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ABSTRACT 
In this paper, we have worked out on some results about periodic points and eventually points and their orbits, which 
are very helpful in studying the chaos of dynamical system. This study includes the chaotic maps, the behavior of 
sensitive to initial conditions and sensitivity constants etc. In this paper many results have been proved regarding the 
dense orbit, topological transitivity and sensitivity constant. We also proved here that orbit of a periodic point are 
either equal or disjoint. We have proved the equality between orbit of point and orbit of a periodic point of the iterated 
functions. Some new concepts regarding supremum and infimum of periodic points of some functions have been 
introduced and also the results associated with these. 
 
AMS SUBJECT CLASSIFICATION: 34C28, 37D45, 37C25 
 
KEYWORDS: Chaotic map, Chaotic Dynamics, Dense orbit, Sensitivity constant, Topological Transitive, Dynamical 
system. 
 
 
1. INTRODUCTION    
 
The study of chaotic dynamical system becomes popular nowadays. Although there is no universal accepted definition 
of chaos but it is generally believed that sensitivity dependence on initial condition is the central element of chaos       
[1, 15]. There are some situations/ problems where the things under consideration are vague i.e. there exists a Chaos in 
the situation/ problem. For a possible solution of such type of situation/ problem, first it has to be viewed as a problem 
in term of Mathematics and then there is need to think of a possible solution of the problem in a suitable way by 
applying Mathematics on it. To do this we need some mathematical tools. For this we studied some concepts/ theories 
of the function and functional iteration, which is going to be very helpful in studying the orbit of a point, periodic 
points, chaotic maps and some other dynamical systems [3, 5, 11]. The term Chaos theory means the study of instability 
in a periodic behavior in dynamical systems. This means that a dynamical system can in fact be generate a periodic 
disordered behavior that is the behavior with a hidden implicit order [2]. In Section 2 of this paper we have included 
some basic notation and definition like orbit of a point, periodic points, eventually periodic points, topological 
transitivity, sensitivity dependence to initial condition and dynamical systems which were used in many of the results. 
In Section 3 of this paper we cover the preliminaries parts. For completeness sake, we have included some standard 
results also. In view of our aim, of obtaining some results about chaotic maps in Dynamical Systems, we start with the 
study of periodic points, eventually periodic points and their orbits [10, 16]. The concept of start of the eventuality of 
an eventually periodic point introduced here helps in describing its orbit more precisely. It has been found that, unlike 
the case of a periodic point, the iterated images of an eventually periodic point need not always be periodic [12]. The 
complete information about the periodicity of iterated images of an eventually periodic point and their periods has been 
obtained using the term start of eventuality of an eventually periodic point. Some results on the basis of the set theory, 
iterated functions, orbit of function, periodic points are also included in this section. In Section 4, we come to the 
chaotic part in this section we cover the relations of orbits of different periodic points with regard to the denseness of 
the set of all periodic points [7, 15]. The minimum of the distances between iterated images of two periodic points  
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helps in knowing about the distance between a point of a dynamical system (X, f) and orbits of periodic points. This 
minimum value, in case the map f is sensitive to initial conditions, is also found to have a relation with the sensitivity 
constants of the map f, where there is also obtained a description of a considerable part of the set of all sensitivity 
constants of f [13]. The total description of the set of all sensitivity constants of f is left as a question. It is conjectured 
that some variations of techniques used to find the considerable part should be helpful to cover the whole set of 
sensitivity constants of f.  
 
2.  NOTATION AND DEFINITIONS 
 
We define f0 = Identity function on X, f1 = f, and for n ∈ IN, the set of all natural numbers, fn+1 = fofn. Let f :  X →  X. 
Let x ∈ X. The set {fn(x) | n ≥0} is called the orbit of x. The orbit of x is denoted by Orb(x) or Orb(x, f). A point x 
∈X is called periodic if fk(x) = x for some k ∈ IN. The smallest k such that fk(x) = x is called the period of x. If            
f : IR → IR, then we shall write, f0(x) = x, f1(x) = f(x), f2(x) = (f o f)(x) = f(f(x)), f3(x) = (f o f2)(x) = f(f2(x)) = f(f(f(x))) 
and similarly fn(x) = (f o fn–1)(x) = f(fn–1(x)), for n ≥ 3. Also, fn(x) is called the nth iteration of f for n ≥ 0.  Let Per(f) be 
the set of all periodic points of  X. Orb(X, f) or simply Orb(X), is used to denote the union of the orbits of all periodic 
points of X, i.e. Orb(X) = ∪{Orb(x) : x ∈ Per(f)}.  
 
Let M be a non empty set. A function d: M x M ⟶ [0, ∞) is called Metric Space if d holds the following properties   
(i) d(x, y) ≥ 0 for all x, y ∈ M. (ii) d(x, y) = d(y, x) for all x, y ∈ M. (iii) d(x, y) = 0 iff x = y for all x, y ∈ M.            
(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ M. Let (M, d) be a Metric Space and let A ⊂ M be non empty sub set of M. 
Define a function f : M→ IR for all x ∈ A by f(x) = inf{d(x, y) ; y ∈ IR}.   
 
Let (X, d) be a metric space. For A ⊂ X, diam(A) denotes the diameter of A. For a point z of X and r > 0, S(z, r) (resp. 
S[z, r]) denotes the open sphere (closed sphere) with centre at z and radius r.  Let (M, d) be a Metric Space and A ⊂ M. 
Then A is said to be dense in M if for every z ∈ M and for every r > 0, we have S(z, r) ∩ A ≠ ϕ i.e. every open ball in 
(M, d) contains a point of A. A Topological Space is a set X and a collection of subsets of X, τ called the topology 
defined on X which we together denote by (X, τ) such that (i) the empty set ϕ and the whole set X are contained in τ. 
(ii) If Ui ∈ τ for all i in τ then any arbitrary union of subsets in τ is contained in τ. (iii) If U1, U2, U3,……… Un  ∈ τ then 
any finite intersection of n subsets of X in τ is contained in τ. Let X is a topological space. Let f : X ⟶ X. Then (X, f) 
is called a dynamical system if f is continuous. A map f : X→ X   is called topologically transitive (TT) if for every 
pair of non empty open sets G, V in X, there exists some  m ∈ IN such that fm(G) ∩ V  ϕ. If   fn is transitive for each n 
∈ N, then f is called totally transitive. A point x ∈ X is called eventually periodic if for some nonnegative integer       
t, ft (x) is periodic. Let (X, f) be a dynamical system where X is a metric space. f is said to be sensitive to initial 
conditions (SIC) if there exists a δ > 0 such that for a given x ∈X and a neighborhood N(x) of x, there exists some        
y ∈ N(x) and some v ∈ IN such that d(fv(x),fv(y)) ≥ δ; such a δ is called a sensitivity constant for f. Let x ∈ X be 
eventually periodic with eventual period k. Let t be the smallest nonnegative integer such that ft(x) is periodic with 
period k. Then we say that t is the start of eventuality of x.  Let p, q ∈ Per (f) be such that q ∈ X – Orb(p). Let k and 
m be the periods of p and q respectively. For 0 ≤ j ≤ m -1, let δj = d(fj(q), Orb(p)). Let δ∨ = sup{δj | 0 ≤ j ≤ m -1}.         
δ∨(p, q) is used for δ∨ if dependence on p, q is to be shown. Since δ∨ = d(f∨(q),fi(p)) for some i, 0 ≤ i ≤ k -1, we write     
δ∨ = d(f∨(q), fi∨(p)). For 0 ≤ i ≤ k -1, let ςi = d(fi(p), Orb(q)). Let sup{ ςi | 0 ≤ i ≤ k -1} = ς∨(q, p) or simply ς∨. For 
periodic elements, x and y of X with periods k and m respectively such that y ∈ X – Orb(p), let δmin = inf{d(fr(x)), 
d(fs(y)) | 0 ≤ r ≤ k-1, 0 ≤ s ≤ m-1}. 
     
3. PRELIMINARIES 
 
We shall need the following Remarks from our previous published papers. 
 
Remark 1.1: (i) Let n ∈ IN, then fn+1 = fn o f. (ii) Let m, n ∈ IN, then fn+m = fn o fm. (iii) Let x ∈ X. For an integer t ≥ 0, 
let ft(x) be periodic with period k. (iv) For every n ∈ IN, fn(x) ∈{f0(x), f1(x),f2(x),…ft+k-1(x)}. (v)  A point x ∈ X is 
eventually periodic iff its orbit is finite.             
 
Remark 1.2: Let x ∈ X be periodic with period k. Then (i) fmk(x) = x for all m in IN, (ii) If fm(x) = x, then m = kq, for 
some q in IN, (iii) For n ∈ IN, fn(x) = fr(x), for some integer r with 0 ≤ r < k. (iv) Orb(x) = {x, f(x)… fk-1(x)}. (v) The 
elements of {f0(x), f1(x),f2(x),…fk-1(x)} are distinct.  
 
Lemma 1.3: Let g : X → X.(i) If gr(X) = X for some r ∈ IN, then gn(X) = X for every n∈ IN. (ii) For G ⊂ X and m∈ 
IN, if k ≤ m, then gm((gk)-1(G)) ⊂ gm-k(G), the equality holds if gr is onto for some r ∈ IN. (iii) For G ⊂ X and m ∈ IN, 
if k > m, then gm((gk)-1(G) ⊂ (g(k-m))-1(G), the equality holds if gr is onto for some r ∈ IN. 
 
Proof: (i) It is sufficient to prove the result for n = 1, then apply induction. X = gr(X) = g(gr-1(X)) ⊂ g(X) ⊂ X. So      
g(X) = X.  gn+1(X) = g(gn(X) = g(X) = X. (ii) Let k ≤ m. Since g k((gk)-1(G)) ⊂ G, gm-k(gk((gk)-1(G)) ⊂ gm-k(G). Thus 
gm((gk)-1(G)) ⊂ gm-k(G).  If gr is onto for some r ∈ IN, then, by (i), gk is onto. So the equality holds. (iii) Let k > m.  
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Since (gk)-1(G) = (gm)-1((g(k-m))-1(G)), gm((gk)-1(G)) = gm((gm)-1((g(k-m))-1(G))) ⊂ (g(k-m))-1(G). The equality holds if gr is 
onto for some r ∈ IN, as, then, using (i), gm is onto.  
 
Remark 1.4:  Let g : X → X and G, V ⊂ X. (a) (i) If g(G)∩V ≠ ϕ, then G∩g-1(V) ≠ ϕ. (ii) If G∩g-1(V) ≠ ϕ, then          
g-1(g(G)∩V)) ≠ ϕ, and so g(G)∩V ≠ ϕ. (b) Let m∈ IN and g is onto. (i) If k ≤ m, then g m(gk)-1(G))∩V ≠ ϕ iff              
gm-k(G)∩V ≠ ϕ. (ii) If k > m, then gm(gk)-1(G))∩V ≠ ϕ iff (g(k-m))-1(G)∩V ≠ ϕ.   
 
Proof: (a) (i) Let z ∈ g(G)∩V. Then z ∈ V and there exists x∈ G such that g(x) = z. Thus x ∈ G∩g-1(V).  
(ii) G∩g-1(V) ⊂  g-1(g(G)∩ g-1 (V) = g-1(g(G)∩V)). Thus g-1(g(G)∩V) ≠ ϕ. (b) It follows using (ii) and (iii) of Lemma 
1.3.  
 
In view of Remark 1.4(a), we have the following Remark. 
 
Remark 1.5: A map f : X→ X   is  Topological transitive (TT) iff for every pair of non empty open sets G, V in X, 
there exists some m ∈ IN such that G∩(fm)-1(V) ≠ ϕ.  
 
Lemma 1.6: Let f : X ⟶ X be Topological transitive (TT). Then f is onto. 
 
Proof: In view of Remark 1.5, there exists some m ∈ IN such that (fm)-1(X)∩X ≠ ϕ. This implies that fm(X) = X. The 
result now follows by (i) of Lemma 1.3. 
 
Remark 1.7: Let x ∈ X. If x is periodic with period k, then the elements of {x, f(x),… fk-1(x)}, which is Orb(x), are 
distinct.  Suppose that x is eventually periodic with eventual period k. There exists an integer t ≥ 0 such that f t(x) is 
periodic with period k. Using Remark 1.2 (iv), Orb (x) = {f0(x), f1(x), f2(x),…f k+t-1(x)}. Let s > t. Since fs(x) is periodic 
with period k and, therefore, by Remark 1.2 (iv), {f0(x), f1(x), f2(x),…f k+s-1(x)} = Orb(x) = {f0(x), f1(x), f2(x),…            
f k+t-1(x)}.  
 
We suppose that k  ≥ 2. For 0 ≤ r ≤ k -1, let s = t+k-r. k+s-1 = 2k+t-(r+1). Since r+1 ≤ k,  f2k+t-(r+1)(x) = fk+t-(r+1)(x). Thus 
f2k+t-(r+1)(x) and fk+t-(r+1)(x) are not distinct elements of {f0(x), f1(x), f2(x),…f k+s-1(x)}, where s = t+k-r. The elements of 
even {f0(x), f1(x),f2(x),…f k+t-1(x)} need not be distinct. If we take s < t, if fs(x) is periodic then its period is k. In this 
case also, the elements of {f0(x), f1(x), f2(x),…f k+s-1(x)} need not be distinct.  
 
Proposition 1.8:  Let x ∈X be periodic with period k. Then the following hold.  
(a) (i) For integers r and s with 0 ≤  r, s < k, if fs(x) = fr(x), then s = r. (b) (i) For an integer r with 0 ≤ r < k, f r(x) is 
periodic with period k and Orb(fr(x)) = Orb(x). (ii) For n ∈ IN, fn(x) is periodic with period k and Orb(fn(x)) = Orb(x).  
 
Proof: (a) (i) We suppose that r ≤ s. Sin ce k-r > 0, using Remark 1.1(ii), fk-r+s(x) = fk-r(fs(x)) = fk-r(fr(x) = fk(x) = x. 
Therefore, r = s, otherwise  k-r+s < k, which is not possible as fk-r+s(x) = x. (b) (i) fr(x) = fr(fk(x)) = fk(fr(x)). So fr(x) is 
periodic. Let m be the period of fr(x). Since fr(x) = fr(fk(x)) = fk(fr(x)), by Remark 1.2(ii), k = mq for some q ∈ IN. 
fm(fr(x)) = fr(x), so fm+r(x) = fr(x). Therefore  fm+r+k-r(x) = fr+k-r(x) = fk(x) = x. So fm+k(x) = x. Thus using Remark 1.2.(ii), 
m+k = kq* for some q ∈ IN. So m = k(q*-1). Since k = mq, we have k = m. To prove that Orb(fr(x)) = Orb(x), let          
y = fr(x). For n ∈ IN, fn(y) = fn+r(x). Since fn+r(x) ∈ Orb(x), fn(y) ∈ Orb(x). So Orb(fr(x)) ⊂ Orb(x). For fs(x) ∈ Orb(x), 
0 ≤ s< k. If r ≤ s, then f s(x) = fs-r(fr(x)) = fs-r(y). Therefore fs(x) ∈ Orb(fr(x)). Suppose s < r. s+k-r > 0 as r < k.              
fs+k-r(y) = fs+k-r(fr(x)) = fs+k(x) = fs(x). Since fs+k-r(y) ∈ Orb(y), fs(x) ∈ Orb(y). (ii) Orb(x) = {x, f(x),… fk-1(x)}. So     
fn(x) = fr(x) for some integer r, with 0 ≤ r < k. Now the result follows from (i).  
 
Theorem 1.9: Let x, y ∈ X be periodic. Then either Orb(x) = Orb(y) or Orb(x) ∩ Orb(y) = ϕ. 
 
Proof: Suppose that Orb(x) ∩ Orb(y) ≠ ϕ. Then fν(y) = fs(x) for some nonnegative integers ν and s. By Proposition 
1.8(b) (ii), Orb(fs(x)) = Orb(x) and Orb(fν(y)) = Orb(y). Therefore Orb(x) = Orb(y).  If x ∈ X is periodic, then fn(x) is 
periodic for every n ∈ IN, but if fn(x) is periodic, the x need not be periodic.   
 
Proposition 1.10: Let x and y be two periodic elements of X with periods k and m respectly such that y ∈ X – Orb(p). 
Let z ∈ X. Then (a)  δmin ≤ d(z, Orb(x)) + d(z, Orb(y)). (b) Either d(z, Orb(x))  ≥ δmin/2 or d(z, Orb(y)) ≥ δmin/2. (c) If    
z ∈ Orb(y), then δmin ≤ d(z, Orb(x)).  
 
Proof: δmin > 0, as by Theorem 1.9, Orb(x) ∩ Orb(y) = ϕ. There exit some i and j, with 0 ≤ i ≤ k-1 and 0 ≤ j ≤ m-1, such 
that d(z, Orb(x)) = d(z, fi(x)) and d(z, Orb(y)) = d(z, fj(y)). (a) We have δmin ≤ d(fi(x)), d(fj(y)) ≤ d(z, fi(x)) + d(z, fj(y)).  
 
So δmin ≤ d(z, Orb(x)) + d(z, Orb(y)). (b) Because of (a) it is not possible that d(z, Orb(x)) < δmin/2 and                        
d(z, Orb(y)) < δmin/2. Therefore (b) holds. (c) If z ∈ Orb(y), then d(z, Orb(y)) = 0. Now by (a) δmin ≤ d(z, Orb(x)).   
It should be interesting to think about corresponding results for eventually periodic points. 
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4. CHAOTIC MAPS   
 
Let (X, d) be a metric space. For A ⊂ X, diam(A) denotes the diameter of A. Let (X, f) be a dynamical system, where X 
is a metric space. It is proved as Theorem in [7] that if X is infinite, f has a dense orbit and Per(f) is dense, then f is TT 
and SIC. From their proof it follows that f is TT and SIC. But their observation (used after the proof of Theorem, to 
obtain ‘possibly largest’ sensitivity constant for f) that d/4 is a sensitivity constant for f, does not follow. In the proof,     
p ∈ Per(f), q ∈ X – Orb(p) and d = d(q, Orb(p)). After assuming that there exists an x and a neighborhood N(x) of x 
such that for all n ≥ 0, diam(f n(N(x)) < d/4, a contradiction is obtained. If we assume that d/4 is not a sensitivity 
constant for f, then diam(fn(N(x)) < d/2. Therefore, from the arguments given in the proof of Theorem, it follows that 
d/8 is a sensitivity constant for f. We obtain below some results about sensitivity constant for f. 
 
Lemma 2.1: Let X be a metric space X. Let f :  X →  X be TT. Let p ∈ Per(f) and q ∈ X – Orb(p). Let γ > 0 be given. 
Let z ∈ X and N(z) a neighborhood of z such that N(z)∩Per(f) ≠ ϕ and diam(fn(N(z)) ≤ 2γ for every n ∈ IN. Then given 
η > 0 there exists a nonnegative integer v such that d(fv(p), q)  < 4γ+η.     
 
Proof: Let N(q) be a neighborhood of q with D(N(q)) < η/2.  Let y ∈ N(z)∩Per(f). Let m be the period of y.  f is 
continuous at p, therefore there exist a neighborhood N(p) of p  such that for every t with 0 ≤ r ≤ m -1,  d(fr(x),           
fr(p)) < η/2 for every x ∈ N(p). f is TT, so there exists i, j ∈ IN such that N(z)∩(f i)-1(N(p)) ≠ ϕ and                       
N(z)∩(f j)-1(N(q)) ≠ ϕ. Let p* ∈ N(z)∩(f i)-1(N(p)) and q* ∈ N(z)∩(f j)-1(N(q)). Let 0 ≤ r ≤ m -1. We have,        
d(fr(fi(p*)), fr(p)) < η/2 as fi(p*) ∈ N(p). Since y, p* ∈ N(z), d(fr+i(y)), fr+i(p*)) ≤ 2γ. Thus d(fr+i(y)), fr(p)) ≤  d(fr+i(y)), 
fr+i(p*)) + d(fr(fi(p*)),fr(p))  < 2γ+η/2. Since fj(q*) ∈ N(q), d(fj(q*),q) < η/2. Now d(fj(y),q) ≤ d(fj(y),fj(q*) + d(fj(q*),q) 
< γ +η/2. Using that {fi(y), fi+1(y), …, fi+m-1(y)} = Orb(y), fj(y) = fi+v(y) for some v, 0 ≤ v ≤ m -1. d(fv(p),q)  ≤  d(fv(p)), 
fv+i(y)) + d(fj(y),q) < 2γ + η. 
 
Lemma 2.2: For a metric space X, let f :  X →  X be TT. Let p ∈ Per(f) and q ∈ X – Orb(p). Let γ  > 0 be given. Let     
z ∈ X and N(z) a neighborhood of z such that N(z)∩Per(f) ≠ ϕ and D(fn(N(z)) ≤ 2 γ for every n ∈ IN. Then                  
(a)  d(fv(p),q) ≤ 4 γ for some nonnegative integer v. (b) Either there exists a nonnegative integer v such that         
d(fv(p),q) < 4γ, or there exists a nonnegative integer v such that d(fv(p),q) = 4γ and d(fs(p),q) ≥ 4γ for every nonnegative 
integer s.  
 
Proof: (a) Suppose d(fs(p),q) > 4γ for every nonnegative integer s. Let k be the period of p. Orb(p) ={fr(p): 0 ≤ r ≤ k-1}. 
Let δ0  = min{d(fr(p),q) : 0 ≤ r ≤ k-1}. Then δ0 > 4γ. By Lemma 2.1, for  η = δ0-4γ, there exists a nonnegative integer v 
such that d(fv(p),q)  < 4γ+η = δ0. fv(p) = fr(p) for some r, 1 ≤ r ≤ k -1. Therefore d(fr(p),q) < δ0.This  contradicts the 
definition of δ0. This proves (a). (b) follows from (a). 
 
Lemma 2.3: Let X be a metric space X, let f :  X →  X be TT and Per(f) is dense. Let p ∈ Per(f) and q ∈ X – Orb(p). 
Let δ0 = d(q, Orb(p)). If δ is not a sensitivity constant for f, then δ0 ≤ 4δ. 
 
Proof: Since δ is not a sensitivity constant for f, there exists some z ∈ X and a neighborhood N(z) of z such that for 
every z* ∈ N(z) and every n ∈ IN, d(fn(z), fn(z*)) < δ. This implies D(fn(N(z)) ≤ 2δ for every n ∈ IN. N(z)∩Per(f) ≠ ϕ, 
as Per(f) is dense. In view of Lemma 2.2, there exists fv(p) ∈ Orb(p) such that d(fv(p),q) ≤  4δ. Therefore, δ0 ≤ 4δ. 
It will be seen later that δ0/4 need not be an upper bound for sensitivity factors for f. 
 
Proposition 2.4: Let X be a metric space X, let f :  X →  X be TT and Per(f) is dense. Let p ∈ Per(f) and                       
q ∈ X – Orb(p). Let δ0 = d(q,Orb(p)). For each ξ, 0 < ξ < δ0/4, δ0/4 - ξ is a a sensitivity constant for f.  
 
Proof: It follows by Lemma 2.3. 
The following is immediate. 
 
Corollary 2.5: Let f :  X →  X be TT and Per(f) is dense. Let p ∈ Per(f) and q ∈ X – Orb(p). Let δ0 = d(q, Orb(p)). δ0/4 
is a limit point of the set of sensitivity constant for f.  
Let p, q ∈ Per(f) be such that q ∈ X – Orb(p). Let k and m be the periods of p and q respectively. For 0 ≤ j ≤ m -1, let  
ηj = d(fj(q),Orb(p)).     
 
Proposition 2.6: Let f :  X →  X be TT and Per(f) is dense. Let p,q ∈ Per(f) be such that q ∈ X – Orb(p). Let m be the 
period of q. Let 0 ≤ j ≤ m-1. For each ξ, 0 < ξ < δj/4, δj/4 - ξ is  a sensitivity constant for f. 
 
Proof: In view of Theorem 1.9, fj(q) ∈ X – Orb(p). Now the result follows by Proposition 2.4. 
 
Remark: Let p, q ∈ Per(f) be such that q ∈ X – Orb(p). Let k and m be the periods of p and q respectively. For            
0 ≤ j ≤ m-1, if we denote ηj by ηj(q,p), then, since fj(q) ∈ X – Orb(p), we have η0(fj(q),p) = ηj(q,p).  
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Remark 2.7: Let f :  X →  X be TT and Per(f) is dense. Let p, q ∈ Per(f) be such that q ∈ X – Orb(p). Let m be the 
period of q. Let 0 ≤ j ≤ m -1.  In view of Theorem 1.9, Lemma 2.3 holds with δ0 replaced by δj. We can rewrite δj as      
γj such that γ0 ≤ γ1 ≤…≤ γm-1. Thus we see that δj/4 need not be an upper bound for sensitivity constants for f, also the 
converse of Lemma 2.3 need not be true.  Also, ηj/4 need not be an upper bound for sensitivity constants for f.  
 
Remark: We note that, for every j, 0 ≤ j ≤ m -1, ηj ≤ δmax, and, for every i, 0 ≤ i ≤ k -1, ςi ≤ δmax. δmax may not be equal 
to any ηj  or, ςi. 
 
Theorem 2.8:  Let X be a metric space X, let f :  X →  X be TT and Per(f) is dense. Let p, q ∈ Per(f) be such that          
q ∈ X – Orb(p). If δ < δ(p, q)/4, then δ is a sensitivity constant for f, or equivalently for each ξ, 0 < ξ < δ/4, δ/4 - ξ is a 
a sensitivity factor for f.  
 
Proof: Let m be the period of q. δ(p, q) = δv, for some v, 0 ≤ v ≤ m -1. In view of Remark 4.7, we have the result by 
Lemma 2.3. 
 
Remark 2.9: Let f:  X →  X be TT and Per(f) is dense. Let p, q ∈ Per(f). In view of Theorem 1.9, q ∈ X – Orb(p) iff   
p ∈ X – Orb(q). So we can interchange the role of p and q in the above considerations i.e. Proposition 2.6, Remark 2.7 
and Theorem 2.8. Let k and m be the periods of p and q respectively. Proposition 2.6 holds with p and q interchanged 
and δj replaced by ςi. Every δ < δ(q, p) /4 is a sensitivity constant for f, i.e. Theorem 2.8 holds with p and q 
interchanged. In fact, we have the following. 
 
Theorem 2.10:  Let f :  X →  X be TT and Per(f) is dense. Let p, q ∈ Per(f) be such that q ∈ X – Orb(p). Let δ*(p,q) = 
max{δ(p, q), δ(q, p)}. If δ < δ*(p, q) /4, then δ is a sensitivity constant for f. 
 
Proof: In view of Remark 2.9, we can suppose that δ*(p, q) = δ(p, q). Now apply Theorem 2.8. 
 
We note below that δmin involved in Proposition 1.10, has a relation with sensitivity constants for f.   
 
Proposition 2.11:  Let X be a metric space X, let f :  X  →  X be  a function. Let p, q ∈ Per(f) with periods of p and q 
respectively, be such that q ∈ X – Orb(p). Let δmin = inf{d(fr(p)), d(fs(q)) | 0 ≤ r ≤ k-1, 0 ≤ s ≤ m-1}.Then (a) for every  
j, 0 ≤ j ≤ m-1, δmin ≤ δj, and there exists some j*, 0 ≤ j* ≤ m-1, such that δmin = δj*, (b) for every i, 0 ≤ i ≤ m -1, δmin ≤ςi, 
and  there exists some i*, 0 ≤ i* ≤ k-1, such that δmin = ςi*. 
 
Proof: For every j, 0 ≤ j ≤ m -1, by Proposition 1.10(c), δmin ≤ δj. There exit some i and j, with 0 ≤ i ≤ k -1 and                 
0 ≤ j ≤ m-1, such that δmin = d(fi(p)), d(fj(q)). δj = d(fj(q),Orb(p)) ≤ d(fj(q),fi(p))) = δmin. The other part follows in view 
of Remark 2.9. 
 
Remark 2.12: We note δmin appearing in Proposition 2.11 is min{δj | 0 ≤ j ≤ m-1} and min{ςi | 0 ≤ i ≤ k-1}. 
 
Proposition 2.13: Let X be a metric space X, let f: X  → X be a function. Let p, q∈ Per(f) with periods of p and q 
respectively, be such that q ∈ X – Orb(p). Let k and m be the periods of p and q respectively. (a) For every j,                 
0 ≤ j ≤ m-1, there exists some i, 0 ≤ i ≤ k -1 such that ςi ≤ δj. (b) for every i, 0 ≤ i ≤ k -1, there exists some j, 0 ≤ j ≤ m-1 
such that δj ≤ ςi. 
 
Proof:  (a) δj = d(fj(q),Orb(p)) = d(fj(q),fi(p)) for some i, 0 ≤ i ≤ k -1. ςi = d(fi(p),Orb(q)) ≤ d(f i(p), fj(q)). Therefore        
ςi ≤  δj. (b) follows similarly in view of Remark 2.9. 
 
Let Senc(f) denote the set of all sensitivity constants for f. 
 
Proposition 2.14: Let X be a metric space X, let f:  X → X be TT and Per(f) is dense. Let p, q ∈ Per(f) with periods of 
p and q respectively, be such that q ∈ X – Orb(p). Let k and m be the periods of p and q respectively. There exists α 
such that (-∞,α) ⊂ Senc(f).   
 
Proof: sup{δj | 0 ≤ j ≤ m-1} = δv, for some v, 0 ≤ v ≤ m-1. In view of Remark 2.9, we can suppose that ςi ≤ δv for all      
i, 0 ≤ i ≤ k-1. Since every real number not exceeding a sensitivity constant for f is a sensitivity constant for f, in view of 
Theorem 2.8, (-∞, δv/4) ⊂ Senc(f), Take α = δv/4.  
 
Remark 2.15: In Proposition 2.14, for given p, q ∈ Per(f) with q ∈ X – Orb(p), (-∞, δv/4) ⊂ Senc(f). Writing  (-∞, 
δv/4) as Spq, ∪{ Spq : p, q ∈ Per(f) with q ∈ X – Orb(p)} ⊂ Senc(f). There arises a question. Given a sensitivity constant 
δ for f , does there exist p, q ∈ Per(f) with q ∈ X – Orb(p) such that δ ∈ Spq ? Or, is Senc(f) = ∪{Spq : p, q ∈ Per(f) with 
q ∈ X – Orb(p)}?     
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The following is a variation of Proposition 1.10.   
 
Proposition 2.16: Let X be a metric space X, let f :  X  →  X be TT and Per(f) is dense. Let p, q ∈ Per(f) with periods 
of p and q respectively, be such that q ∈ X – Orb(p). (a) For z ∈ X, there exists some j*, 0 ≤ j * ≤ m-1 such that            
δj* ≤ d(z,Orb(p))+ d(z,Orb(q)) (b) If z = fj(q), where 0 ≤ j ≤ m-1, then j* = j.      
 
Proof: (a) Let 0 ≤ j ≤ m -1. For z ∈ X, d((fj(q),fi(p)) ≤ d(z, (f j(q)) + d(z, fi(p)) for every i, 0 ≤ i ≤ k -1. We have  
inf{d((fj(q), fi(p)) : 0 ≤ i ≤ k -1} ≤ inf{d(z,f i(p)) : 0 ≤ i ≤ k -1} + d(z,fj(q)). So δj = d(fj(q),Orb(p)) ≤ d(z,  Orb(p)) + 
d(z,fj(q)). d(z,Orb(q)) = d(z,fj*(q)) for some j*, 0 ≤ j * ≤ m-1. This implies that δj* ≤ d(z,Orb(p))+ d(z,Orb(q)). (b) We 
note that in (a), for z ∈ X, j* is such that d(z,Orb(q)) = d(z,fj*(q)). For z = fj(q), d(z,Orb(q)) = 0, therefore,              
d(fj(q), fj*(q)) = 0. Now by Lemma 1.1(i), j* = j. 
 
Remark 2.17: Comparing δmin of Proposition 1.10 with δj*`s of Proposition 2.13, note that δmin of Proposition 1.10 and 
Proposition 2.11 is same for all z ∈ X. But, in Proposition 2.13, there is δj* for a given z ∈ X. By Remark 2.12, δmin is 
the smallest of δj , 0 ≤ j ≤ m -1. There is no comparison of δj* with δj, except when z = fj(q) ∈ Orb(q), in which case      
δj* = δj. It may be added that, if we define δmax = max{d(fr(p)), d(fs(q)) | 0 ≤ r ≤ k-1, 0 ≤ s ≤ m -1}, then, for every          
j, 0 ≤ j ≤ m-1 δj ≤ δmax, and, for every i, 0 ≤ i ≤ k-1, ςi ≤ δmax. δmax may not be equal to any δj  or, ςi.    
 
5. CONCLUSION 
 
The results regarding topological transitivity, dense orbits and sensitivity to initial conditions were obtained and should 
be used for further study of cases in Dynamical systems. The results obtained above are expected to be used for further 
study of orbits of points and transitivity of function in some dynamical systems. For continuous self maps of compact 
metric spaces, we initiated a preliminary study of stronger form of sensitivity. We have constructed the relation 
between topological transitivity, orbit of a point and sensitivity conditions. 
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