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ABASTRACT
J. Matkowski [19], gave an important generalization of Banach contraction principle for a finite product of metric
spaces. This result has been extended and generalized by several mathematicians. Recently Pant [22] gave an
important concept of reciprocal continuity for a pair of maps. In this paper, we introduced the coordinatewise
reciprocal continuity and proved a fixed point theorem which extend and unify the result of Jungck [13], Matkowski
[op. cit.] and some of their generalization, for non continuous systems of maps.

Subject Classifications: 47H10, 54H25.
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1. INTRODUCTION

In the galaxy of contraction principles, two important generalizations of well-known Banach contraction principle were
obtained by Gerald Jungck [13] and Janusz Matkowski [18]-[19]. Jungck’s result being simple and elegant in nature
has led to a massive growth of fixed point theorems for contractive type maps (see, [2], [3], [6]-[7], [12], [15], [24],
[27]-[30], [34], [36]-[38]).Matkowski’s fixed point theorem (Matkowski contraction principle) being somewhat tedious
in nature could draw the attention of only a few researchers in applicable mathematics (see, [4]-[5], [8]-[11], [16], [20],
[25]-[26], [31]-[33]). Singh- Gairola [31], [32] extend and unify the result of Jungck [op. cit.] and Matkowski [op. cit.]
and some of their generalizations by introducing a new class of maps- coordinatewise commuting and their weaker
forms (see, also [8] and [11]).

With a view to generalizing fixed point theorems for non continuous maps Pant [22], introduce reciprocal continuity. If
Sand T are maps on a metric space (M,d)then the pair (S,T)is said to be reciprocal continuous if and only if

limSTx, =St and limTSx, =Tt whenever {x } be a sequence in M such that limSx, =limTx, =t for some tin M .

n—ow n—w n—ow n—on

Motivated by the work of Singh-Gairola [31] and Pant [22], we extend and generalize the Matkowski contraction for
non continuous maps. We do this by introducing a new class of maps- coordinatewise reciprocal continuous maps.

Throughout this paper we shall follow the following notations and definitions. Let (aik) be anxnsquare matrix with
non-negative entries defined in Czerwik [4] and Matkowski [op.cit].

. izk
0 _ ik U ikt (1.1)
ik 1_aik i=k
t) (t t) .t i
C(t+l) B Cfl)cf+%l.,k+l +Ci(+)1,lc( )1,k+1’ 7k (1.2)
ko0 0 0 i=k |
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t=1...n-1i,k=1..n-t.
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Let(X;,d,), i ., N, be metric spaces,
X —X1><X2>< ...... xX.;
X =(Xe X, )

P.T.:X = X;; i=1..,nand

{xm} = {(x{”,..., Xy )} ,m e N (set of natural numbers) be a sequence in X.

Definition 1.1 [31]: Two systems of maps {R,,..., P, }and { } are coordinatewise commuting at a point x € X if
and only if P(TxX,...T,x)=T,(Px,..,Px) for all i=1.,n. Two systems of maps {P,...P,} and {T,,..,T,} are
coordinatewise commuting on X if and only if they are coordinatewise commuting at every point of X .

Definition 1.2 [31]: Two systems of maps {R,..., P,}and { }are coordinatewise weakly commuting at a point
xe X if and only if d, (P, (T,X,...T,x), T, (PX,..., r|x))$di(Pix,Tix) for all i=1,..,n. Two systems of maps are

coordinatewise weakly commuting on X if and only if they are coordinatewise weakly commuting at every point of
X.

Remark 1.1: Evidently coordinatewise commuting systems of maps are coordinatewise weakly commuting. However,
the weakly commuting systems of maps need not to be commuting (see, [31], [32]).

Definition 1.3 [11]: Two systems of maps {R,,..., P,}and { }are coordinatewise asymptotically commuting or,
following the terminology of Jungck [15], coordinatewise compatlble, if and only if
limd, (R (Tx",... T,x"),T, (RX",...Bx")) =0

m—oo

whenever lim Px™ = limT,x™ =u, for some u, € X;, i=1...,n.
Definition 1.4 [8]: Two systems of maps {R,...,P,}and { }are coordinatewise R-weakly commuting at a point
xe X if and only if d, (P, (T,x,...T,x),T, (RX,... P,x)) < Rdi(Pix,Tix), for alli=1..,n and for any positive real

number R . Two systems of maps are coordinatewise R-weakly commuting on X if and only if they are
coordinatewise R-weakly commuting at every point of X .

Remark 1.2: Coordinatewise weakly commuting maps are coordinatewise R-weakly commuting. However,
coordinatewise R-weakly commuting maps need not to be coordinatewise weakly commuting.

The following example shows the coordinatewise R-weak commutativity of two systems of maps and illustrates that
the coordinatewise R-weak commutativity need not imply coordinatewise weak commutativity.

Example 1.1: Let X, = X, =[0,1] be usual metric spaces and P, T, : X, x X, = X,, i=1,2 such that

Px=x’, P,x =0,

Tx=2x-1 T,x=0.
Since

A, (T, (RX Px), R (T Tpx)) = d (266 =1, (2% ~1)°) = 2(x ~1)° =24, (2% =1, X7 )= 20, (T,x, Px)
and

d, (T, (P, Px),P, (T.x,T,x)) =d, (0,0) =0<d, (T,x, P,x).
Then two systems of maps {R,P,} and {Tl,Tz} are coordinatewise R-weakly commuting. However, they are not
coordinatewise weakly commuting for

d, (T, (RX Px), R (T TpX)) = d (26 ~1,(2%, —1)2) = 2(% —1)° > d, (T, Px),¥xe X .

Definition 1.5: Two systems of maps {R,,..., P,}and { }are said to be coordinatewise reciprocal continuous if
and only if lim P (T,x",...,T,X") =PRzand lim T, (P,x" ,...,an )=T,z, whenever there exist a sequence {xm} in X
such that limPx™ = limT,x" = z; for alli =1,...,n.

m—>o m—>o0

If each member of systems of maps is continuous then systems of maps are coordinatewise reciprocal continuous but
the converse need not be true.
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Remark 1.3: Notice that definitions above with n=1are standard ones for commuting, weakly commuting (see [15]
and [28]), asymptotically commuting (see, [37]) (also called compatible [14]), R-weakly commuting (see [21]) and
reciprocal continuous maps ([22] and see also [23]).

Remark 1.4: Asymptotically commuting (or compatible) class of maps includes commuting and weakly commuting
maps. Commuting maps are necessarily weakly and asymptotically commuting both (see, for instance, [14], [28], [31],

[37]).

Remark 1.5: The commutativity, weak commutativity and asymptotic commutativity (or compatibility) are equivalent
at the point of coincidence of two (or two systems of) maps (see, [1], [14]).

The following example illustrates the coordinatewise reciprocal continuity of systems of maps and shows that
coordinatewise reciprocal continuity of systems of maps does not imply continuity of any member of systems of maps.

Example 1.2: Let X, =[0,1], X, =[0,1] be metric spaces with usual metrics and mappings P, T, : X, x X, — X, for
i =1,2such that

0 if x=0 0 if x,=0
P (X, X%,) = P (X X,) =
(X %;) l if x>0 z(X1, 2) l if x,>0
2 2
T( X)_0 if x=0 T(xx)—o if x,=0
%)= i x>0 20 S0
Suppose {xm} be a sequence in X, x X, such that Px™ — z and T,x" — z,for some z;, i=1,2,asm — oo .Then for

z=(0,0) and {x"} ={(0,0)} e X for each m, R(T,x",T,x") >0=PRzand T,(ARX",P,x") >0=Tz asm—co.
Hence systems of maps {P,P,} and {Tl,TZ} are coordinatewise reciprocal continuous at z =(0,0) but they are not

continuous atz =(0,0). To see this, let {xm} = {(iij} be a sequence in X, x X, .Since{xm} —(0,0)asm — oo but
m m

then Px" —>%¢ P.(0,0) and T,;x™ —1=T,(0,0) fori=1,2,asm — co.

The following Lemma is due to Matkowski [19] (see also [4], [33]).

Lemma 1.1: Let ¢ >0, i,k =1,....,n,n > 2, then the system of inequalities

Dar <r, i=1..n (1.3)
k=1

has a positive solutionr;,..., I, if and only if the following inequalities hold:
¢ >0, i=1..,n-t; t=01..,n-1,n>2, (1.4)

Moreover, there exists a positive number h <1 such that
D r <hr,i=1..n, (1.5)
k=1

for some positive number r,,..,1,. Indeed such an h may be found by

h= mgx{rilzn:aik rk}. (1.6)

Now we will state our main results.
2. RESULTS

Theorem 2.1: Let(X,,d;),i=1,...,n, be complete metric spacesand P,Q,S,, T,: X - X,, foralli=1,...,n, be such that
R(X)cT(X), Q(X)=S(X), i=1. n (2.1)
The system (R,...,P,) coordinatewise R-weakly commutes with the system (S,,...,S,) and the system (Ql’ -+Qn)
coordinatewise R-weakly commutes with the system (T,,...,T,) . (2.2)
The system of maps (P,..., P,) coordinatewise reciprocal continuous with the system (S,,...,S,) or the system of maps

(Q,.....Q,) coordinatewise reciprocal continuous with the system (T,,...,T,). (2.3)
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If there exist non- negative numbers b and @, , i,k =1,....,n such that (1.1), (1.2), (1.4) and the following hold:

0<b<1-h,where his defined in (1.6) and (2.4)
d; (S;%,BX), d; (T, Q).
(Pny)<max Za d (S kay)bmax d(Sny)+d (Ty px) (2.5)
2
for all x,y € X, then the system of equations
Px=Qx=X% =S x=Tx (2.6)
has a unique common solution (x,...,x,) such thatx, € X,, i=1,...,n.

Proof: First we note that in view of the system of inequality (1.5), hdefined in (1.6) exists and 0 < h <1(c.f. Czerwik
[4]). From the Lemma 1.1 and (1.6) we may choose positive numbers 1,,.., I, such that

n
Dan <hr,i=1..n
k=1

Pick X’ e X;,i=1,..,n. We in view of (2.1), construct sequences {x"}and {y"}in X; such that
yI2m+1 PiXZm — TiX2m+1
yl2m+2 — QiX2m+1 — SiX2m+2, m= 0,1, 2’ .

We may assume thatd, (yZ, y;) <r,, i =1,...,n.From condition (2.5), we have
di(yis'yiz):di(PiXZlQin)
d, (S;x*,Px?), d, (T,x},Q,x"),
< max Zalkd (S, X%, T, x"), bmax d,(5,x2,Qx") +d, (T}, Px?)
2

n d (v2, y2) +d. (v, y°
ax{zaikdkwf,y&),bmax{dmyf,yf),di(y:,yf), SRR y')}}

2

n d (1,2
:max{zaikdk(yiflYi),bmax{di(yf,yf),di(yg,yf),%}},

Since implies that

,(y, y,) d; (y, Y 2) 1+ d; (y, ,y,)
2 2

6 (2 )<max{z A 02 v bmax [ (v, v2), ;0 vd) }}

If d;(y7, y7) > di (v, y7), then
di (v3, y.><max{ Ay G2 ). b (7 D))
n
smax{kglaikrk,bdi(yiznyifg)}<max{hr bd; (y| Yi )}

Since otherwise, we get a contradiction.

If d;(y7, y7) <di(y;,y7), then

d; (y. Yi )<ma><{ 2y k(yk yk) bd (¥ ¥; )}

< L bd: (VL v2
< max I(Elaikrk, i Y ¢

ax{hri , bri} =cf, i =1...,n,where ¢ = max{h, b}.
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Again from condition (2.5), we get
di(yiA! y|3) :di(PiXZ!Qixa)

Smax{iaikdk(SkXZ,Tkxg),bmax{di (Sixz,Pixz)ydi(TiXS,QiXS), di(six 1QiX )+di(TiX yPiX )}}

2

d; (y2, vy +d, (v2, y?)}}
2

= max {Z ay dy (ylfl y:), b max {di (yizl yia)’ d, (yis’ yi4)1
k=1

= max {i aikdk(ylfv ys), b max {dl (y|21 Y.3): dl(yIS, Y.A), w}}

Since implies that

di(v7,y) Ayt y) +d (v v
2 2

4,0y %) < max{iaikdkws. y2), brmax {d, (v2. ¥0), d, (v, v }}

< max {Zaikcrk, bmax{di (3, yh, cr }}
k=1
and arguing same as before this implies

d;(yiy)) < max{z aycr,, ber, } < max {hcr,, ber, }

k=1
=cr, max{h, b} =c’r,, where c = max{h,b}.
Inductively
d,(y"™?,y™y<c™r ,m=0,12,..

Since 0<c <1, hence {yim }::1 is a Cauchy sequence in X, for alli=1,..,n. As X, is a complete metric space, there

exists a point u, (say) in X; such that {y"}—>u, as m—o . Moreover y;"* =Px"" =Tx’"" - u, and

2m+2

yi — QiX2m+l — SiX2m+2 N ui asm — oo.
If systems of maps (R,...,P,)and (S,,...,S,) are coordinatewise reciprocal continuous then
lim P (S,x°",...,S,x*™) = Puand lim S, (Px*",...,P,x*™) =Su, i=1..,n. (2.7)

Now, coordinatewise R- weak commutativity of systems of maps (R,...,P,)and (S,,...,S,) yields
d; (R (SX°™,....5,X°™), S, (RX°™,..., B,X’™)) < Rd, (RX*", $,X° ).

Taking lim m — coand using condition (2.7), we have
d;(Pu,Su)=0,i=1..,n
and therefore
Pu=Su,i=1..n. (2.8)

Since B(X) < T;(X), so there exists a point w=(w,,...,w, ) € X such that Pu=T,w fori=1,...n.

Now from condition (2.5),

d; (Pu, Qw) < max {Zn: ay d, (S,u, T,w), b max {di (S;u, Pu), d, (T,w, Qw),

d; (S;u, Qw) +d; (T w, Bu)
5 .
Using condition (2.8), we get
n di(Piu’Piu)’ di(Piu’QiW)v
d; (Piu’ QiW)S max Zaikdk (PkUkaW)’ bmax < d, (Pu,Qw)+d; (T,w, Pu)
k=1
2

<bd, (Piul QiW)'

© 2017, IJMA. All Rights Reserved 52



U. C. Gairola, Deepak Khantwal* / A Fixed Point Theorem On Product Of Metric Spaces / IIMA- 8(12), Dec.-2017.

So,
Pu=Qw, i=1..,n.

By the above we then have

Pu=Su=Tw=Qw, fori=1..,n.

Coordinatewise R-weak commutativity of systems of maps (R,...,

such that

d; (P(Su,...,S,u), S;(Ru,...,P,u)) <Rd, (Pu,Su).

Using condition (2.9), we get

d; (P(Su,...,S,u), S;(Ru,...,Pu))=0

and therefore

P(Su,...,S,u)=S,(Ru,...,Pu), i=1..,n.

Again using condition (2.9), we have

P(Su,...,S,u)=R(Ru,..,Pu)=S,(Pu,...,Pu) =S,(S,u,...,S,u), i=1..,n.

Similarly, R-weak commutativity of systems of maps (Q,,...,Q,)and (T,,...,T,) implies
Q(Mw,..., Tw)=Q,(Qw,....Qw) =T.(Qw,...,Qw) =T, (Tw,....Tw),i=1..,n.

Now from condition (2.5) and assuming

d;(R(Pu,...RPu), Ru)<r, i=1..n

We have

d; (Pi(Plu,...,Pnu), F’iu):di (Pi(Plu,...,Pnu),in)

< max

< max

n
> Ay (S (R PR, T W),

d; (S; (R, Pu), By (R, -, Pau)), d; (Tyw, Qyw),

D1 d, (3 (R, ... Pat). QW) + d (Tw, Ry (R .. Pau)

2
n
kélaikdk (Pk (P, Pyu), Pku),
d| (P| (Plu,..., Pnu), P (PlU,..., Pnu)),d- (Tin QiW)’

bmax, g, (P (R..... ), Ru )+ (Ru. Ry (R .. Pau)
2

n
smax{kélaikrk,bdi (Pi(Plu,...,Pnu), F’Iu)}

< max{hri ,br; } <cr, where ¢ = max{h,b}.

Inductively, we can prove that

di (PI(P]_uni Pnu)’ Plu) < Cmri ym= 0’1’2"“

and consequently

By the above we then have

P(Ru,..,Pu)=PRu,i=1..n.

P(Ru,...,Pu)=S,(Ru,...,Pu)=PRu.

Similarly, by using the condition (2.5), we can obtain

Qi (QIW""!QnW) = Ti (Q]_Wl ---,QnW)Z QiW .

Since

© 2017, IJMA. All Rights Reserved

Pu=Qw=yv,(say) fori=1..,n,

(2.9)

P)and (S,,....S,) implies that there exists R >0

(2.10)

(2.11)

(2.12)

53



U. C. Gairola, Deepak Khantwal* / A Fixed Point Theorem On Product Of Metric Spaces / IIMA- 8(12), Dec.-2017.

then condition (2.10), (2.11) and (2.12) together implies that
Pv=Qv=v,=Sv=Tyv,i=1..n.

This proves that the system of equation (2.6) has a common solution when systems of maps (R,...,P,)and (S,,...,S,)
are coordinatewise reciprocal continuous. In case, when systems of maps (Q,,...,Q,)and (T,,...,T,) are coordinatewise
reciprocal continuous, the proof may be accomplished in an analogous manner.

Now, to prove the uniqueness of the solution, we assume that v,,v, e X, such that v, =v, and
Pi\_/:QiV:SiV:TiQ:V.Wecanassumethat

di(v,%)<n, i=L.n.

From condition (2.5), we get
d; (S;v, Rv), di (T, v, Q V),
d; (vl,v) d; (Rv,Q; )<max 2 aIk k(S v, T v) bmax+ 4. (Sva)+d (Tv Pv)
2
d; (v;.vi), d; (vl,v)
< max Z alk k(VI’ I) bmax+ 4. (v v)+d (VI’ |)

2

n _
< max{kélaik Moo bd; (v;,v; )} = max{hri , bri} =cf; , where ¢ = max{h, b}.

Inductively

di (Vi ’V_i) <c™. m=0,12,..
and consequently

vi _vl, i=1..n.
This completes the proof.

Corollary 2.1: Let(X,,d,),i=1,2....,n, be complete metric spacesand P, T,: X — X,, i=1...,n, be such that

P(X)cT.(X), i=1..n; (2.13)
Systems of maps (R,...,P,)and (T,,...,T,) are coordinatewise R- weakly commuting; (2.14)
Systems of maps (R,,...,P,)and (T,,...,T,) are coordinatewise reciprocal continuous; (2.15)

If there exist non- negative numbers band a, , i,k =1,...,n such that (1.1), (1.2), (1.4) and the following hold:

0<b<1-h, where his defined in (1.6) and (2.16)
Px,T d.(Py,T
d,(P,x,P,y)<max{Za d, Tkay)bmax{d (Px,T,x),d (Py,Ty), d; (Rx Iy); i(Ry .x)}} (217)
for all X,y e X, then the system of equations
P;x:Tixz X (2.18)

has a unique common solution (x,...,x,)suchthatx, € X,, i=1,..,n.
Proof: Proof may be completed by putting P =Q,and S, =T,,i =1,...n, in the proof of Theorem 2.1.

Example 2.1: Let X, = X, =[2, 20] be usual metric spaces and P, T; : X, x X, — X;, i=1,2,such that

2 X, =2 2 X, =2

P (x.%)=16 2<% <6, P _(x,X)=16 2<%, <6,
2 X, >6 2 X, >6
2 X =2 2 X, =2

T (X.%)=412 2<x <6, T (X, % )=412 2<X, <86,
X, -3 X >6 X, =3 X,>6
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for all (x,,x,)e X, xX,. This example satisfy all the conditions of our Corollary 2.1 and have a unique common

solution at x=(2,2) .It is notable that two systems of maps {P,P,} and {T,,T,} are coordinatewise reciprocal
continuous but none of B, P,,T,,T, is continuous, not even at the point x = (2,2) .

Remark 2.1: If we assume(M,d)=(X;,d,), P=P,Q=Q, S=S,,T=T, i=1..n,and n=1then (2.5) with a, =k
may be written as:
P,Q,ST:M - M, 0<k<1],

d(Sx, Qy) +d(Ty, Px) Xy

(*) d(Px, Qy) < Bmax{d (Sx, Ty), d(Sx, Px), d(Ty,Qy), 5

e X,

where 0 < g = max {k,b} <1.

Remark 2.2: A multitude of fixed point theorems generalizing the Jungck contraction principle have been establish
under the condition (*) and its particular cases (see for [2], [3], [7], [12], [15], [17], [27], [29]-[30], [34]-[38]). It may
also be mentioned that Kubiak main result proved exactly under the condition (*) uses the commutativity of P with S
and that of Q withT .
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