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ABSTRACT

The aim of this paper is to introduce the concept of i closed set and their relations. And also we define some new
types of separation axioms in topological spaces by using /i open sets. Also the concept of if R, and i Ry, if T;
are introduced. Several properties of these spaces are investigated.
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1. INTRODUCTION

In 1970, Levine [9] introduced the concept of generalized closed set in topological spaces. In 2000, M.K.R.S
Veerakumar [19] introduced several generalized closed sets namely g* closed set,*g closed set, a*g closed set, *gs
closed set, gclosed set, pu closed set, us closed set. S.Pious Missier and E.Sucila [16] introduced j closed set and their
continuity. Andrijevic[1] introduced semi preopen set(f open set) in general topology. The aim of this paper is to
introduce the some properties of fip closed and new types of separation axiom [5, 7, 8] via {i open sets, and investigate
the relations among these concepts. Throughout this paper, (X,t ) and (Y,o) (or simply X and Y) represents the non-
empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X,
CI(A) and Int(A) represents the closure of A and Interior of A respectively.

2. PRELIMINARIES

Definition 2.1: A subset A of X is called generalized closed (briefly g-closed) [9] set if cl(A) € U whenever
A S U and U is open.

Definition 2.2: A subset A of X is called regular open (briefly r-open) [11] set if A = int(cl(A)) and regular closed
(briefly r-closed) [4] set if A = cl(int(4)).

Definition 2.3: A subset A of X is called pre open set [13] if 4 < int(cl(A)) and pre-closed [6] set if cl(int(A)) € A

Definition 2.4: A subset A of X is called aopen [14] if A C int(cl(int(A))) and a — closed [10] if
cl(int(cl(A))) € A.

Definition 2.5: A subset A of X is called 6 closed [20] if A= cly(A), where cly(A)={x€ X:cl(U)N A #+ U € 1}
Definition 2.6: A subset A of X is called §closed [20] if A = cls(A), where cls(A)=x € X:int(cl(U)) N A # U € t}

Definition 2.7: A subset A of X is called Semi generalized closed (briefly sg closed) [2] if scl(A)<U whenever A< U
and U is semi open in X,

Definition 2.8: A subset A of X is called Generalized o closed (briefly ga closed) [4] if a-cl(A)SU whenever Ac U
and U is a-open in X.
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Definition 2.9: A subset A of X is called Generalized semi-preclosed (briefly gsp closed) [14] if spcl(A)=U whenever
Ac U and U is open in X.

Definition 2.10: A subset A of X is called Regular generalized closed (briefly rg closed) [15] if cl(A)SU whenever
Ac U and U is regular open in X.

Definition 2.11: A subset A of X is called 6 generalized closed (briefly 8g closed) [6] if clo(A)=SU whenever Ac U and
U is openin X.

Definition 2.12:A subset A of X is called § generalized closed (briefly §g closed) [18] if cls(A)SU whenever AcC U
and U is open in X.

Definition 2.13: A subset A of X is called Strongly generalized closed (briefly g* closed) [13] if cl(A)SU whenever
Ac U and U is g-open in X.

Definition 2.14: A subset A of X is called Weakly closed (briefly w closed) [10] if cI(A)<U whenever Ac U and U is
semi open in X.

Definition 2.15: A subset A of X is called Regular weakly closed (briefly rw closed) [4] if cI(A)SU whenever AC U
and U is regular semi open in X.

Definition 2.16: A subset A of X is called Regular generalized weakly closed (briefly rgw closed) [17] if cl(int(A)) €U
whenever AC U and U is regular semi open in X.

Definition 2.17: A subset A of a space (X, ) is called regular semi open [17] if there is a regular open set U such that
UcAccl(U)

Definition 2.18: A subset A of X is called ga* closed set [16] if acl(A)<S int(U) whenever AC U and U is « open in
X.

Definition 2.19: A subset A of X is called p closed set [16] if cl(A)SU whenever A< U and U is ga™ open in X.
Definition 2.20: A subset A of X is called /i closed set [16] if scl(A)SU whenever AC U and U is p open in X.
3.0n p closed set

Definition 3.1: A subset A of a topological space (X,7) is called 8 open ifA < cl(int(cl(A))),whenever A< U and U
is open in X.

Definition 3.2: A subset A of a topological space (X,7) is called i closed set if gcl(A)S U, whenever AC U and U is
B openin X.

Remark 3.3: @ and X are [if closed subset of X.
Theorem 3.4: Every closed set is /i3 closed set, but not conversely.

Proof: Let A be closed set such that AC U and Uis B openset. A=CI(A)<C U. Every closed set is /i closed.
Therefore jicl(A)< U,whenever AC U and U is B-open.Hence A is ip closed set.

Example 3.5: Let X={a, b, ¢, d}, 7={X,¢, {a}.{b}.{a, b}.{a, b, c}} here A={a, d} is [P closed but not closed set in X.

Remarks 3.6: Every 6-closed, & closed, § closed, r closed set is closed. Therefore every 6-closed,  closed, 6 closed,
r closed set is fip closed set.

Theorem 3.7: Every g closed set is (i closed set, but not conversely.

Proof: Let A be g closed set such that cl(A) €U, whenever ACU and U is open. Then cl(A) € jicl(A) €U.Therefore
fcl(A) €U, whenever ACU and U is open. Since every open set is S-open, therefore every g closed set is /I closed set.

Example 3.8: Let X={a, b, ¢, d}, 7={X,¢.{a}.{b}.{a, b}.{a, b, c}}.Let A={a} is i closed but not g closed.

Remarks 3.9: Every gr closed, g* closed set is g closed. Therefore every gr closed, g* closed set is /i closed set.
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Theorem 3.10: Every sg closed set is /I3 closed set, but not conversely.

Proof: Let A be sg closed set such that scl(A)cU, whenever AU and U is semi open. Then scl(A) < cl(A) cU.
Therefore ficl(A) €U, whenever ACU and U is semi open. Since every semi open set is -open, therefore every
sg closed set is I closed set.

Example 3.11: Let X={a b, c, d}, ={X,¢,{a}.{b}.{a, b}.{a, b, c}}. Let A={a, b, d} is /ip closed but not sg closed.
Theorem 3.12: Every gs closed, w closed, ga closed, ag closed set is fip closed set, but not conversely.

Example 3.13: Let X={a, b, ¢, d}, 7={X,¢,{a}.{b}.{a,b}.{a,b,c}}.Let A={a, c} is fip closed but not gs closed.
Theorem 3.14: Every gsp closed set is /i3 closed set.

Proof: Let A be gsp closed set such that spcl(A) €U, whenever ACU and U is open. Then spcl(A) < cl(A) cU.
Therefore icl(A) €U, whenever ACU and U is open. Since every open set is S-open, therefore every gsp closed set is
[P closed set.

Theorem 3.15: Let A€ BC jicl(A) and A is a fip closed subset of (X,7) then B is also a [if closed subset of (X,7).

Proof: Since A is a [ip closed subset of (X,), So jicl(A)SU, whenever A cU and U is 8 open subset of X. Let
Ac Bc [icl(A) . That is gicl(A)=ficl(B).Let if possible there exists an  open subset V of X such that B€ V.So AcV
and A being fip closed subset of X, jicl(A) € V. That is ficl(B) € V. Hence B is also a /i3 closed subset of X.

Theorem 3.16: Let A< BSX, where B is 8 openin X. If Ais fif closed in X, then A is fip closed in B.

Proof: Let A< U, where U is 8 open set of X. Since U=VNB, for Some S open set V of X and B is 8 open in X.
Using assumption A is ip closed in X. We have ficl(A)SU and so gicl(A)=cl(A)NB € UNB < U. Hence A is i} closed
in B.

Theorem 3.17: A subset A of X is fif closed sets iff ficl(A) N A° contains no non-zero closed set in X,

Proof: Let A be a i closed subset of X. Also if possible let M be closed subset of X such that M € ficl(A) NA°. That
is M < jcl(A) and M € A®. Since M is a closed subset of X, M® is an open subset of X € A, and A being /ip open
subset of X, ficl(A) € M®. But MC ficl(A).So we get a contradiction .Therefore M=@.So the condition is true.
Conversely, let AS N, and N is a open subset of X. Then N° €A°, And N° is a closed subset of X. Let if possible
Acl(A) € N .Then jcl(A) n N° is a nonzero closed subset of ficl(A) n A°, which is a contradiction .Hence A is a ap
closed subset of X.

Theorem 3.18: A subset A of X is fif closed set in X iffficl(A)-A contain no non-empty S closed set in X.

Proof: Suppose that F is a non-empty S closed subset if gcl(A)-A. Now F C ficl(A)-A. Then F € ficl(A) n A"
Therefore F< A° Since F° is B open set and A is gB closed, Acl(A) € F°. That is F< acl(A)°. Hence
F< ficl(A) Nn[acl(A)]°=0. That is F=@. Thus jicl(A)-A contains no non empty B closed set. Conversely assume that
fcl(A)-A contains no nonempty S closed set. Let A < U and U is 8 open.Suppose that ficl(A) is not contained in U.
Then ficl(A) n U° is a non-empty S closed set and contained in ficl(A)-A .which is a contradiction. Therefore
fcl(A) € U and hence A is i closed set.

Example 3.19: The figure 1 is justified with the following examples.

Let X={a, b, c, d}, be with the topology 7={X, ¢, {a}, {b}, {a, b}, {a, b, c}} then
1. Closed setsin X are X, ¢, {d}, {c, d}, {a, c, d},{b, c, d}
[P closed sets in X are X, ¢, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b,d}{a, c, d}, {b, c, d}.
aclosed sets in X are X, ¢,{c},{d}.{c, d}{a, ¢, d}{b, c, d}
Pre closed sets in X are X, ¢,{c},{d}.{c, d}{a, c, d}{b, c, d}
Semi closed sets in X are X, ¢,{a},{b}.{c}.{d}.{a, c}.{a, d}.{b, c}.{b, d}{c, d}{a, ¢, d},{b, c, d}
Regular closed sets in X are X, ¢, {a, ¢, d}.{b, ¢, d}
g closed sets in X are X, ¢,{d}{a, d} ,{b, d},{c, d} {a, b, d}.{a, c, d}{b, c, d}.
g* closed sets in X are X, ¢,{d}{a, d}, {b, d}{c, d} {a, b, d}.{a, c, d},{b, c, d}.
9. ga closed sets in X are X, ¢,{c}.{d}.{c, d}.{a, c, d}{b, c, d}.
10. gsp closed sets in X are X, ¢,{a},{b},{c}.{d}.{a, c}.{a, d}.{b, c}{b, d}{c, d}{a b, d}{a, c, d}.{b, c, d}.
11. sgclosed sets in X are X, ¢ ,{a},{b}.{c}.{d}{a, c}.{a d}.{b, c}{b, d}{c, d}.{a b, d}{a, c, d}{b, c, d}.
12. rgclosed sets in X are X, ¢,{c},{d}.{a, b}.{a. c}.{a, d}.{b, c}{b, d}.{c, d}.{a, b, d}{a, c, d}.{b, c, d}.
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13. grclosed sets in X are X, ¢,{d}.{a, d} ,{b, d},{c, d}.{a, b, d}{a, c, d}{b, c, d}.
14. w closed sets in X are X, ¢,{d}.{c, d}.{a, c, d},{b, c, d}.
15. go* closed sets in X are X, ¢,{c},{d}.{c, d}.{a c, d},{b, c, d}.
16. u closed sets in X are X, ¢,{d}.{c, d}.{a, c, d},{b, c, d}.
17. jiclosed sets in X are X, ¢ {a},{b}.{c}.{d}{a, c}.{a, d}.{b, d}{c, d} {a, b, d}.{a, c, d}{b, c, d}.
18. rwclosed sets in X are X, ¢,{d}{a, b},{c, d}.{a, b, c}.{a, b, d}{a, c, d}{b, c, d}.
19. rwg closed sets in X are X, ¢,{c},{d}{a, b}.{a. c}.{a, d}, {b, c}{b, d}, {c, d}.{a, b, c}, {a, b, d}.{a, c, d},
{b, c, d}.
20. gpr closed sets in X are X, ¢,{c},{d}.{a, b}.{a,c}.{a d}.{b, c}.{b, d}{c, d}{a b, c}.{a, b, d}, {a c, d},
{b, c, d}.
21. rgw closed sets in X are X, ¢,{c},{d}.{a, b}.{c, d}.{a, b, c} {a b, d}{a c, d},{b, c, d}.
& closed le—] mclosed rclosed gr closed || rgclosed
Bclosed [ g*closed
J rw closed |——=] rgw closed rwg closed /
closed ]‘ g closed
\4 W closed /
agclosed
aclosed
[ip closed /
Semi closed f_,-"a sgelosed gij/dOSEd
Bclosed gsp closed gpr dlosed

B Means A implies B but not conversely

B means A and B are independent of each other

Figure-1

4. i Ty Space (k=0,1/,,1,2)

In this section, some new types of separation axioms are defined and studied in topological spaces called {if T}, for
k=0, 1/2, 1, 2 and iB D, for k = 0, 1, 2 and some properties of these spaces are also explained. The following
definitions are introduced via i open sets.

Definition 4.1: A subset A of a topological space X is called a {i difference set (briey, {iBD set) if there exist two {if3
open sets U and V such that U = Xand A= U\ V.

Definition 4.2: A space X is said to be:

1.

2.

3.

4.

5.

fiB T, if for each pair of distinct points x and y in X, there exists a {i open set A containing x but not y or a
{iB open set B containing y but not x.

fiB T if for each pair x, y in X, x # y, there exists a {if3 open set G containing x but not y and a {if§ open set B
containing y but not x.

A space X is said to be {if T, if for any pair of distinct points x and y in X, there exist U € fiBO(X, x) and
V € {iBO(X, y) suchthat U n V = @.

iB D, (resp., fip D,) if for any pair of distinct points x and y of X there exists a {ifD set of X containing x but
not y or (resp., and) a fifD set of X containing y but not x.

{iB D, if for any pair of distinct points x and y of X, there exist disjoint ifD sets G and H of X containing
x and y, respectively.

Definition 4.3: A topological space X is called {i T1/2 if every {ip closed set is {i closed.
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Theorem 4.4: A topological space (X, t) is i T, if and only if for each pair of distinct points x, y of X,
ABCI({x}) # ABCI({Y}).

Proof:

Necessity: Let (X, ) be a {if§ T, space and x, y be any two distinct points of X. There exists a {i§ open set U containing
X ory, say X but not'y. Then X \ U is a {if closed set which does not contain x but contains y. Since fiBCI({y}) is the
smallest {iB closed set containing vy, {ip Cl{y}) € X\U and therefore x ¢ {if CI({y}). Consequently
ABCI{x}) # RRCIH{Y}).

Sufficiency: Suppose that x, y € X, x # y and iBCI({x}) # i CI({y}). Let z be a point of X such that z € ABCI({x})
but z ¢ iBCI({y}). We claim that x & ABCI({y}). For, if x € iBCI({y}) then ABCI({x}) < iBCI({y}). This contradicts
the fact that z ¢ iBCI({y}). Consequently x belongs to the {if open set X \ fiCI({y}) to which y does not belong.
Hence (X, 1) is a {if T, space.

Theorem 4.5: A topological space (X, 1) is iy T; if and only if the singletons are {if3 closed sets.

Proof: Let (X, 1) be fif T; space and x any point of X. Suppose y € X \ {x}, then x # y and so there exists a {if open
set U such that y € U but x & U. Consequently y € U € X \{x}, that is X \{x} = u{U: y € X \{x}} which is {i -open.

Conversely, suppose {p} is (i closed for every p € X. Let X, y € X with x # y. Now x # y implies y € X \ {x}. Hence
X\ {x} is a {if open set containing y but not x. Similarly X \ {y} is a {i open set containing x but not y. Therefore X is
a fif T, space.

Theorem 4.6: A topological space (X, 1) is i T1/2 if each singleton {x} of X is either {i open or {i closed.

Proof: Suppose {x} is (i open, then it is obvious that (X \ {x}) is {ip closed. Since (X, 1) is {if Tl/z, so (X\{x}) is
fi closed, that is {x} is {i open.

Theorem 4.7: The following statements are equivalent for a topological space (X, 1)
1. Xis{ifT,.
2. Letx € X. Foreachy =+ X, there exists a {i3 open set U containing x such that y ¢ iCI(U).
3. Foreachx e X, n{fiCI(VU) : U € iBO(X) and x € U} = {x}.

Proof:
(1) = (2): Since X is [iB T,, there exist disjoint {i open sets U and V containing x and y respectively. So, U € X\V.
Therefore, iBCI(U) € X\V. So y € {iBCI(V).

(2) = (3): If possible for some y # x, we have ye iBCI(U) for every {ip open set U Containing x,which contradicts (2).

(3) = (1): Let x, y € X and x # y. Then there exists a {i open set U containing x such that y € fiCI(U). Let V = X\
iBCI(U), theny € V and x € U and also U NV = @. Therefore X is i T, space.

Theorem 4.8: Let (X, 1) be a topological space, then the following statements are true:
1. Every{iB T, spaceis i T;.
2. Every i T; space is {if T1/2

Proof: The proof is straightforward from the definitions and theorem 4.5.
Remark 4.9: Every proper i open set is a ifD set. But, the converse is not true in general as the next example shows.
Example 4.10: Consider X = {a, b, ¢, d} with the topology T = {®, {a}, {b}.{a, b}.{a, b, c}, X}. So,
iBOX,v) = {0.{a}, {b}, {c}, {a, b}, {a c}, {a d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}, then
U={a b, d} = XandV ={ab,c} are i open sets in X and A=U\V = {a, b,d}\ {a,b,c} = {d}, then we have A = {d}
is a fifD set but it is not (i open. Now we define another set of separation axioms called {ipD,, for k =0, 1, 2, by using
the {iD -sets.
Remark 4.11: For a topological space (X, 1), the following properties hold:

1. If (X, 1)is i Ty, thenitis i Dy, fork =0, 1, 2.

2. If (X, 1)is iBDy, then it is fiBDy_4, fork =1, 2.

Proof: Obvious.
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Theorem 4.12: A space X is ifD, if and only if it is fiT,.

Proof: Suppose that X is {iBD,. Then for each distinct pair X, y € X, at least one of x, y, say X, belongs to a iD set G
buty ¢ G. Let G = U; \ U, where U; # X and U, U, € iBO(X, 1). Then x € U, and for y € G we have two cases:
@yeU,(b)yeU, andy € U,.

Incase (a), x € U; buty ¢ U,.

In case (b),y € U, butx & U,.

Thus in both the cases, we obtain that X is {ifT,. Conversely, if X is {ifT,, by Remark 4.11 (1), X is ifD,.
Theorem 4.13: A space X is fiBD, if and only if it is iD,.

Proof: Necessity: Let x, y € X, X #Yy. Then there exist {ifD sets G, G, in X such that x€ G,, y € G, and y € G,
X & G,. LetG, =U;\U, and G, = U; \ U,, where Uy, U,, U; and U, are {i open sets in X. From X & G,, it follows that
either x ¢ U; or x € U; and x € U,. We discuss the two cases separately.

(i) x ¢ Us. By y € G, we have two sub-cases:

(@ y e U,. Since x € U; \ Uy, it follows that x € U; \ (U, U Us;), and since y € U;\U, we have y € U;\(U; U U,).
Therefore (U;\(U, U Us)) N (U;\(U; U U,)) = 0.

(b)y e U, andy € U,. We have x € U; \ U,, and y € U,. Therefore (U; \U,) N U, = @.

(i) x € Us and x € U,. We have y € U;\ U, and x € U,. Hence (U; \ U,) n U, = @. Therefore X is {iBD,.

Sufficiency: Follows from Remark 4.11 (2).
Corollary 4.14: If (X, 1) is fifDy, then it is {if To.

Proof: Follows from Remark 4.11 (2) and theorem 4.12. Here is an example which shows that the converse of
Corollary 4.14 is not true in general.

Definition 4.15: A point x € X which has only X as the {if neighbourhood is called a {ip neat point.

Proposition 4.16: For a fifT, topological space (X, t) the following are equivalent:
1. (X, t)is ipD;.
2. (X, 1) has no i neat point.

Proof:
(1) = (2): Since (X, 1) is {iDy, then each point x of X is contained in a iBD set A= U\ V and thus in U. By definition
U = X. This implies that x is not a {i neat point.

(2) = (1): If X is fiT,, then for each distinct pair of points x, y € X, at least one of them, x (say) has a
{iB neighbourhood U containing x and not y. Thus U which is different from X is a fif D set. If X has no {ip neat point,
then y is not a {if§ neat point. This means that there exists a fi neighbourhood V of y such that V # X. Thusy e V\ U
but not x and V \ U is a ifD set. Hence X is {iD;.

Corollary 4.17: A {iT, space X is not {iBD, if and only if there is a unique {ip neat point in X.

Proof: We only prove the uniqueness of the {if neat point. If x and y are two {i neat points in X, then since X is {if Ty,
at least one of x and y, say X, has a {ig neighbourhood U containing x but not y. Hence U # X. Therefore x is not a
{iB neat point which is a contradiction.

Definition 4.18: A topological space (X, 1) is said to be {i symmetric if for x and y in X, x € iBCI({y}) implies
y € ABCI({x}).

Theorem 4.19: If (X, 1) is a topological space, then the following are equivalent:
1. (X, 1) isa {if symmetric space.
2. {x}is fi closed, for each x € X.

Proof:

(1) = (2): Assume that {x} € U € ipO(X), but fiBCI({x}) ¢ U. Then iBCI({x}n X \ U = @. Now, we take
y € iBCI{x} n X \U, then by hypothesis x € iBCI({y}) € X\ U and x &€ U, which is a contradiction. Therefore {x} is
{iB closed, for each x € X.
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(2) = (1): Assume that x € iBCI({y}), but y & ABCI({x}). Then {y} = X \ ipCI({x}) and hence iBCI({y}<c X \
ABCI({x}). Therefore x € X \ fiBCI({x}), which is a contradiction and hence y € iBCI({x}).

Corollary 4.20: If a topological space (X, 1) is a i T, space, then it is {iff symmetric.
Proof: In a {iBT, space, every singleton is {ip closed and therefore is by theorem 4.19, (X, 1) is {if symmetric.
Corollary 4.21: If a topological space (X, 1) is i symmetric and {if Ty, then (X, 1) is fifT;.

Proof: Let x # y and as (X, t) is i To, we may assume that x € U € X\{y} for some U € iO(X). Then x ¢ iBCI({y})
and hence y ¢ iBCI({x}). There exists a {if open set V such thaty € V € X\ {x} and thus (X, 1) is a i T, space.

Corollary 4.22: If a topological space (X, 1) is {ifTy, then (X, ) is {if symmetric and ﬁBTl/Z

Proof: By Corollary 4.21 and Proposition 4.8, it is true.

Corollary 4.23: For a rg*b-symmetric space (X, 1), the following are equivalent:
1. (X, 7)is ipTo.
2. (X, 1)is (ifD;.
3. (X, 1)is ifT;.

Definition 4.24: Let A be a subset of a topological space ((X, t). The {i kernel of A, denoted by {igker(A) is defined to
be the set {iBker(A) = Nn{U € {iBO(X): A € U}.

Theorem 4.25: Let (X, 1) be a topological space and x € X. Theny € {ifker({x}) if and only if x € iCI({y}).

Proof: Suppose that y ¢ fiBker({x}). Then there exists a {i open set VV containing x such that y ¢ V. Therefore, we
have x ¢ iBCI({y}). The proof of the converse case can be done similarly.

Theorem 4.26: Let (X, 1) be a topological space and A be a subset of X. Then, fifker(A) = {x € X: fiBCI{x}) n A = @}.

Proof: Let x € fiker(A) and suppose ABCI({x}) N A = @. Hence x & X \ fiBCI({x}) which is a {if open set containing
A. This is impossible, since x € figker(A). Consequently, iBCI({x}) N A # @. Next, let x € X such that iCI({x}) N A= @
and suppose that x ¢ {iBker(A). Then, there exists a {if open set V containing A and x € V. Lety € iBCI({x}) n A. Hence, V
is a i neighbourhood of y which does not contain x. By this contradiction x € {ipker(A) and the claim.

Theorem 4.27: The following properties hold for the subsets A, B of a topological space(X, 1)
1. A c{ipker(A).
2. A c B implies that {iker(A) < {iBker(B).
3. IfAis{if openin (X,t), then A = [ifker(A).
4. {ipker(jipker(A)) = fipker(A).

Proof: (1), (2) and (3) are immediate consequences of Definition 4.24. To prove (4), first observe that by (1) and (2),
we have figker(A) < [iBker({iBker(A)). If x & {iBker(A), then there exists U € iBO(X,t ) such that A € U and x ¢ U.
Hence {ifker(A) < U, and so we have x ¢ {ifker(figker(A)). Thus fipker(iker(A)) = fipker(A).

Proposition 4.28: If a singleton {x} is a {ifD set of (X, t), then {ifker({x}) # X.

Proof: Since {x} is a {ifD set of (X, 1), then there exist two subsets U;, U, € iO(X,t ) such that {x} = U\ Uy, {Xx} € U,
and U; # X. Thus, we have that fipker({x}) € U; # X and so {ipker({x}) # X.

5. i Rk Space (k =0, 1)
In this section, new classes of topological spaces called {if Ry and {if Ryspaces are introduced.
Definition 5.1: A topological space (X, 1) is said to be i R, if U is a {i open set and x € U then iBCI({x}) € U.
Theorem 5.2: For a topological space (X, 1) the following properties are equivalent:
1. (X, 7)is {ip Ro.
2. ForanyF € [ifC(X), x ¢ F implies F € U and x € U for some U € {ifO(X).
3. ForanyF € fifC(X), x & F implies F n iBCI({x}) = @.
4. For any distinct points x and y of X, either iBCI({x}) = fipCI({y}) or iBCI({x}) n iBCI({y})= 0.
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Proof:
(1) = (2): Let F € iC(X) and x ¢ F. Then by (1), fifCI({x}) € X \ F. Set U = X \ iCI({x}), then U is a {i open set
suchthat F € U and x ¢ U.

(2) = (3): Let F e fiBC(X) and x ¢ F. There exists U € fiBO(X) such that F < U and x & U. Since U € iBO(X),
U n [BCI({x}) = @ and F n iRCI{x}) = 2.

(3) = (4): Suppose that iBCI({x}) # iBCI({y}) for distinct points x, y € X. There exists z € iBCI({x}) such that
z ¢ IBCI{y}) (or z € iBCI({y}) such that z & rg*bCI({x})). There exists V € {iBO(X) such that y # V and z € V;
hence x € V. Therefore, we have x & iBCI({y}). By (3), we obtain ifCI({x}) N ipCI({y}) = 0.

(4) = (2): let V€ ipO(X) and x € V. For each y ¢ V, x # y and x & {iBCI({y}). This shows that iBCI({x}) # fiBCI({y}).
By (4), iBCI({x}) n iBCI({y}) = @ for each y € X\V and hence iBCI({Xx}) N (Uyex\v ABCI(y)) = @. On other hand,
since V € iBO(X) and y € X \ V, we have iBCI({y}) € X \ V and hence X \ V =. Uyex\y iBCI(y). Therefore, we
obtain (X\V) n fiBCI({x}) = @ and {iBCI({x}) < V . This shows that (X, 1) is a {i R, space.

Theorem 5.3: If a topological space (X, t) is {if To and a fif Ry space then it is ip T;.

Proof: Let x and y be any distinct points of X. Since X is ifT,, there exists a {i open set U suchthatx e Uandy ¢ U.
As x € U implies that fipCI({x}) € U. Since y € U, so y & iBCI({x}). Hence y € V = X \ ifCI({x}) and it is clear that
x & V. Hence it follows that there exist {if3 open sets U and V containing x and y respectively, such that y ¢ U and
X & V. This implies that X is i T;.

Theorem 5.4: For a topological space (X, 1) the following properties are equivalent:
1. (X, 1)is i Re.
2. X €{BCI({y}) ifand only if y € iBCI({x}), for any points x and y in X.

Proof:
(1) = (2): Assume that X is {i8 Ro. Let x € {iBCI({y}) and V be any {ip open set such that y € V. Now by hypothesis,
X € V. Therefore, every {if3 open set which contain y contains x. Hence y € fifCI({x}).

(2)= (1): Let U be afip open set and x € U. If y & U, then x & iBCI({y}) and hence y & {i CI({x}). This implies that
ABCI({x}) € U. Hence (X, 1) is {i Ro. From Definition 4.18 and theorem 5.4, the notions of {if symmetric and {if8 Rq
are equivalent.

Theorem 5.5: The following statements are equivalent for any points x and y in a topological space (X, 1):

1. pBker({x}) # fiBker({y}).
2. [BCI({x}) # ARCI{y}).

Proof:

(1) = (2): Suppose that fifker({x}) # fiBker({y}), then there exists a point z in X such that z € iker({x}) and
z ¢ {iBker({y}). From z € {iBker({x}) it follows that {x}n {iBCI({z}) # @ which implies x € {iB Cl({z}). By
z & [ipker({y}), we have {y}n ipCI({z}) = @. Since x € iBCI({z}), ABCI({x}) < iBCI({z}) and {y}n ABCI({x}) = @.
Therefore, it follows that (BCI({x3}) # ABCI({y}). Now {iker({x}) # fiBker({y}) implies that fiBCI({x}) = ARCI({Y}).

(2) = (1): Suppose that ipCI({x}) #= ABCI({y}). Then there exists a point z in X such that z € {iCI({x}) and
z ¢ IBCI({y}). Then, there exists a {if open set containing z and therefore x but not y, namely, y & fifker({x}) and thus

Aker({x}) # iBker({y}).

Theorem 5.6: Let (X,t ) be a topological space. Then N{{iBCI({x}) : x € X} = @ if and only if {iBker({x}) # X for
every X € X.

Proof:

Necessity: Suppose that N{{iBCI({x}) : x € X} = @. Assume that there is a point y in X such that {iBker({y}) = X. Let x
be any point of X. Then x € V for every {if3 open set V containing y and hence y € iBCI({x}) for any x € X. This
implies that y € Nn{{iBCI({x}) : x € X}. But this is a contradiction.

Sufficiency: Assume that fiker({x}) # X for every x € X. If there exists a point y in X such that y en{{iBCI({x}) :

X € X}, then every {iff open set containing y must contain every point of X. This implies that the space X is the unique
fiB open set containing y. Hence fiker({y}) = X which is a contradiction. Therefore, N{{iBCI({x}) : x € X} = @.
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Theorem 5.7: A topological space (X,t ) is fif Ry if and only if for every x and y in X, ABCI{x}) = ABCI({y})
implies GBCI({x}) N iBCI({y}) = .

Proof:

Necessity: Suppose that (X, t) is fiB Ry and X, y € X such that i Cl({x}) # {iB CI({y}). Then, there exists
z € iBCI({x}) such that z ¢ {iBCI({y}) (or z € {iB CI({y}) such that z & rg*bCI({x})). There exists V € {iBO(X) such
that y € V and z € V , hence x € V . Therefore, we have x & iBCI({y}). Thus x € [X \ iCI({y})] € (iBO(X), which

implies iBCI({x}) < [X\ iBCI({y})] and FBCI({x}) N ARCI({y}) = @.

Sufficiency: Let V € fiBO(X) and let x € V. We still show that ifCI({x}) € V. Let y ¢ V, that is y € X \ V. Then
x # yand x & fiBCI({y}). This shows that ifCI({x}) # fiBCI({y}). By assumption, {iCI({x}) n fiBCI({y}) = @. Hence
y & ABCI({x}) and therefore iBCI({x}) € V.

Theorem 5.8: A topological space (X, 1) is i R, if and only if for any points x and y in X, fiker({x}) # {iBker({y})
implies fipker({x}) n fipker({y}) = @.

Proof: Suppose that (X,t ) is a fiB R, space. Thus by Theorem 3.5, for any points x and y in X if fiker({x}) # fiBker({y})
then iBCI({x}) # ABCI({y}). Now we prove that fiker({x}) n fiker({y}) = @. Assume that z € fipker({x}) n fiBker({y}).
By z € {iBker({x}) and theorem 4.24, it follows that x € {iBCI({z}). Since x € rg*bCI({x}), by theorem 5.2, iBCI({x}) =
ABCI({z}). Similarly, we have iBCI({y}) = iBCI({z}) = iBCI({x}). This is a contradiction. Therefore, we have

ABker({x}) N ABker({y}) = 0.

Conversely, let (X,t ) be a topological space such that for any points x and y in X, fipker({x}) # fipker({y}) implies
fiBker({x}) n i ker({y}) = @. If ABCI({x}) # ARCI({y}), then by Proposition 3.4, figker({x}) # fipker({y}). Hence,
iBker({x}) n {iBker({y}) = @ which implies iBCI{x}) n fiBCI({y}) = @. Because z € [iBCI({x}) implies that
X € fipker({z}) and therefore fiBker({x}) N i ker({z}) # @. By hypothesis, we have fiker({x}) = fiBker({z}). Then
z € iBCI{x}) N {iBCI({y}) implies that {iBker({x}) = fiBker({z}) = iBker({y}). This is a contradiction. Therefore,
ABCI({x}) n fARCI({y}) = @ and by theorem 5.2, (X, 1) is a [if R, space

Theorem 5.9: For a topological space (X,t ) the following properties are equivalent:
1. (X, 7)isafip Ry space.
2. For any non-empty set A and G € iBO(X) such that A n G # @, there exists F € iC(X) suchthat AN F = @
and F € G.
3. Forany G € {iBO(X), we have G = U{F € iBC(X): F c G}.
4. Forany F € iBC(X), we have F = n{G € iBO(X): F c G}.
5. Forevery x € X, iCI({x}) < fipker({x}).

Proof:
(1) = (2): Let A be a non-empty subset of X and G € iBO(X) such that An G # @. There exists x € An G. Since
X € G € fiBO(X), ABCI({x}) € G. Set F = iBCI({x}), then F € iBC(X),FS Gand An F # .

(2) = (3): Let G € IBO(X), then G 2 U{F € {iBC(X): F < G}. Let x be any point of G. There exists F € iBC(X) such
that x € F and F € G. Therefore, we have x € F € U{F € ifC(X): F € G} and hence G = U{F € ifC(X): F c G}.

(3) = (4): Obvious.

(4) = (5): Let x be any point of X and y € {iBker({x}). There exists V € fiBO(X) such that x € V and y ¢ V, hence
ABCI{y}H) NV = 0. By (4), (n{G € iBO(X): fiBCI({y}) € G}) n V = @ and there exists G € {iBO(X) such that x ¢ G
and iBCI({y}) < G. Therefore {iBCI({x}) N G =@ and y ¢ iBCI({x}). Consequently, we obtain iCI({x}) < fifker({x}).

(5) = (1): Let G € fiBO(X) and x € G. Let y € fipker({x}), then x € iBCI({y}) and y € G. This implies that {iBker({x}) € G.
Therefore, we obtain x € {if CI({x}) < {ip ker({x}) < G. This shows that (X, 1) is a {if R, space.

Corollary 5.10: For a topological space (X, 1) the following properties are equivalent:
1. (X, 7)isafip Ry space.
2. {BCI({x}) = fipker({x}) for all x € X.

Proof:

(1) = (2): Suppose that (X,t) is a {i Ry space. By theorem 5.9, {iBCI({x}) < fiBker({x}) for each x € X. Lety € fipker({x}),
then x € iBCI({y}) and (BCI{x}) = BCI({y}). Therefore, y € fiBCI({x}) and hence fiBker({x}) < fiBCI({x}). This shows
that iBCI({x}) = fiBker({x}).

(2) = (1): Follows from theorem 5.9.
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Theorem 5.11: For a topological space (X, t) the following properties are equivalent:
1. (X, 7)isafip Ry space.
2. IfFis {ip closed, then F = {iBker(F).
3. IfFisip closed and x € F, then fifker({x}) € F.
4. Ifx € X, then fifker({x}) < ARCI({x}).

Proof:
(1) = (2): Let F be afif closed and x & F. Thus (X \ F) is a {if open set containing x. Since (X, 1) is fi Ro, ABCI({x})
C (X\F). Thus iCI({x}) n F = @ and by theorem 2.33, x & {iBker(F). Therefore {ifker(F) = F.

(2) = (3): In general, A < B implies {iker(A) < {igker(B). Therefore, it follows from (2), that iker({x}) < {iBker(F)
=F.

(3) = (4): Since x € ABCI{x}) and ABCI{x}) is B closed, by (3), ipker({x}) < ABCI{X}).

(4) = (1): We show the implication by using theorem 5.4. Let x € iBCI({y}). Then by theorem 4.25, y € {iBker({x}).
Since x € BCI{x}) and B CI{x}) is {if closed, by (4), we obtain y € {iBker({x}) < {iB CI({x}). Therefore
X € iBCI({y}) implies y € fiBCI({x}). The converse is obvious and (X,t ) is {if Ro.

Definition 5.12: A topological space (X,t ) is said to be fif Ry if for x, y in X with iBCI({x}) # ABCI({y}), there exist
disjoint {iB open sets U and V such that iBCI({x}) € U and {iBCI({y}) € V

Theorem 5.13: A topological space (X,t) is fif Ry if itis if T,.

Proof: Let x and y be any points of X such that iCI({x}) # iBCI({y}). By theorem 4.8 (1), every i T, space is
{iB T;. Therefore, by theorem 4.5, fiBCI({x}) = {x}, ABCI({y}) = {y} and hence {x} # {y}. Since (X, 1) is i T, there
exist disjoint {i open sets U and V such that ifCI({x}) = {x} € U and iBCI({y}) = {y} S V . This shows that (X, 1) is
AB Ry.

Theorem 5.14: If a topological space (X, 1) is i symmetric, then the following are equivalent:
1. (X, 1)isfip Tz
2. (X, 1) isfiBRyand {if Ty.
3. (X, 1) is{iBRyand {i T.

Proof: Straightforward.

Theorem 5.15: For a topological space (X, t) the following statements are equivalent:
1. (X, 7v)isfip Ry
2. Ifx, y € X such that iBCI({x}) # fiBCI({y}), then there exist {if3 closed sets F;, and F, such that x € F;, y € Fy,
yEFz,Xerandx:Flqu.

Proof: Obvious.

Theorem 5.16: If (X, 1) is i Ry, then (X, 1) is {iff Ro.

Proof: Let U be {ig open such that x e U. If y ¢ U, since x € iBCI({y}), we have fiCI({x}) # ABCI({y}). So, there
exists a {if open set V such that iBCI({y}) €V and x ¢ V , which implies y ¢ iCI({x}). Hence fifCI({x}) € U.
Therefore, (X,t) is {if Ro.

Corollary 5.17: A topological space (X, 1) is i R; if and only if for x, y € X, {ifker({x}) # fiBker({y}), there exist
disjoint {if open sets U and V such that fiBCI({x}) < U and iBCI({y}) € V.

Proof: Follows from Theorem 5.5.

Theorem 5.18: A topological space (X, 7) is i Ry if and only if x € X \ iBCI({y}) implies that x and y have disjoint
{iB open neighbourhoods.

Proof:
Necessity: Let x € X\ ifCI({y}). Then fCI({x}) # fiBCI({y}), so, x and y have disjoint {i3 open neighbourhoods.

Sufficiency: First, we show that (X, 1) is i Ro. Let U be a {ip open set and x € U. Suppose that y & U. Then,
ARCI{y}) n U =@ and x & iBCI({y}). There exist {if open sets U, and U, such that x € U,, y € U, and U,nU, = @.
Hence, iBCI({x}) € fPCI(U,) and fiCI({x}) n U, € iBCI(U,) n U, = @. Therefore, y & ARCI({x}). Consequently,
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ABCI{x}) € U and (X, 1) is fif Ro. Next, we show that (X, 1) is {i R;. Suppose that iCI({x}) # fiBCI({y}). Then, we
can assume that there exists z € iBCI({x}) such that z & iBCI({y}). There exist {if open sets V, and V, such that
z€V, yeVyand V, NV, =0. Since z € iBCI({x}), x € V,. Since (X, 1) is fif Ry, we obtain ABCI({x}) € V,,
fipCI{y}) € Vyand V, NV, = @. This shows that (X, 1) is fi R;.
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