∀ ∈  

(ii) 1

1

nq

il jl
l g G

h h qg whenever i j−

= ∈

= ≠∑ ∑  where the summation belongs to the group ring Z[G]. 

 
1.3 Circulant Matrix 

An n n×  matrix C=
0 , 1ij i j n

c
≤ ≤ −

   where (mod )ij j i nc c −= is a circulant matrix of order n.  
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1.4 m-Class Association Scheme (AS): 

Let X be a non-empty set of order v. A set { }1, ,...,O mR I R RΩ = = of non-empty relations on X is an m -class 
AS if following properties are satisfied 

(i) ( ){ }0 , :R x x x X= ∈  

(ii)Ω is a partition of X X× i.e. 

           0

, .
m

i i j
i

R X X R R if i j
=

= × = Φ ≠
 

 
(iii) ( ){ }, : ( , ) , 0,1,...,T T

i i i iR R where R x y y x R i m= = ∈ = . 

(iv) Let (x, y) ϵ Ri. For { }, , 0,1, 2,...,i j k m∈   

        
{ }: ( , ) ( , )i i

jk j k kjp z x z R z y R p= ∈ ∈ =


, which is independent of (x, y) ϵRi.  

 
The non-negative integers i

jkp  are called parameters of an m-Class AS. If (x,y )ϵRi then x and y are called ith 
associates. 

 
1.5 Association Matrices- 
These matrices were introduced by Bose and Mesner [1]. 
 

The i-th association matrix 0
,

i
i mi

X
B bαβ

α β
≤ ≤

∈
 =   of an m-class AS is a symmetric matrix of order v where  

1
0

i if and are mutually i th associates
b

otherwiseαβ

α β −
= 
  

 
1.5.1 Properties Of Association Matrices- 

(i) B0=Iv (ii)
0

m

i v
i

B J
=

=∑  (iii) 
0

( , 0,1, 2,..., ).
m

k
i j ij k j i

k
B B p B B B i j m

=

= = =∑
 

 
1.6 Partially Balanced Incomplete Block (PBIB) Design 
Let X be non-empty set with cardinality v. The elements of X are called treatments. A PBIB design based on an m-class 
association scheme is a family of b subsets of X, each of size k such that each treatment occurs in r blocks, any two 
treatments occur together in λi (i=0,1,…,m) blocks if they are mutually ith associates. v, b, r, k, λi are called parameters 
of a PBIB design.[2] 
 
1.7 Rectangular AS 
Rectangular AS, introduced by Vartak [14], is an arrangement of v=mn treatments  in a rectangular array of m rows and 
n columns such that any two treatments belonging to the same row are first associates, any two treatments belonging to 
the same column are second associates and remaining pairs of treatments are third associates.  
 
1.8 Rectangular Design 
Rectangular design is a 3- class PBIB design based on a rectangular AS of v=mn treatments arranged in a rectangular 
array of m rows and n columns in b blocks such that each block contains k distinct treatments, each treatment occurs in 
exactly r blocks and any two treatments which are first associates occur together in λ1 blocks, whereas second 
treatments occur together in λ2 blocks and the treatment which are third associates occur together in λ3 
blocks.v,b,r,k,λ1,λ2,λ3 are called parameters of a rectangular design.  
 
Rectangular designs have also been studied by Suen[13], Sinha [8], Sinha et al. [6,9,10,11,12], Kageyama and 
Miao[5]and so on. The rectangular designs are useful for factorial experiments, having factorial balance as well as 
orthogonality. [4]  
 
For convenience, In denotes the identity matrix of order n, m nJ ×   denotes the m n×  matrix with all its entries 1, in 

particular n n nJ J ×= and Kn=Jn-In . A B⊗ denotes the Kronecker product of two matrices A and B. 

.( , , ,...,1,..., )i circ o o o oα = is a circulant matrix of order n with 1 at (i+1)th 
Position such that 𝛼𝑛 = 𝐼𝑛 . 
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2. GROCM AND ITS REDUCTION TO AN INCIDENCE MATRIX OF A RECTANGULAR DESIGN 
 
2.1 Definition of GROCM 
 
Singh and Prasad [7] defined Generalized Orthogonal Combinatorial matrix (GOCM). Here we define GROCM. 
 
Let N=[Nij], i, jϵ{1,2,.. .,m } where Nij are {0,1} matrices of order  jn s× . LetRi = (Ni1, Ni2,..., Nim)  be the ith row of 
blocks. We define inner product of two row of blocks Ri and Rj as  

Ri.Rj=RiRjT=
1

m
T

ik jk
k

N N
=
∑ . N is called a Generalized Row Orthogonal Matrices (GROM) if there exists fixed 

positive integer r and fixed non-negative integers  λ1, λ2, λ3 such that 

Ri.Rj= RiRjT =
1

m
T

ik jk
k

N N
=
∑  =

1

2 3

I ,
.

nn

n n

K if i j
I K if i j

r
λ

λ

λ

=

+ ≠

+



 

 
A GROM with constant column sum will be called GROCM. GROCM is an extension of Generalized Hadamard 
Matrices.   
 
Theorem 2.2: A GROCM is in general an incidence matrix of a rectangular design. 
Proof.     
       

NNT=
1 2 3

1 2 3

2 3 1

( ) ( ) ( ) ( )
n n n n

m n m n m n m n

n n n n

rI K I K
r I I I K K I K K
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+ λ λ + λ 
  = ⊗ + ⊗ + ⊗ + ⊗ 
 λ + λ + λ 



  
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0 1 2 3, , ,m n m n m n m nB I I B I K B K I B K K= ⊗ = ⊗ = ⊗ = ⊗  are the association matrices of at most three 

classes association scheme. We have 
3

0
i m n

i
B J ×

=

=∑
 

B1B2 = B3, B1B3= (n-1) B2+(n-2)B3, B2B3=(m-1)B1+(m-2)B3. 
B1

2 = (n-1)B0+(n-2)B1, B2
2=(m-1)B0+(m-2)B2, 

B3
2= (m-1)(n-1)B0+(m-1)(n-2)B1+(n-1)(m-2)B2+(m-2)(n-2)B3. 

( )
( )

( )0 1
0 1

1 0 0 2 0 0
0 1 0 , 0 0 1 ,
0 0 1 ( 1) 0 1 ( 1)( 2)

ij ij

n n
P p m P p m
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− −

= = − = = −

− − − − −
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   
          

 

( )
( )

2 3
2 3

0 0 1 0 1 2
( ) 0 2 0 , 1 0 2

1 0 ( 2)( 1) 2 2 2)( 2)
ij ij

n n
P p m P p m

n m n n m m n

− −
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        

 

 
The above matrices give the values of (0 , , 3)k

ijp i j k≤ ≤  which are the parameters of a rectangular association 
scheme. Hence a GROCM is the incidence matrix of a rectangular design in general, which is defined by an m n×  
array. 
 
Corollary 2.2.1: A GROCM is an incidence matrix of a Group Divisible design if either 1 3 2 3orλ λ λ λ= =   
 
3. CONSTRUCTION METHODS  
 
Theorem 3.1: Let H be a Hadamard matrix of order 4n (n≥ 1).Then there exists a rectangular designs with parameters  
v=4ns,b=4ns(s-1),r=4n(s-1),k=4n,λ1=0, λ2 =2n(s-1), λ3 =2n,m=4n,n=s, where s ≥2 is a positive integer. 
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Proof: Let H be a Hadamard matrix of order 4n (n≥1) in its normalized form. We replace 1 by Is and -1 by α in H to 
obtain a matrix H1 where α is a (0, 1) circulant matrix of order s such that s

sIα = . We obtain Hi  (2 1)i s≤ ≤ −   

replacing α by αi in H1.We adjoin 1 2 3 1, , ,..., sH H H H −  and obtain N1=
1 2 1[ ... ]sH H H − , which is an incidence 

matrix of a rectangular design with the required parameters. 
 
Inner product of any two same rows of N1 contributes 4 ( 1)n s −  Is’s and 0’s K’s. 
 

In an inner product of  two distinct rows Ri and Rj ( ; , 1i j i j≠ ≠ ) of N1,  

Block matrices  
2 1

. . .

. . .
s s s

s

I I I
α α α −

 
 
 

 , s

s

I
I

 
 
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2 1

2 1

. . .

. . .

s

s

α α α
α α α

−

−

 
 
 

    and  

2 1. . .
. . .

s

s s sI I I
α α α − 
 
 

 occurs n , ( 1)n s − , ( 1)n s − and n times respectively. Hence they contribute 2 ( 1)n s −  

'sI s  and 2n  'sK s . 
 

In an inner product of R1 and other rows different from R1, block matrices s

s

I
I

 
 
 

and 
2 1

. . .

. . .
s s s

s

I I I
α α α −

 
 
 

 

occur 2 ( 1)n s −   and 2n  times respectively. Hence they contribute 2 ( 1)n s −  'sI s  and 2n  'sK s . 

4 ( 1) 0
2 ( 1) 2

s sT
i j i j

s s

n s I K ifi j
R R R R

n s I nK ifi j
− + =

= =  − + ≠
  

 
Hence N1 represents an incidence matrix of a RD design with the required parameters. [vide theorem 2.2] 
 
Example For n=1, s=3 we obtain a rectangular design with parameters v=12, b=24, r=8, k=4,

1 2 30, 4, 2, 4, 3m nλ λ λ= = = = =   
whose blocks are   

(1, 4,7,10), (2,5,8,11), (3,6,9,12), (1,6,7,12), (2, 4,8,10), (3,5,9,11),
(1, 4,9,12), (2,5,7,10), (3,6,8,10), (1,6,9,10), (2, 4,7,11), (3,5,8,12),
(1, 4,7,10), (2,5,8,11), (3,6,9,12), (1,5,7,11), (2,6,8,12), (3, 4,9,10),
(1, 4,8,11), (2,5,9,12), (3,6,7,10), (1,5,8,10), (2,6,9,11), (3, 4,7,12).  

 
which is a quasimultiple of the rectangular design with parameters  

v=b=12, r=k=4, 1 2 30, 2, 1λ λ λ= = = in Sinha et al.[12] 
 
Remark: N1 is the incidence matrix of a GD design if s=2. [vide corollary 2.2.1] 
 
Corollary 3.1.1: There exists a rectangular design with parameters 

𝑣 = 4𝑛2, b = 4𝑛2(n − 1), r = 4n(n − 1), k = 4n, 𝜆1 = 0, 𝜆2 = 2n(n − 1), 𝜆3 = 2n, m = 4n, n = n.   
Proof: On putting s=n in the previous theorem, we obtain a rectangular design with the required parameters. 
 
Theorem 3.2: There exists a rectangular design with parameters  

𝑣 = s(4n − 1), b = s(s − 1)(4n − 1), r = (s − 1)(4n − 1), k = 4n − 1, 𝜆1 = 0, 
𝜆2 = (s − 1)(2n − 1), 𝜆3 = 2n, m = 4𝑛 − 1, n = 𝑠. 

 
Proof: Let H be a Hadamard matrix of order 4n (n≥1). In the core C1 Of Normalized Hadamard matrix, we replace -1 
by α and 1 by Is, where α is a circulant matrix of order s such that αs=Is. We obtain Ci replacing α by 

(2 1)i i sα ≤ ≤ −  in C1 .We adjoin 1 2 1, ,..., sC C C −  and obtain 
1 2 1

[ ... ]2
s

N C C C
−

= , which is an incidence 
matrix of a rectangular design with the required parameters. [Vide theorem 2.2] 
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Example: For s=4, n=1 we obtain a rectangular design with parameters 

1 2 312, 36, 9, 3, 0, 3, 2, 3, 4.v b r k m nλ λ λ= = = = = = = = =  
 
Remark: N is the incidence matrix of a GD design if  𝑠 = 2𝑛

2𝑛−1
+ 1. [vide corollary 2.2.1] 

 
4. CONCLUSION 
 
A new combinatorial structure GROCM has been used to construct some series of rectangular designs. GROCM can 
also be used to construct some more PBIB designs. 
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